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Abstract

We introduce a novel approach to the completion of 3D scenes, which is a practically important task as captured point clouds
of 3D scenes tend to be incomplete due to limited sensor range and occlusion. We address this problem by utilising sparse
convolutions, commonly used for recognition tasks, to this content generation task, which can well capture the spatial rela-
tionships while ensuring high efficiency, as only samples near the surface need to be processed. Moreover, traditional sparse
convolutions only consider grid occupancies, which cannot accurately locate surface points, with unavoidable quantisation
errors. Observing that local surface patches have common patterns, we propose to sample a Radial Basis Function (RBF) field
within each grid which is then compactly represented using a Point Encoder-Decoder (PED) network. This further provides a
compact and effective representation for 3D completion, and the decoded latent feature includes important information of the
local area of the point cloud for more accurate, sub-voxel level completion. Extensive experiments demonstrate that our method

outperforms state-of-the-art methods by a large margin.
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1. Introduction

In the fields of computer graphics and computer vision, it is im-
portant to obtain high-fidelity 3D data of real-world objects and
scenes. Such data is useful for a wide range of practical applica-
tions. For instance, high-quality indoor scene data is beneficial to
AR/VR (augmented reality and virtual reality) applications. How-
ever, directly acquired 3D models by scanning are often flawed, be-
cause of the unavoidable occlusion, limited sensor range and noise
during data capture. Techniques to improve the captured data are
thus highly demanded, to facilitate downstream processing and ap-
plications.

Among different 3D data enhancement techniques, 3D comple-
tion is particularly important, which infers the missing part from
partial input to deliver completed results of the original models
or scenes. It has a firm connection with traditional 3D reconstruc-
tion that builds a digital representation for real-world objects and
scenes. In the process of reconstruction, it is common that certain
parts are missing due to unavoidable occlusions or sensor limits
(e.g. objects being too close or too far away from the sensor). This
can cause significant problems for downstream applications, espe-
cially when large parts are missing. 3D completion is therefore not
only an important task on its own, but also often seen as an integral
component in a 3D reconstruction pipeline.

Despite great effort [YKH*18, YFST18, TKR*19], 3D comple-
tion still faces several significant challenges to be tackled. First,
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both the (local) geometric shapes and their distributions and spatial
relationships are crucial to providing clues for completing miss-
ing parts. This applies both at the object level where existing parts
give clues for completing missing parts, and at the scene level
where the contextual information is crucial for scene understand-
ing and modelling [CLH15]. Existing learning-based methods such
as those based on point clouds (e.g. [YKH™18]) often struggle to
capture both geometric shape information and spatial relationships
well. Second, it is challenging to recover fine geometric details for
missing parts. This would normally require high-resolution rep-
resentations, which can be prohibitively expensive, especially for
volumetric and implicit representations (e.g. [DQN17]). The above
challenges are further exacerbated when addressing 3D scene com-
pletion, which can involve a huge amount of data and require sig-
nificant computational power to process.

In this paper, we address the above challenges in the challeng-
ing 3D scene completion task. Our proposed RPS-Net (RBF-Point
Sparse Convolution Net) is based on a volumetric representation.
However, as the majority of space is empty, we propose to use
sparse convolutions [CGS20] such that only voxels close to the sur-
face need to be calculated, significantly reducing the computational
and memory costs. Sparse convolutions have been successful for
shape/scene understanding tasks, achieving state-of-the-art perfor-
mance [GEV18, CPK19], but to the best of our knowledge, it has
not been fully demonstrated for generative tasks, in particular 3D
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Figure 1: Comparison of completion results between our method and state-of-the-art methods SGNN [DDN20] and ScanCom-
plete [DCS*17]. The colour coding is used to show the distance of a point to the nearest point in the ground truth, where darker means

closer. Note that the same colour scheme is applied throughout the paper.

scene completion. Unlike unstructured point clouds which largely
depend on Multi-Layer Perceptron (MLP) that cannot fully capture
spatial relationships, sparse convolutions effectively capture geo-
metric information and spatial relationships as spatial neighbour-
hoods of different scales are taken into account. To achieve this,
we need to extend the original sparse convolutions to address the
overall dimensions of the full scene not known in advance. To fur-
ther capture long-range dependencies (e.g., the shape of a chair in
a scene may help complete other chairs in the same scene), we fur-
ther incorporate an attention module in the network architecture.
To recover fine geometric details, instead of using voxels for occu-
pancy, we further propose to encode point distributions within each
voxel using a compact representation. This is based on the observa-
tion that geometric shapes of local volumetric regions are not arbi-
trary, but have common patterns. Such patterns are effectively en-
coded using an encoder-decoder structure network to encode sub-
voxel radial basis function (RBF) distribution from nearby points.
Previous work used a Variational Autoencoder (VAE) to compactly
represent shape details within voxels, but their approach is more
suitable and only used for recognition [MGLM19]. Our idea is to
instead develop a compact representation for generation tasks, and
our Point Encoder-Decoder (PED) network not only compactly rep-
resents local shapes within voxels, but also exploits the latent code
for inferring sub-voxel level geometric details, thus helping to re-
construct high-quality detailed geometry. Some examples of our
method along with comparisons with state of the arts are shown in
Figure 1, demonstrating the superior performance of our method.

In summary, our contributions are:

(1) Sparse convolution plays an important role in our method to
process large-scale point clouds. To our knowledge, our method is
the first supervised method to perform generative tasks with full 3D
sparse convolutions.

(2) By compactly encoding the point distribution in local ar-
eas using a dedicated network based on a smooth RBF field, our
volumetric representation contains richer geometric details within
voxels than the binary occupancy maps and signed distances. This
helps our method better predict point positions at the sub-voxel
level for more accurate completion.

(3) Because there is no public dataset that provides paired par-
tial/complete 3D scenes anymore, we built a new dataset named
IPS (Indoor Partial Scene) dataset that fills this gap. Our dataset
will be made available for research purposes.

2. Related Work

In the early years, methods based on radial basis functions achieved
great results in several tasks, including reconstruction and repre-
sentation of 3D models [CBC*01]. Recently, several attempts were
made with shared weight MLP autoencoders [YKH* 18, YFST18]
for single object point cloud completion. However, local informa-
tion is considerably lost as such methods have to use symmet-
ric functions in the feature space to avoid the requirement of or-
dering. Convolutional neural networks [SYZ*16] have been pro-
posed for 3D completion since it is a natural extension from 2D
inpainting [LRS* 18] to the 3D domain. Recently, sparse convolu-
tion [CGS20] has shown its excellent performance in processing 3D
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data for applications such as classification and segmentation. How-
ever, generative tasks with full sparse convolution have not been
applied, which is addressed in our work.

2.1. Sparse convolution

Sparse convolution directly conducts convolution on sparse tensors
which saves huge computational resources. Graham [Gral4] uses
2D sparse convolution on handwriting recognition and image clas-
sification which achieved promising results. Moreover, in the 3D
feature extraction task, sparse convolution outperforms other meth-
ods by higher accuracy and much less time [CPK19]. A genera-
tive paradigm was attempted in [GCS20] for the object detection
task, instead of generating new or missing content. Sparse Gen-
erative Neural Network (SGNN) [DDN20] exploits sparse convo-
lutions for scene completion; however, the method still contains
dense components. The method is self-supervised by removing par-
tial data from the already incomplete scan input and learning to
recover the removed data. However, as the original scan is incom-
plete, the evaluation process has fundamental problems that would
penalise correct completion that adds missing parts in the origi-
nal scans. In our work, we propose a scene completion method that
fully benefits from sparse convolutions. Along with detail encoding
within voxels and the attention module, our method improves 3D
scene completion both at structure and detail levels. We further de-
velop a dataset based on synthetic 3D scenes, ensuring the ground
truth does not have missing data.

2.2. Object and scene completion

Object completion. Following classic PointNet [QSMG17], many
papers [DQN17, YFST18, GFK* 18, LBBM 18, CCM20, WLHL20,
WXH*21,WXH*22,XWL*22] try to address single object comple-
tion. PCN (Point Completion Network) [YKH*18] is applied in a
coarse-to-fine structure which is widely used in voxel grid comple-
tion. This network is based on FoldingNet [YFST18] but the fold-
ing happens in a small region specific to each point in the coarse
result. Liu et al. [LSY*20] similarly deform 2D planes into a 3D
shape with two stages. However, the above MLP-based methods
require the input point cloud to have the same number of points,
and consequently a fixed number of points are outputted. Thus,
their generalisation capability for unseen objects is limited. More-
over, due to the fully connected nature of these methods, large-scale
point cloud input is hard to handle.

Scene completion. Traditional methods to achieve scene com-
pletion can be categorised into geometric approaches and template-
based approaches. Symmetry [PMW*08] is a common feature in
geometric approaches to analyse the existing shape, and then com-
plete the missing parts. Template-based approaches mainly exploit
similar shapes [PMGO5] in the database. The template works as a
reference for inferring missing parts in incomplete shapes. How-
ever, traditional methods could fail because either symmetry does
not exist or similar templates are missing in the database. Deep
learning-based scene completion surpasses traditional methods by
their efficiency and accuracy. Song et al. [SYZ™16] take a depth im-
age along with semantic information as input and only output the
voxel grid within the camera frustum. The method requires seman-
tic information, which is not often provided and can be difficult to
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obtain. The works [WTNT19, CLQ*20, WTNT20, CCZ*21] con-
tinued this work and the task can be classified as semantic scene
completion (SSC), which needs to either provide or predict se-
mantic information. The task we focus on is different from SSC:
we do not need semantic information, and the input is the partial
point cloud of the whole scene rather than a single depth image.
Some works [DRB* 18, DDN20] have attempted to complete a par-
tial scene with Truncated Signed Distance Fields (TSDF), but lim-
ited by the input voxel resolution, both results are unsatisfactory.
Our method does not need semantic information so does not re-
quire additional semantic labelling for training. With the capacity
of sparse convolution and the attention module, our method can
recover more high-quality details.

3. RPS-Net

Our method applies sparse convolution to the generation task, along
with compact encoding of local geometry as an RBF field to get
promising results, as shown in Figure 1. Sparse convolution makes
it possible to conduct convolutions on high-resolution voxel grids.
Meanwhile, the embedding feature helps the network get richer
geometric information for both the initial input and the generated
completion results. The details of the pipeline will be described in
the following subsections.

3.1. Bounding box prediction

As a voxel-based method, it is essential to know the dimension
of the whole volume to cover the completed 3D scene. However,
the input 3D scene may have large parts missing, so directly us-
ing the bounding box of the input point cloud may mistakenly cut
off the output result. To address this, we take the Frustum-PointNet
[QLW*17] architecture, and use it to analyse the global features to
regress the centre and size (a 6-dim vector) of the bounding box
of the completed 3D scene through an added fully connected (FC)
layer.

3.2. Voxelisation and RBF field computation

Our approach is based on sparse convolution on a volumetric grid,
so we need to first turn point cloud input to voxels. Feature ex-
traction is then performed based on points within each voxel. We
split the point cloud by an appropriate voxel size to get a regu-
lar grid. Convolution intrinsically better exploits local geometry
information than MLP as it learns features of neighbouring vox-
els. However, dense 3D CNN’s resolution is typically limited to
64 x 64 x 64 due to the curse of dimensionality. We use two strate-
gies to address this fundamental challenge: Thanks to sparse con-
volution where only occupied voxels are stored and processed, we
are able to increase the resolution of the voxel grid, such that the
longest dimension is split into 128 voxels, and other dimensions are
split accordingly based on the voxel size, i.e., the grid resolution is
ny X ny X nz, where max(ny,ny,n;) = 128. To retain useful infor-
mation within each voxel, instead of using occupancy or distance
field, we further divide each voxel into s X s X s subvoxels (s =4 in
our experiments), and the RBF value reflecting point distribution is
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Figure 2: Pipeline of our RPS-Net (using a single chair as the example),
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where a learnable mask is predicted in a separate branch in each

stage and used as a reference to prune redundant voxels in the pruning process.

calculated for each subvoxel as follows:
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where v indicates the centre coordinates of a subvoxel, P indicates
the set of points in the point cloud, and p is one of the points. The
Gaussian kernel is applied in our RBF, where the value is deter-
mined by the closest point near the centre of the subvoxel, which
has the dominant influence. ¢ is the Gaussian kernel size. Com-
pared with binary occupancy at the subvoxel level, RBF is smooth
so can be easier to learn. Storing all the subvoxel RBF values as
multi-channels in each voxel is prohibitively expensive. To reduce
the complexity and avoid potential overfitting, a network named
PED (Point Encoder-Decoder) as shown in Figure 3 is utilised to
embed subvoxel RBF values within a voxel to a latent code ¢ using
the encoder, and the decoder aims to recover point positions at the
sub-voxel grid. PED is trained by taking the RBF values as input
and outputting the closest point to the centre of each subvoxel. Un-
like [MGLM19] which only uses such variational latent for analy-
sis using a VAE, we develop PED that not only compactly embeds
local geometry within a voxel, but also allows flexible and more
accurate point positions to be recovered. It is incorporated in our
sparse convolution architecture for subvoxel-level representation,
utilised for representing both the input with richer information, and
the output to better recover details.

3.3. Network architecture

RPS-Net is based on an encoder-decoder architecture, with skip
connections to retain more information from the input, as illustrated
in Figure 2. To better extract information at different scales and
complete missing parts, a coarse-to-fine architecture is introduced
in the decoder, which contains six cascade stages. In each stage,
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Figure 3: PED: a separate encoder-decoder network that encodes
RBF values at subvoxels within a voxel into a compact latent code,
which can then be decoded into points’ coordinates.

the deconvolution layer expands the potentially occupied (i.e., non-
zero) voxels by duplicating each voxel from the previous stage in
space according to the kernel size and stride. Through this step,
new non-zero entries will be added in the sparse tensor to get more
voxels generated. This is then followed by a pruning layer [TDB17]
as not all the expanded voxels are needed. The resolution of output
is gradually increased as illustrated in Figure 4. A learnable mask
is formed to guide the pruning layer to remove voxels generated
by deconvolution. As training progresses, the mask is gradually re-
fined to be like the ground truth to prune unneeded voxels produced
in deconvolution. Correspondingly, in the early stage, the structure
of the complete 3D object is recovered. With multiple layers of de-
convolution and pruning of redundant voxels, the resolution of the
recovered object increases to acquire more details. Attention mech-
anism has been shown to improve the generalisation capability in
existing works [VSP*17,HSS18]. As different filters in convolution
extract different feature maps, the channel attention module assigns
different weights to them according to their importance and selects
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the most useful feature maps for the task. In practice, we utilise
SE-ResNet block [HSS18] for the channel attention module.

3.4. Prediction of point distribution within each voxel

The use of information-rich latent code for the input voxels en-
hances the representation of detail. The coarse output by the
encoder-decoder structure (i.e., only considering the non-zero vox-
els in the last layer) can fill in large missing or occluded parts of
the input object. However, details in the output are not sufficiently
retained. Since the output of the network also encodes voxels with
latent code, this enables point distribution within each voxel to be
recovered to get a fine result. We supervise the output at the last
stage with the ground truth voxel latent code ¢. By passing the pre-
dicted latent code through the decoder of the PED, we can recover
the point distribution at the subvoxel level. In the inference stage,
the predicted latent code is finally decoded by PED to the coordi-
nates of points, allowing more accurate sub-voxel level point posi-
tions to be regressed. As this process aims to predict more accurate
point locations within subvoxels, the predicted point is removed if
it is too far away from the centre of its corresponding subvoxel.

3.5. Loss function

We implement the sparse convolution and deconvolution using
Minkowski Engine [CGS20]. Binary Cross Entropy Loss (BCE)
is used in the coarse (i.e., voxel-level) completion. The voxelisa-
tion makes the input partial object bounded in a certain box and
it is easy to depict the voxelised ground truth as a binary format
with its occupancy in the sparse voxel grid. Therefore, BCE loss
in each stage k measures the difference between output and ground
truth during model training. There are K = 6 stages in the decoder,
and £; is individually calculated in each stage. Through experi-
ments, we found that the model is more easily trained in stages,
i.e., as training progresses, the weights of layers in previous stages
are frozen. This also avoids introducing additional hyperparameters
in the combined stage loss.

In the fine completion stage, the subvoxel points prediction is
dominated by the voxel latent code. Mean squared error (MSE) as
Equation 4 is used to evaluate the difference between the predicted
and ground truth latent codes, which makes the model regress the
voxel latent code that implicitly describes point distribution within
each voxel. Therefore, the loss function in the final stage is as fol-
lows:

L=Li—6+ >\'£fine 2

The BCE loss guarantees the occupancy of sparse voxel grids
and MSE ensures their features reflect the distribution of subvoxel
points. A = 1.0 is used in our experiments. For detailed formulas of
Ly and Ly, Equation 3 is the loss function used in the phase of
coarse completion.

1Y
Ly = N Y [yilog(¥:) + (1 —yi) log(1 — )] 3)
i=1

where y; indicates the 1-channel feature of each voxel representing
occupancy delivered by another branch in each stage, and a sig-
moid function makes it clamped within [0, 1], y; indicates the target
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Figure 4: Output progresses to higher resolution with stage pro-
ceeding.

occupancy of corresponding voxels. k indicates the current stage
(1 €k < K). Ny is the total number of voxels at stage k.

1 R
Lfine =~ Y. 16— @
Ni:l

where /; indicates output latent code of each voxel and ¢; is the
voxel latent code obtained from ground truth. N is the total number
of voxels in the last stage.

4. Experiments and Implementation
4.1. Datasets

Point clouds are a popular representation for 3D feature learning as
depth cameras and other 3D scanning devices are becoming more
accessible. For single object completion, Completion3D [TKR*19]
is one of the most popular datasets. There are 8 different categories
of point cloud objects. The numbers of points in the input point
cloud and ground truth both are 2048. For such a small number
of points within the point cloud, it is hard to evaluate the genuine
capability of models for 3D scene completion. Moreover, each in-
stance of the partial point cloud in Completion3D has the exact
same number of points which does not conform to real-world situ-
ations. Therefore, more attention has been paid to large-scale point
clouds in which a varied number of points exist.

For the indoor scene dataset, SUNCG dataset [SYZ"16] was
popular in this regard but is no longer accessible. There is no com-
prehensive indoor synthesised dataset with accurate ground truth.
We therefore created the IPS (Indoor Partial Scene) dataset. It
fills the gap that there is no publicly available paired partial and
complete indoor scene point cloud dataset. It is worth noting that
datasets like NYUv2 [SHKF12], Matterport3D [CDF*17] and Se-
manticKITTI [BGM*19] are all real-world scanned datasets and
not dedicated to 3D completion. The real-world scanned datasets,
both indoors and outdoors, are not perfectly complete, due to un-
avoidable occlusion and noise. Such “ground truth” may be accept-
able for other tasks like classification. However, these occluded ar-
eas with missing data could have a huge impact on the completion
task, both for training and evaluation. Therefore, evaluations on
these datasets are not recommended for our problem, as a method
that correctly recovers parts that are missing in imperfect “ground
truth” would be unfairly penalised.

4.1.1. SceneNet [MHLJ17]

SceneNet is also a labelled synthesised indoor scene dataset, but
there are only 57 room instances in this dataset. Although we also
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use this dataset for testing scene completion methods, it is inher-
ently limited and may not be sufficient as a practical dataset due to
such a small number of rooms.

4.1.2. Indoor partial scene (IPS) Dataset

There are 4216 houses with selected 6264 rooms in this dataset, the
training and test splitis 7 : 3. The variety of rooms ranges from bed-
rooms to kitchens which fits the real-world situation and ensures
the generalisation capability to be evaluated. These 6264 synthe-
sised rooms are extracted from the 3D-FRONT dataset [FCG*21]
including annotations. Each room is centred by geometry. A cam-
era is then placed in the centre with a height of 0.6 metres and looks
down by 45 degrees. By rotating the camera around the y-axis at an
interval of 40°, 9 depth maps are captured. Occlusions naturally
occur in these depth maps. The 9 depth maps are then converted to
the partial point cloud.

4.2. Training details

The learning rate is le-2 and weight decay is le-4. The batch size
is set to 4. There are six up-sampling stages in the decoder to ex-
pand the occupied voxels. For each stage, the output voxels are in-
creased through deconvolution based on its kernel size, and we use
early stopping with a patience parameter 1| = 10 to make the model
automatically progress to further stages when the BCE loss of each
stage does not decrease over a few epochs. In addition, after each
stage, the weights of layers in previous stages are frozen.

5. Evaluation and Results

In terms of PCN [YKH*18] and other PointNet-based meth-
ods [YFST18,TKR*19,LSY *20,CCM20,WXH*21], there is a ma-
jor drawback that their result has an identical number of points in
the point cloud as input, which is restrictive. Furthermore, indoor
scene point clouds contain hundreds of thousands of points, these
methods could not take such a large number of points with their
fully connected layers due to the excessive number of learnable
parameters. Therefore, these methods fail to effectively handle 3D
scene completion. In our work, the output has been pruned by a
trained mask which decreases the size of output while it varies to
fit different situations of indoor scenes.

5.1. Metrics

To measure the accuracy of the completion network, Chamfer dis-
tance and Earth Mover’s distance are popular metrics to measure
the difference between the output point cloud and the ground truth.
Due to the unordered nature of the point cloud, the metric should be
invariant to the permutation of points. The requirement to use EMD
distance is point clouds S}, $; have to be of the same size. However,
the scene completion task in our setting does not assume this, so
EMD is not applicable to our method. Chamfer Distance (CD) as
Equation 5 is a classic metric to compare two point clouds and is
used in this work. Chamfer distance is different from EMD, which
does not require S1,5, to be the same. CD measures the squared
distance between each point in one set to its nearest neighbour in

Method IPS SceneNet [MHLIJ17]
ScanComplete [DRB* 18] | 226.38 506.72
SGNN [DDN20] 35.45 145.60
Ours 20.06 106.55

Table 1: Chamfer distance (lower is better) between output and
ground truth.

another set.

dep(51,8) =Y min|x—y|53+ ¥ min|x—y|5 &
cp (51,52) Xglye& =yl y§g2X651 lx=ylz2 (5
Note that previous works [DDN20, DRB* 18] also used L; error of
TSDF values between output and target. However, it is highly re-
lated to the voxel size and only applicable to TSDF-based methods.
The point cloud is more in common use and widely used in 3D ob-
ject completion. Therefore, the mesh outputs of ScanComplete and
SGNN have been sampled to point clouds for comparison.

There are several differences between our work and scene com-
pletion methods like [CCZ*21,XZS*19]. Such methods require se-
mantic labels for training, which are expensive to acquire. Further-
more, there is no fixed camera or viewpoint for our work, and the
completion of the entire scene geometry is our focus rather than
just a single depth image.

5.2. Results

Our method achieves competitive results as shown in Table 1 and
outperforms other methods by a large margin quantitatively with
two datasets; qualitative comparison also is shown in Figure 5. The
comparison is conducted with methods that do not use semantic
information. This attribute makes methods applicable to broader
settings. ScanComplete is limited by the low resolution of the grid
and occupancy features. SGNN tries to use sparse grids but dense
blocks and incomplete “ground truth” impede the capability of their
model. Compared to other methods, our method compelete more
parts in terms of floor and wall. Figure 6 shows the floor in bedroom
is still missing in SGNN, and this missing part has been completed
by our method, same as the wall in another living room. In contrast
to the TSDF value used in SGNN, the subvoxel RBF value indicates
the distribution of points in higher resolution. Ablation studies are
conducted in the following section.

5.3. Generalisation

Further experiments have been done on real world scanned datasets
like Matterport3D [CDF*17], we evaluate the generalisation capa-
bility of our model and SGNN, where the models are trained on our
IPS dataset, and applied to the Matterport3D dataset, and the aver-
age Chamfer distances are reported in Table 2. Qualitative compar-
isons are shown in Figure 7. As can be seen, the “ground truth” in
Matterport3D has large incomplete regions. Our method manages
to complete the floor and wall which are missing in the “ground
truth”, which is plausible, but can significantly skew the quanti-
tative analysis. To address this, we measure the Chamfer distance
from the ground truth to output point clouds, and our method out-
performs SGNN.

© 2023 The Authors.
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Figure 6: Completion detail comparison with SGNN. ScanCom-
plete is not applicable as it has a large area missing in its results.
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Ours

Ground Truth

Method/Dataset | Matterport3D [CDF*17]
SGNN [DDN20] 57.90
Ours 42.76
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Table 2: Average Chamfer distances (from ground truth to output

point clouds) comparison on methods both trained on IPS.

6. Ablation studies

6.1. Input voxel latent code ¢

The use of PED latent code ¢ directly improves the quality of coarse
output, as more details of the input point cloud are captured. Com-
pared to the occupancy feature, £ extends the learning capability of
the convolutional neural network. Table 3 indicates the coarse out-
put’s quality in terms of average Chamfer distances when using our
proposed PED latent code feature and the occupancy feature. As a
comparison, we also show the performance when using the VAE
representation from VV-Net [MGLM19]. Although the VAE repre-
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Figure 7: Rooms in Matterport3D dataset are extracted by signed
distance from scanned frames, many of them are inherently incom-
plete, so not generally suitable for the 3D scene completion task.

Method or Category | Completion3D [TKR*19] IPS
Occupancy 0.0015 50.29
VAE latent code 0.0012 24.25
PED latent code ¢ 0.0012 23.15

Table 3: Voxel latent code ¢ has considerable impact on coarse out-
put. We show the results of single category (chair) test on the Com-
pletion3D dataset [TKR* 19] where shapes have been normalised,
as well as results on IPS dataset.

sentation could embed the RBF distribution within each voxel into
a compact code, it loses the ability to recover more accurate point
locations. Our representation achieves similar performance as VAE
latent code for the single object case, but clearly better performance
on the (arguably more challenging) Indoor scene dataset.

6.2. Fine recovery with PED latent prediction

Voxel latent code ¢ contributes largely to the final output of our
method. The abundant geometry information within subvoxel ¢
value enlarges the capacity of representation of the deep network
model. The ablation study compares the coarse output and our PED
latent code improved output. Comparison in Table 4 indicates PED
latent code is essential in terms of internal point prediction, which
improves the quality of final output. Figure 8 also reveals this point.

6.3. Attention Module

We demonstrate that the attention module improves the comple-
tion performance by quantitative comparison. These benefits can
be recognised from Table 4. It also helps the training process con-
verge better.

(a) Coarse output (b) Fine output

Figure 8: Comparison of coarse output (left) and fine output after
subvoxel point prediction (right).

Method or Category IPS
RPS-Net w/o Attention Module 105.69

RPS-Net w/o subvoxel points prediction | 23.15
RPS-Net 20.06

Table 4: Further modification of coarse output improves the Cham-
fer distance, the attention module also has a considerable impact
on output.

7. Conclusion and Future work

We have presented a novel method for point cloud completion.
By utilising sparse convolutions, we are able to process high-
resolution volumetric grids efficiently. Moreover, the PED-encoded
RBF fields within voxels make it possible for our method to recover
subvoxel details. We further create the IPS dataset for point cloud
completion. On both the IPS and SceneNet [MHLIJ17] datasets our
method has shown its superiority to fill in the missing part of the
input partial point cloud, outperforming state-of-the-art methods.
Matterport3D [CDF*17] a test dataset verify that the generalisa-
tion of our model also is better than other methods. As future work,
we would like to extend our approach to larger scenarios like city
scale to further explore the potential of sparse convolution.
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