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Abstract
Advanced geometric modelers require the detection of topological changes caused by modeling operations such as edge cre-
ation, face splitting or volume merging... Such a detection can be dynamically performed by comparing all topological cells
(vertices, edges, faces, volumes) before and after each modification, which can be very time consuming. Then, for some events
generated in a systematic way, it can also be performed statically before applying each operation, but it entails several hurdles
due to the lack of formalization of such events: while some events may seem obvious, others may not appear intuitively or
systematically, and this work of defining events needs to be done again for each newly developed operation.
In this paper, we propose to formalize the static detection of events and to automate this process based on automatic analysis
of operations. To achieve this, we leverage on the formalism of graph transformation rules to describe geometric operations,
and on the topological model of G-maps that enables homogeneous modeling of manifold geometric objects in any dimension.
The syntactic analysis of rules enables the detection of all events that can be detected statically and also specifies the cells on
which events that can only be detected dynamically could occur. With this approach, any new operation can be developed faster
within the modeler, ensuring a complete, accurate and automatic event detection.

CCS Concepts
• Computing methodologies → Shape modeling; • Theory of computation → Rewriting systems;
Keywords : Topology-based modeling; Topological change detection; Static analysis; Graph transformation rules; Generalized
maps;

1. Introduction

CAD-oriented systems rely on geometric modeling kernels which
allow users to design and maintain control over complex geometric
models [Das23; Ope22; Sie22]. An essential feature of such kernels
is event detection: the ability to track topological changes (creation,
deletion, split, merging and modification) of cells (vertices, edges,
faces, volumes) when a modeling operation is applied.

Event detection has a variety of purposes such as, for exam-
ple, the construction of event logs, persistent naming schemes or
modeling optimization. An event log is an history-based data struc-
ture describing the evolution of cells during the construction of a
model. Such data are required for the internal execution of a num-
ber of operations provided by kernels and are also passed through
the API in order to help developers using those kernels to maintain
model consistency [ABC00; BMSB07; LLX*18; Ope22]. A persis-
tent naming scheme allows the reevaluation of models regardless of
parameter changes, or their transfer toward other systems, and di-
rectly or indirectly depends on events detection to propose unique
and persistent names for cells [Kri95; MP02; CMHK12; BNB05;
FH18]. Events detection is also useful for optimizing the model-
ing process. For example, operation conflicts in feature-based col-

laborative CAD systems can be detected and resolved by tracking
topological entity changes [CHWZ16].

Most current tools detect events dynamically. A dynamic detec-
tion requires comparing a model before and after the application of
any operation [Ope22; BMSB07]. On complex models that contain
a significant number of cells, the cost in time to fully perform event
tracking can be relatively high. To reduce this cost, it is possible
to statically detect some local events. For example, the triangula-
tion of a face generates vertex modifications, vertex creations, face
subdivision, and so on. Static detection is based on analyzing op-
erations and allows events to be described and calculated before
those operations are actually performed. It is up to the developer of
the operation to manually define and describe these events, which
raises a number of predicaments. First, there is currently no stan-
dard formalization for describing these events. For instance, de-
pending on the system, an edge flip operation between two triangles
may be interpreted as a modification of both triangles or as a split
and/or merging of those triangles. Second, the task of defining and
describing events needs to be repeated every time a new operation
is developed. Third, this manual definition can introduce errors be-
cause while some events may seem obvious, others may not be in-
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(a) Initial flat surface (b) Collapse(e1) (c) Collapse(e2)

(d) Initial cylindrical surface (e) Collapse(e3)

Figure 1: Various edge collapses.

tuitively apparent or can be forgotten. Event detection may then be
incomplete or erroneous. For example, consider the edge collapse
operation used in geology for studying soil erosion [BCS*14]. This
operation is illustrated in Fig.1. Quite intuitively, the collapse of an
edge results in the merging of both vertices at its endpoints. This
can be observed in Fig.1b, where vertices V1 and V2 are merged
into a single vertex S1. However, when the same operation is ap-
plied again (Fig.1c), it leads to the merging of vertices S1 and V3
and the subsequent split into two vertices S2 and S3, in the case of
a classical manifold representation. The same operation applied to
an edge of a cylinder can even result in no vertex merging at all, but
only a split (Fig.1e).

In this paper, we propose to formalize the static detection of
local events and automate this process based on automatic analy-
sis of operations. To achieve this, we use the formalism of graph
transformation rules to describe geometric operations, specifically
using the Jerboa library [BALB14] which facilitates the develop-
ment of modelers dedicated to specific applications. Jerboa is based
on the Generalized Maps (or "G-maps") topological model [Lie91;
DL14], which corresponds to a specific class of labeled graphs and
enables homogeneous modeling of oriented or non-oriented mani-
fold geometric objects in any dimension. The rules are constructed
through the Jerboa interface, which allows for rapid development
of modeling operations while ensuring the topological consistency
of the underlying geometric model. As we show in the following, a
syntactic analysis of each rule enables the detection of local events
and also specifies the cells on which global events could occur
(events that can only be detected dynamically). This detection be-
comes much faster, as only these cells need to be verified during
the application of the operation. With this approach, any new oper-
ation can be developed within the modeler, ensuring an automatic,
complete and accurate event detection.

Section 2 introduces the concepts of generalized maps and Jer-
boa’s graph transformation rules, along with their associated vo-
cabulary. Section 3 formalizes topological events and details the
static analysis to perform in order to automatically detect these
events. Section 4 presents an example of event log integrating a
list of automatically detected events. Section 5 provides a time cost
comparison between static and dynamic event detection. Section 6
concludes and proposes some perspectives.

2. Main concepts

In this section, we present the generalized maps, the graph trans-
formation rules, and the concepts upon which our method is based.

2.1. Generalized maps

Generalized maps (or G-maps) [Lie91; DL14] allow the represen-
tation of manifold geometric objects (with or without boundaries),
based on some cellular n-dimensional topological structure.

The representation of an object as a G-map intuitively comes
from its decomposition into topological cells (vertices, edges,
faces, volumes, and so on). For example, the 2D geometrical ob-
ject shown in Fig. 2a is represented as a 2-dimensional G-map (or
2-G-map) as follows. The object is first decomposed into faces
(Fig. 2b). These faces are linked along their common edge with
a 2-link, drawn in blue. Each edge on the border of the object is
connected to itself (the blue 2-link forms a loop). The index "2"
means that the link connects two 2-dimensional (possibly a single
one) faces. In order to simplify the reading, 2 labels will not be
written in every subsequent figure. In the same way, faces are split
into edges connected with red 1-links (Fig 2c). Lastly, edges them-
selves are split into vertices with black 0-links (Fig 2d) to produce
the 2-G-map describing the objects shown in Fig. 2a. A G-map is
therefore a graph, the nodes of which are the vertices (named darts)
obtained at the end of the process and the edges are i-links.

G-maps have conditions guaranteeing objects consistency: for
example, two faces are always linked along an edge.

Topological cells are not explicitly represented in G-maps but
only implicitly defined as subgraphs. They can be computed us-
ing graph traversals defined by an originating node and by a given
set of link labels named orbit. For example, the 2-cell adjacent to
some dart a (or the object face matching a) (Fig. 3a) is the sub-
graph which contains a and all darts reachable from a, using links
labeled 0 or 1 (i.e. darts a, b, c, d, e, f , g and h) and the links them-
selves. This subgraph is denoted by G⟨0,1⟩(a) and models the face
BCED (Fig. 2a). ⟨0,1⟩ is the type of the orbit. The 1-cell adja-
cent to a (or the object edge matching a) (Fig. 3b) is the subgraph
G⟨0,2⟩(a) which contains a and all reachable darts using links la-
beled 0 or 2 (i.e. darts a,b, l and m) and the corresponding links. It
represents the topological edge BC. Thanks to 2-loops on the object
border, G⟨0,2⟩(c) (Fig. 3c) also represents the edge CE matching
dart c. The 0-cell adjacent to a (or the object vertex matching dart a)
(Fig. 3d) is the subgraph G⟨1,2⟩(a) and represents vertex B. Note
that orbits are more general than cells. For example, the face edge
G⟨0⟩(a) (Fig. 3e) is an ⟨0⟩ orbit adjacent to a.

2.2. Graph transformation rules

Jerboas’s [BALB14] graph transformation rules allow the formali-
sation of operations over G-maps.

In a few words, a rule r : L −→ R and a match m : L → G to a
G-map G, describe the transformation G −→r,m H from G to H. m
allows replacing a sub-graph of G described by the left-hand side
of the rule L with another one described by the right-hand side R,
in order to produce H.
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Figure 2: Cell decomposition of a geometric 2D object
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Figure 3: Orbit decomposition of a geometric 2D object
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Figure 4: Rule L −→ R of face triangulation

Informally, in the triangulation rule shown in Fig. 4, the left side
is made of only one node n0 labeled with the ⟨0,1⟩ (i.e. face) type:
this way, it can match any face. Consider for instance the node n0
from L and the dart a0 from G shown in (Fig. 5a), respectively.
Matching n0 with a0, the whole face G⟨0,1⟩(a0) is matched, high-
lighted in orange in the figure. 0- (resp. 1-) links are represented by
black (resp. red) segments. On the right side, the node n0 has label
⟨0,_⟩. This means that when applying this rule, 0-links of nodes
n0 have been preserved, while 1-links have been deleted. Hence, in
H (Fig. 5b), the 0-links of the matched orange face have been pre-
served while 1-links have been deleted. In other words, the edges of
the orange face are disconnected in H. The new node n2 of R cre-
ates, in H, darts copied from the matched face. This is why there
are eight blue darts (a2, b2 . . . h2) created from orange darts (a0, b0
. . . h0). Because n2 is labeled ⟨1,2⟩, the orange 0- (resp. 1-) links
on the left side of the rule are relabeled to 1- (resp. 2-) links in the
blue copy. Therefore, the rule creates a dual vertex to the matched
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Figure 5: Application of the triangulation rule (Fig. 4) on matched
dart a0

face. Finally, the node n1 of R creates a green copy with eight darts
(a1, b1 . . . h1), deletes the left-side 0-links and relabels the left-side
1-links to 2-links.
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All the highlighted links (Fig. 5) are referred to as implicit links
in the rule nodes. Conversely, the links connecting the nodes to-
gether in R are referred to as explicit links. For example, the ex-
plicit 0-links between n1 and n2 link one-to-one green and blue
darts. Therefore, the rule creates the four new edges ⟨0,2⟩ in the
triangulation of the matched square face. By the same token, the
explicit 1-link between n0 and n1 link one-to-one orange and green
darts.

The n0 node (Fig. 4) is a preserved node because it belongs to
both the left and right sides of the rule. Nodes n1 and n2 are created
nodes because they belong only to the right side of the rule. This
rule does not contain any deleted node because none of its nodes
belongs only to the left side.

The concept of orbit is extended to patterns of rules. For ex-
ample, in the right-hand side of the triangulation rule (Fig. 4), the
⟨0,2⟩-orbit (an edge) incident to node n0 contains the single node
n0, and the ⟨0,2⟩-orbit incident to n1 contain the two nodes n1 and
n2 and the explicit 0-link which connects them. Additionally, an
⟨o⟩-orbit is said to be complete if each node in the orbit matches
one link per label of ⟨o⟩ either explicitly or implicitly. For exam-
ple, the ⟨0,2⟩-orbit incident to node n0 in the right-hand side of the
triangulation rule (Fig. 3) is not complete, because node n0 has no
2-link, neither implicitly nor explicitly. Conversely, the ⟨0,2⟩-orbit
incident to n1 is complete, because its two nodes n0 and n1 are in-
cident to the explicit 0-link and both have an implicit 2-link. Note
that an ⟨o⟩-orbit in a graph is entirely matched by a rule pattern if
and only if the corresponding ⟨o⟩-orbit in the pattern is complete.
For example, the ⟨0,2⟩-orbit incident to a0 in the graph H (Fig. 5b)
is partially matched by the triangulation rule (only darts a0 and b0
are matched and not their 2 neighbors), because the ⟨0,2⟩-orbit in-
cident to n0 in the rule is not complete. Conversely, the ⟨0,2⟩-orbit
incident to a1 in graph H is entirely matched by the triangulation
rule (both darts a1 and h1 are matched by node n1 and darts a2 and
h2 are matched by node n2), because the ⟨0,2⟩-orbit incident to n1
in the rule is complete.

Jerboa’s rules provide syntactic properties guaranteeing the
preservation of G-maps consistency.

3. Event detection

Basically, detecting an event occurring on an orbit after the appli-
cation of a rule implies comparing the graph before and after this
application [TSRA17]. However, many events can be statically de-
tected before the rule is applied. As seen previously, entrusting the
developer with the task of detecting and formalizing these events
for each new operation paves the way to various issues. We propose
to formalize the different events (creation, deletion, split, merging,
modification, and non-modification) and their detection in order to
automate this process through analysis and comparison of rules’
nodes.

3.1. Creation

Any node of a rule matches at least one dart. So when a rule cre-
ates a node, it also creates the corresponding darts. If the right-hand
side of a rule contains a created orbit, then applying this rule on any
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2
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n0
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Figure 6: Rule r : L −→ R of unsewing 2-links along an edge
(⟨0,2⟩-orbit)

object creates one or several orbits. For example, the triangulation
rule (Fig. 4) creates the edge orbit R⟨0,2⟩(n1). Therefore, the ap-
plication of this rule on the square face (Fig. 5) creates four edge
orbits H⟨0,2⟩(a1), H⟨0,2⟩(c1), H⟨0,2⟩(e1) and H⟨0,2⟩(g1) in H.

The creation of an orbit is defined as follows :

Definition 3.1.1 (Orbit creation) Let r : L −→ R be a rule, m : L →
G a match, t : G −→r,m H the transformation of G by (r,m), ⟨o⟩ an
orbit type, n a created node of R and d a dart of H matched by n.
An orbit R⟨o⟩(n) is created in the rule r if all of its nodes are created
in r.
An orbit H⟨o⟩(d) is created in the transformation t if and only if
all of its darts are created by t.

From the syntactic analysis of a rule, it is then possible to au-
tomatically detect the event of orbit creation using the following
proposition :

Proposition 3.1.1 Let r : L −→ R be a rule, m : L → G a match,
t : G −→r,m H the transformation of G by (r,m), ⟨o⟩ an orbit type,
n a created node of R and d a dart of H matched by n.
The orbit H⟨o⟩(d) is created if and only if R⟨o⟩(n) is created.

Idea of proof: Thanks to the syntactic conditions on rules, the
orbit R⟨o⟩(n) is complete. Thus, due to the application of rules,
H⟨o⟩(d) is included in the image of R⟨o⟩(n). Therefore, all darts
of H⟨o⟩(d) are created. Conversely, if H⟨o⟩(d) is created, then this
orbit is included in the image of R⟨o⟩(n) and R⟨o⟩(n) is created. □

Back to the example of face triangulation (Fig. 4 and 5), we fol-
low the creation of an edge. The edge orbit R⟨0,2⟩(n1) in the trian-
gulation rule is created because both its nodes n1 and n2 are created.
In the transformation, n1 matches eight darts, including for example
dart a1, and n2 also matches eight darts including dart a2. The edge
orbit H⟨0,2⟩(a1) is created as well as darts a2,h1 and h2 (Fig. 5b).

3.2. Split

When a rule explicitly splits an orbit, it also splits the set of matched
orbits. For example, the unsewing rule (Fig. 6) splits the edge orbit
L⟨0,2⟩(n0) into a pair of edge orbits R⟨0,2⟩(n0) and R⟨0,2⟩(n1).
Therefore, the first application of this rule (Fig. 7b) splits the edge
into two edges H⟨0,2⟩(a0) and H⟨0,2⟩(a1).

A rule can also split an orbit implicitly. For example, the tri-
angulation rule (Fig. 4) splits the face orbit L⟨0,1⟩(n0) along the
second implicit links since on the right-hand side, every second
implicit link of the nodes n0, n1 and n2 belonging to the face or-
bit R⟨0,1⟩(n0) is either deleted or different from 0 and 1. Hence,
applying this rule (Fig. 5) splits G⟨0,1⟩(a0) into four face orbits
H⟨0,1⟩(a0), H⟨0,1⟩(c0), H⟨0,1⟩(e0), H⟨0,1⟩(g0).

The split of an orbit is defined as follows :
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Figure 7: (a) Initial graph G. (b) First application of the 2-unsewing rule (Fig. 6): pink darts. (c) Second application of the 2-unsewing rule:
green darts. (d) Application of the edge deletion rule (Fig. 9): red darts.

Definition 3.2.1 (Orbit split) Let r : L −→ R be a rule, m : L → G
a match, t : G −→r,m H the transformation of G by (r,m), ⟨o⟩ an
orbit type, n a preserved node of r and d a preserved dart of t.
An orbit L⟨o⟩(n) is split in the rule r:

• Either explicitly if there exists a preserved node n′ in L⟨o⟩(n)
that does not belong to the same orbit in R, i.e. R⟨o⟩(n) ̸=
R⟨o⟩(n′);

• Or implicitly along the k-th implicit link if there exists in
L⟨o⟩(n) a node for which the k-th implicit link belongs to ⟨o⟩
and for all nodes n′ in R⟨o⟩(n), the k-th implicit link is renamed
outside of ⟨o⟩.

An orbit G⟨o⟩(d) is split in the transformation t if and only if
there exists a preserved dart d′ in G⟨o⟩(d), such that H⟨o⟩(d) ̸=
H⟨o⟩(d′).

From the syntactic analysis of a rule, it is then possible to auto-
matically detect the event of orbit split using the following propo-
sition :

Proposition 3.2.1 Let r : L −→ R be a rule , m : L → G a match,
t : G −→r,m H the transformation of G by (r,m), ⟨o⟩ an orbit type,
n a preserved node of r.
If the orbit L⟨o⟩(n) is both complete and explicitly split in r, i.e.
if there exists a preserved node n′ in L⟨o⟩(n) such that R⟨o⟩(n) ̸=
R⟨o⟩(n′), then for any preserved darts d and d′ of t respectively
matching R⟨o⟩(n) and R⟨o⟩(n′), G⟨o⟩(d) is split in t into two orbits
H⟨o⟩(d) ̸= H⟨o⟩(d′).
If the orbit L⟨o⟩(n) is both incomplete and implicitly split, the split
may be confirmed dynamically on G.

Idea of proof: As a reminder, a complete orbit L⟨o⟩(n) entirely
matches an orbit G⟨o⟩(d).

In the case of an explicit split in r from L⟨o⟩(n) to R⟨o⟩(n) ̸=
R⟨o⟩(n′), since L⟨o⟩(n) is complete, then due to rules syntactic con-
ditions, so are R⟨o⟩(n) and R⟨o⟩(n′). Let d and d′ be two preserved
darts of t such that d (resp. d′) is matched by L⟨o⟩(n) and R⟨o⟩(n)
(resp. L⟨o⟩(n′) and R⟨o⟩(n′)). It follows that G⟨o⟩(d) is split into
H⟨o⟩(d) ̸= H⟨o⟩(d′).

If L⟨o⟩(n) is complete, and there is an implicit split along the
k-th implicit links of L⟨o⟩(n) in r, then by definition, all the k-th
implicit links of R⟨o⟩(n) are deleted or renamed outside of ⟨o⟩. Let
n′ be a preserved node of L⟨o⟩(n) with a k-th implicit i-link with i

in ⟨o⟩, and d and d′ two i-linked matched darts of n′ in G. Then d
and d′ may either belong to two different orbits in H (H⟨o⟩(d) ̸=
H⟨o⟩(d′)); belong to the same orbit in H if the sub-orbit is folded
along the split i-link (H⟨o⟩(d) = H⟨o⟩(d′)); or be the same dart if
the link is a loop (d = d′ and therefore H⟨o⟩(d) = H⟨o⟩(d′)).

Let us assume now that L⟨o⟩(n) is not complete. Let d and
d′ be two darts of G matched by L⟨o⟩(n) which are potentially
split. Because L⟨o⟩(n) is not complete, G can contain some path
between d and d′ using only links labeled in ⟨o⟩ such that this path
is not entirely matched by L⟨o⟩(n). Therefore, this path does not
break during the transformation t and both d and d′ remain in the
same orbit in H: H⟨o⟩(d′) = H⟨o⟩(d′′). □

Referring to the example of the unsewing rule (Fig. 6), we fol-
low the explicit split of an edge. The rule splits the edge orbit
L⟨0,2⟩(n0) because both its nodes n1 and n2 form two distinct edge
orbits R⟨0,2⟩(n0) and R⟨0,2⟩(n1). Rule application (Fig. 7b) en-
tails n0 (resp. n1) matching both darts a0 and b0 (resp. a1 and b1).
The edge orbit G⟨0,2⟩(a0), containing the darts matched by both
n0 and n1, is split into a pair of orbits H⟨0,2⟩(a0) (i.e. a0 and b0)
and H⟨0,2⟩(a1) (i.e. a1 and b1).

Continuing with the face triangulation rule (Fig. 4), we fol-
low the implicit split event of a face orbit type ⟨0,1⟩. The orbit
L⟨0,1⟩(n0) contains node n0 and matches a single set of darts
which form a face orbit. The first implicit link of n0 is 0 and the
second implicit link is 1; both belong to orbit type ⟨0,1⟩. However,
the orbit R⟨0,1⟩(n0) contains nodes n0, n1, n2 and none of them has
either 0 or 1 as a second implicit link. Under this condition, we can
state that the face triangulation rule splits a face into two or more
faces. Applying this triangulation rule on the square face (Fig. 5),
L⟨0,1⟩(n0) matches the face orbit G⟨0,1⟩(a0)). Then, the square
face is split into the four faces matching R⟨0,1⟩(n0): H⟨0,1⟩(a0),
H⟨0,1⟩(c0), H⟨0,1⟩(e0) and H⟨0,1⟩(g0).

Note that both proposition 3.2.1 and its proof idea mention that a
split of an ⟨o⟩-orbit is guaranteed to happen in a graph transforma-
tion when the split is explicit and the orbit is complete in the rule.
For example, let us consider the unsewing edge rule (Fig. 6) and
its application on a surface (Fig. 7) again but this time, we focus
on the surface orbit L⟨0,1,2⟩(n0). The rule’s nodes of this orbit all
miss an 1-link and, thus, L⟨0,1,2⟩(n0) is not complete. As we can
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Figure 9: Rule r : L −→ R of edge deletion

see, upon the first application of the rule (Fig. 7b), the surface is not
split, although the conditions given in the definition 3.2.1 are met.
Yet, in this case, applying the unsewing rule a second time (Fig. 7c)
actually splits the surface. Indeed, when an orbit is not complete,
the pattern matches only a part of the orbit and detected events
must be confirmed dynamically. Fortunately, even if detecting this
potential split is a dynamic process, it is not time-consuming, be-
cause we know exactly which cell needs to be traversed and which
alpha links can potentially generate this split.

3.3. Merging

Similarly to orbit split, there exist explicit and implicit merging
orbits.

For example, in the explicit case, the sewing rule (Fig. 8) is the
opposite of the unsewing rule (Fig. 6) for both the result of its
application and its construction. Let us consider the square plan
(Fig. 7) from H to G (Fig. 7b to Fig. 7a). The sewing rule merges
two edge orbits L⟨0,2⟩(n0) and L⟨0,2⟩(n1) into a single edge orbit
R⟨0,2⟩(n0). Therefore, applying the sewing rule merges two edges
of H, H⟨0,2⟩(a0) and H⟨0,2⟩(a1), into one edge G⟨0,2⟩(a0).

The same goes for the implicit merging. For example, in the im-
plicit case, the edge deletion rule (Fig. 9) merges the face vertex
orbits mapped to L⟨1⟩(n0) along the second implicit link. In fact,
in the left-hand side of the rule, the second implicit link of n0 is
2 and n1 has no second implicit link. In the right-hand side of the
rule, the second implicit link of n1 is rewritten as 1. It follows that
the application of this rule (Fig. 7d) merges both I⟨1⟩(c1), I⟨1⟩(d1)
into J⟨1⟩(c1) and both I⟨1⟩(e1), I⟨1⟩( f1) into J⟨1⟩(e1).

The merging of an orbit is defined as follows :

Definition 3.3.1 (Orbit merging) Let r : L −→ R be a rule, m : L →
G a match, t : G −→r,m H a transformation of G by (r,m), ⟨o⟩ an
orbit type, n a preserved node of r and d a preserved dart of t.
An orbit L⟨o⟩(n) is merged by the rule r:

• Either explicitly if there exists a preserved node n′, with
L⟨o⟩(n) ̸= L⟨o⟩(n′), such that both n and n′ belong to the same
orbit in R, i.e. R⟨o⟩(n) = R⟨o⟩(n′).

• Or implicitly along the k-th implicit link if there exists in
R⟨o⟩(n) a node whose the k-th implicit link belongs to ⟨o⟩ and
for all nodes n′ in L⟨o⟩(n), the k-th implicit link does not belong
to ⟨o⟩.

Two different orbits G⟨o⟩(d) and G⟨o⟩(d′), with d′ a preserved
dart, are merged in the transformation t if and only if H⟨o⟩(d) =
H⟨o⟩(d′).

From the syntactic analysis of a rule, it is then possible to auto-
matically detect the orbit merging event :

Proposition 3.3.1 Let r : L −→ R be a rule, m : L → G a match,
t : G −→r,m H a transformation of G by (r,m), ⟨o⟩ an orbit type, n
a preserved node of r.
If the orbit L⟨o⟩(n) is both complete and explicitly merged, i.e. if
there exists a preserved node n′ in r such that L⟨o⟩(n) ̸= L⟨o⟩(n′)
and R⟨o⟩(n) = R⟨o⟩(n′), then for any preserved darts d and d′ of t
respectively matched by L⟨o⟩(n) and L⟨o⟩(n′), G⟨o⟩(d) is merged
with G⟨o⟩(d′) in H, i.e. G⟨o⟩(d) ̸= G⟨o⟩(d′) and H⟨o⟩(d) =
H⟨o⟩(d′).
If the orbit L⟨o⟩(n) is both incomplete and implicitly merged, the
merge may be confirmed dynamically on G.

Idea of proof: The idea is analogous to the one developed for
Proposition 3.2.1.

If the orbit L⟨o⟩(n) is both complete and explicitly merged with
another orbit L⟨o⟩(n′), where n′ is a preserved node of r, then
R⟨o⟩(n) = R⟨o⟩(n′). Because L⟨o⟩(n) is complete, L⟨o⟩(n) entirely
matches G⟨o⟩(d) for any preserved dart d of t matched by L⟨o⟩(n).
Due to the injection property of matching, for any preserved dart
d′ of t matched by L⟨o⟩(n′), d′ is not a dart of G⟨o⟩(n). In other
words, G⟨o⟩(d) ̸= G⟨o⟩(d′). Finally, due to the rule application,
R⟨o⟩(n) = R⟨o⟩(n′) implies H⟨o⟩(d) = H⟨o⟩(d′).

If L⟨o⟩(n) is complete and if there is an implicit merge along
the k-th implicit links of L⟨o⟩(n) in r, then by definition, all the
k-th implicit links of L⟨o⟩(n) are deleted or named outside of ⟨o⟩.
Let n′ be a preserved node of L⟨o⟩(n) such that the k-th implicit
link of n′ is i-labeled in R with i in ⟨o⟩. Let d and d′ be two darts,
matched by n′, and i linked in H. Both d and d′ belong to the same
⟨o⟩-orbit in H (H⟨o⟩(d) = H⟨o⟩(d′)). Then d and d′ may either
belong to two different orbits in G (G⟨o⟩(d) ̸= G⟨o⟩(d′)); belong
to the same orbit in G if the rule folds the sub-orbit along the i-link
(G⟨o⟩(d) = G⟨o⟩(d′)); or finally be the same dart if the i-link is a
loop (d = d′ and therefore G⟨o⟩(d) = G⟨o⟩(d′)).

Let us assume now that L⟨o⟩(n) is not complete. Let d and d′ be
two preserved darts of t matched by L⟨o⟩(n) which are potentially
merged. Because L⟨o⟩(n) is incomplete, so is R⟨o⟩(n), and H
can contain some path between d and d′ using only links in ⟨o⟩
such that this path is not entirely matched by R⟨o⟩(n). There-
fore, this path has not been built during the transformation t and d
and d′ were already in the same orbit in G (G⟨o⟩(d) =G⟨o⟩(d′)). □

With the example of the sewing rule (Fig. 8), we follow the
explicit merging of two edges. The edge orbits L⟨0,2⟩(n0) and
L⟨0,2⟩(n1) are complete and merged in the rule because their res-
pective nodes n1 and n2 are part of the same edge orbit R⟨0,2⟩(n0).
Applying the transformation, n0 (resp. n1) matches the darts a0 and
b0 (resp. a1 and b1). Edge orbits H⟨0,2⟩(a0) and H⟨0,2⟩(a1) are
merged into orbit G⟨0,2⟩(a0) (i.e. a0, b0, a1 and b1), as shown in
Fig. 7a.

With the edge deletion rule (Fig. 9), we follow the implicit merg-
ing event of the face vertices (orbit types ⟨1⟩). The orbit L⟨1⟩(n0)

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

14



M. Gaide et al. / Automatic detection of topological changes in modeling operations

<0, 2>

n0

<_, _>

n1

1
<1, _>

n1

Figure 10: Rule L −→ R of edge collapse
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Figure 11: Two successive applications of edge collapse rule
(Fig. 10) on matched dart a0 (a), then on on matched dart e0 (b)

contains both nodes n0 and n1 and matches a single set of darts
representing four face vertices. In this example, since all nodes of
L⟨1⟩(n0) do not have an implicit 1-link and since the only remain-
ing node in R⟨1⟩(n1) has such a link, then we can state that face
vertices are merged. Applying this edge deletion rule on the bottom
vertical edge of the Fig. 7c, L⟨1⟩(n0) matches two pairs of face ver-
tices (I⟨1⟩(c0), I⟨1⟩(d0)) and (I⟨1⟩(e0), I⟨1⟩( f0)). Then, the face
vertices around the edge to delete is merged into the pair of face
vertices matched from R⟨1⟩(n1) (i.e. J⟨1⟩(c1) and J⟨1⟩(e1)).

Note that a potential merge of two faces is also detected in
this edge deletion rule. Indeed, the second implicit link of n1 in
R⟨0,1⟩(n1) does not appear in all nodes of L⟨0,1⟩(n1) but this
orbit is not complete. Thus, such a potential merge is automati-
cally detected and must be confirmed dynamically depending if
both faces incident to the removed edge are different (as shown
in Fig. 7d). Similarly, let us consider the first example from Fig. 1
that uses the edge collapse rule introduced in Fig. 10 and the incom-
plete L⟨1,2⟩(n0) orbit. The first application of the rule (Fig. 11b)
does not result in a vertex split, while the second application does
(Fig. 11c).

3.4. Other events

The approach for the other events (deletion, non modification and
modification) being relatively similar, we will describe them in a
more concise way.

3.4.1. Deletion

This event mirrors the creation one. Let us get back to the edge
deletion rule (Fig. 9). This rule, as its name suggests, deletes an
edge orbit L⟨0,2⟩(n0). Its single node n0, which by itself matches
an edge because it is complete on ⟨0,2⟩, no longer exists on the
right side of the rule and, therefore, is deleted. Applying the rule on
the darts shown in Fig. 7c, L⟨0,2⟩(n0) matches the orbit I⟨0,2⟩(c0)
whose darts (c0, d0, e0 and f0 are then deleted in J (Fig. 7d), since
there are no nodes in R to match them.

The deletion of an orbit is defined as follows :

Definition 3.4.1 (Orbit deletion) Let r : L −→ R be a rule, m : L →
G a match, t : G −→r,m H the transformation of G by (r,m), ⟨o⟩ an
orbit type, n a node of L and d a dart of G.
An orbit L⟨o⟩(n) is deleted in the rule r if all of its nodes are deleted
in r.
An orbit G⟨o⟩(d) is deleted in the transformation t if and only if all
of its darts are deleted by t.

From the syntactic analysis of a rule, it is then possible to auto-
matically detect the orbit deleting event :

Proposition 3.4.1 Let r : L −→ R be a rule, m : L → G a match,
t : G −→r,m H the transformation of G by (r,m), ⟨o⟩ an orbit type,
n a node of L and d a dart of G.
An orbit L⟨o⟩(n) is deleted in the rule r if and only if the orbit
G⟨o⟩(d) is deleted in the transformation t for any dart d matched
by L⟨o⟩(n).

Idea of proof: Thanks to the syntactic conditions on the rules, a
deleted orbit is always complete. Consequently, the corresponding
orbits are also completely deleted in the transformation. □

3.4.2. Non-Modification

An orbit is said to be not modified when its nodes and links remain
unchanged. For example, in the triangulation rule (Fig. 4), the face
edge orbit L⟨0⟩(n0) only contains node n0 and the same goes for
the orbit R⟨0⟩(n0). Considering that the implicit 0-link of n0 is un-
changed and that there is no other node in its orbit, we can state that
the triangulation rule does not modify the face edges. Applying this
rule on the house (Fig. 5), the face edge orbits remain the same and
G⟨0⟩(a0) = H⟨0⟩(a0), G⟨0⟩(c0) = H⟨0⟩(c0), G⟨e0⟩ = H⟨e0⟩ and
G⟨0⟩(g0) = H⟨0⟩(g0) (Fig. 5b).

The non-modification of an orbit is defined as follows :

Definition 3.4.2 (Orbit non-modification) Let r : L −→ R be a
rule, m : L → G a match, t : G −→r,m H the transformation of G by
(r,m), ⟨o⟩ an orbit type, n a preserved node of r and d a preserved
dart of t.
An orbit L⟨o⟩(n) remains not modified in the rule r if L⟨o⟩(n) =
R⟨o⟩(n) and all the nodes of the orbit have the same label on both
sides of the rule, i.e. their implicit links are the same in L and R.
An orbit G⟨o⟩(d) is said to be not modified in the transformation t
if G⟨o⟩(d) = H⟨o⟩(d).

From the syntactic analysis of a rule, it is then possible to auto-
matically detect the orbit non-modification event :

Proposition 3.4.2 Let r : L −→ R be a rule, m : L → G a match,
t : G −→r,m H the transformation of G by (r,m), ⟨o⟩ an orbit type,
n a preserved node of r and d a preserved dart of t.
If an orbit L⟨o⟩(n) remains not modified in the rule r, then G⟨o⟩(d)
remains not modified in the transformation t for any dart d of G
matched by L⟨o⟩(n).
If an orbit G⟨o⟩(d) is not matched by the rule, i.e. no dart of
G⟨o⟩(d) is matched by L, then it remains not modified.

Idea of proof: This is obvious, because a rule may modify only
the matched part of a graph. □
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Orbite type Detected event Orbite type Detected event

⟨0⟩ Creation H⟨0⟩(a1)

Creation H⟨0⟩(b1) . . .

No modif H⟨0⟩(a0)

No modif H⟨0⟩(c0) . . .

⟨1⟩ Creation H⟨0⟩(a2)

Creation H⟨1⟩(c2) . . .

Split G⟨1⟩(a0)→{H⟨1⟩(a0),H⟨1⟩(h0)}
Split G⟨1⟩(c0)→{H⟨1⟩(c0),H⟨1⟩(b0)} . . .

⟨2⟩ Creation H⟨2⟩(a1)
Creation H⟨2⟩(a2)

Creation H⟨2⟩(b1)

Creation H⟨2⟩(b2) . . .

No modif H⟨2⟩(a0)

No modif H⟨2⟩(b0)
No modif H⟨2⟩(c0)

No modif H⟨2⟩(d0) . . .

⟨0,2⟩ Creation H⟨0,2⟩(a1)
Creation H⟨0,2⟩(b1). . .

No modif H⟨0,2⟩(a0)
No modif H⟨0,2⟩(c0) . . .

⟨0,1,2⟩ modif H⟨0,1,2⟩(a0) ⟨0,1⟩ Split G⟨0,1⟩(a0)→{H⟨0,1⟩(a0),H⟨0,1⟩(c0),H⟨0,1⟩(e0),H⟨0,1⟩(g0)}
⟨1,2⟩ Creation H⟨1,2⟩(a0)

Modif H⟨1,2⟩(b0). . .

Creation H⟨1,2⟩(a2)

Table 1: Extract from the Event log generated after applying the triangulation rule (Fig. 4) on the house in Fig. 5.

3.4.3. Modification

Generally speaking, an orbit is modified when it is neither created,
deleted, not modified, split or merged. More specifically, a modified
orbit has either modified links, some created part or some deleted
part. Also, such a change must not lead to a split nor a merging
event. For example, once again considering the triangulation rule,
vertex orbit L⟨1,2⟩(n0) contains node n0 only, while R⟨1,2⟩(n0)
contains both nodes n0 and n1. The orbit has a created part re-
lated to n1, the second implicit link of n0 is deleted, and there is no
split, either implicit or explicit: thus, the orbit is modified. Apply-
ing this rule on the house (Fig. 5) entails vertex orbits G⟨1,2⟩(a0),
G⟨1,2⟩(c0), G⟨1,2⟩(e0), G⟨1,2⟩(g0) to be modified with an added
part of two new darts each.

4. Event log

Event detection method, defined in a generic manner on rules in
section 3, allows automatic generation of an event log encompass-
ing all events or potential events that occurred on the object when a
rule is applied. To illustrate this with a simple example, let us con-
sider the Event log in Table.1. It corresponds to the application of
the triangulation rule (Fig. 4) to the bottom face of the geometric
object (Fig. 5). As we can see, events can be automatically detected
and listed for each orbit. For the sake of simplicity, we have chosen
a rule that matches a complete orbit. Thus, all events can be de-
tected statically. If not, the event log specifies the precise orbit that
needs to be dynamically verified.

5. Static and dynamic comparison

This section compares a dynamic approach, in which the program
manages the evolution of the orbits while traversing a 3D object,
with a static approach which exploits the techniques presented in
this article. The comparison has been done on an Intel i9-11950H
with 32GB under JDK 11. We focus our study on the three main
events: creation, split and merge operations. Fig. 12 displays exper-
imental results of our study which measure the computation time of

a single representative of the target orbit as the dart with the lowest
identifier. Static detection aims at recomputing only modified orbits
whereas the dynamic detection would cover the whole mesh.

The performance of a creation operation, shown in Fig. 12a, re-
sults from a scenario where a shape is extruded several times so as
to create a new volume (i.e. a new orbit ⟨0,1,2⟩). For every orbit
type, the static detection is invariably better than the dynamic one.
We note a peak with regard to the dart orbit type, corresponding to
a specific case where this orbit requires a substantial treatment as
darts are the lowest dimension entities and a fair amount of them
are created in this scenario. However, the static detection signifi-
cantly limits execution time. Orbit ⟨0,1,2,3⟩ yields similar values
for static and dynamic detection, caused by the same process.

Fig. 12b shows execution time for the split operation. The study
considers a cube where each face is split into four faces by applying
the Catmull-Clark subdivision scheme [CC78]. Consequently, this
example focuses on the detection of events over the face orbit ⟨0,1⟩.
The histogram confirms the efficiency of the static approach over
dynamic detection. However, we note the presence of two peaks
corresponding to volume orbits ⟨0,1,2⟩ and connected component
orbits ⟨0,1,2,3⟩. Moreover, these two peaks have the same values.
This case results from the input mesh: as we start with one volume
which contains a single connected component, and since the opera-
tion just splits faces without adding new volumes, then the number
of faces increases and directly impacts the performance for comput-
ing static and dynamic evolutions, even if the number of volumes
and connected components is still one.

Fig. 12c shows execution time for a merging operation. The
study starts from a stack of cubes where the faces shared between
two cubes are successively deleted, resulting in the merging of the
volumes and their adjacent border faces: we focus on detecting the
merging events over volume face orbits ⟨0,1⟩ Once again, the his-
togram confirms the efficiency of the static approach over dynamic
detection.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

16



M. Gaide et al. / Automatic detection of topological changes in modeling operations

0
5

10
15
20
25
30
35
40
45
50

CREATION event

sta�c dynamic

ms

(a) Creation operation

ms

0

5000

10000

15000

20000

25000

30000

35000

40000

SPLIT event

sta�c dynamic

(b) Split operation

ms

0
10
20
30
40
50
60
70
80
90

100

MERGING event

sta�c dynamic

(c) Merging operation

Figure 12: Comparison between static and dynamic event to track
all orbits (the lower the better)

6. Conclusions and perspectives

Event tracking is one of the core functionalities of geometric mod-
eling kernels. This detection can be done dynamically by compar-
ing each topological cell composing the geometric model before
and after applying an operation, but it can represent a significant
cost when the model becomes very large. To reduce this cost, it
is possible to statically detect some specific events, meaning that
events generated in a systematic way are directly defined during

the development of the operation. The responsibility is then left to
the developer of the operation to define these events, but it entails
several hurdles. Firstly, there is no formalization to describe these
events. Secondly, it can lead to errors because while some events
may seem obvious, others may not appear intuitively or systemati-
cally, or may be forgotten. Ultimately, this work of defining events
needs to be done again for each newly developed operation.

For these reasons, we propose in this paper to formalize the static
detection of events and to automate this process based on automatic
analysis of operations. To achieve this, we leverage on the formal-
ism of graph transformation rules to describe geometric operations,
and on the topological model of G-maps that enables homogeneous
modeling of manifold geometric objects in any dimension. The syn-
tactic analysis of the rule enables the detection of all events that can
be detected statically and also specifies the cells on which events
that can only be detected dynamically could occur. This dynamic
detection becomes much faster, as only these cells need to be veri-
fied during the application of the operation. With this approach, any
new operation can be developed faster within the modeler, ensuring
a complete, accurate and automatic event detection.

This approach leads the way towards future works. First, as of
now, the operations that can be analysed are defined with a single
rule. An improvement will be to adapt this method to higher level
operations defined as scripts combining several rules. Second, most
current persistent naming methods rely on the tracking of topolog-
ical entities evolutions. Working on a complex model, or in case
of frequent reevaluations of parametric models, the static tracking
of topological entities should allow a significant improvement of
the efficiency of persistent naming methods. This could be accu-
rately evaluated by integrating this static tracking into parametric
systems.
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