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Abstract
A study of energy use (in an x86-class environment) for computation of descriptors used in analysis and in one common scientific
visualisation strategy, direct volume rendering (DVR), of volumetric data is presented. Focus is on descriptors used by classic
ray-casting-based DVR, including gradients and curvature. Modified computational strategies are considered versus standard
approaches on x86. The modified strategies explored include two memory-based ones and four computation-based ones. Use of
energy-optimal strategies was able to achieve close to 20% energy savings for gradient descriptor determination. Factor-of-two
improvement in energy efficiency for curvature descriptor determination was achieved through these strategies.

CCS Concepts
• Human-centered computing → Scientific visualization; • General and reference → Performance; • Hardware → Power
estimation and optimization; • Software and its engineering → Software performance;

1. Introduction

Scientific data analysis and visualisation innovator and end-user
communities have conducted many studies related to speed and de-
cision quality for a wide range of volumetric dataset analysis and
rendering modes. Those studies have focused on impacts of var-
ied descriptors, rendering construction schemes, data staging, etc.
(e.g., [ACL17, RPSC99, TBF∗22, XTC∗22]). In the work here, we
tack toward a related performance issue, specifically we consider
energy consumption of some popular descriptors used in scientific
volume data analysis and rendering, especially for the commonly-
used direct volume rendering (DVR) mode of scientific visualisa-
tion. Additionally, we consider strategies for reduction of energy
consumption involved in computation of these descriptors. Our
work here represents an early step toward determining the environ-
mental impact of scientific volume data analysis and visualisation
as well as toward finding guidance so that common, core compo-
nents of such tasks can exhibit a low energy burden, with all the
ensuing benefits that accrue from that.

This work here looks at two fundamental components (descrip-
tors) used in volume data analyses and visualisations, namely
gradients and curvatures. In DVR, for example, these are used
to determine shadings (e.g., [BD21]); end renderings often have
been formed using opacity-based composition based on curvature-
and/or gradient-based transfer functions that are coupled with the
very common illumination schemes from the computer graphics
(i.e., Phong or Phong-like illumination schemes). (Many point
cloud-based studies have also used curvature-based descriptors, for
example in computational fluid simulations [ZSRH19].) A variety

of methods for computing gradients and curvature have been pro-
posed in the literature, and some details about such methods are
described in Section 2 of this paper. Such descriptors also have
volume data analysis applications beyond DVR, such as for reg-
istration (e.g., [WRN05]), isosurfacing, etc. – and classic speed
and accuracy studies have been done in such domains (with the
importance of accuracy receiving increased recent attention, as in
[SLYP22]). However, our focus here is on them as components that
commonly enable DVR end renderings.

In this paper, Section 2 (§2) provides background on the use of
gradients and curvatures in DVR and on the specific gradient es-
timation and curvature determination methods considered in this
work. In it, energy usage considerations, including the process for
measuring CPU energy usage (and some details specific to the pro-
cessor considered in our studies), are also described. Section 3 de-
scribes the approaches we explored to reduce energy use for curva-
ture and gradient calculations. Section 4 describes the experimental
setup and our experiments to comparatively analyse energy usage.
The paper concludes in Section 5.

2. Background

Gradient-based shading continues to be a popular approach in ray-
cast direct volume rendering, with some schemes computing gra-
dients during ray marching while others march on pre-computed
gradients to reach suitable rendering rates [FZZ∗21]. Similarly,
curvature-based transfer functions, which require determination of
curvature values at each location within the volume, are a popu-
lar approach for adding shape-based cues to DVRs [KWTM03].
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Consideration of the energy footprint for direct volume rendering
thus requires not just determination of a given renderer’s march-
ing or compositing computation’s energy usage but also all base
descriptor computation’s energy usage (even if not all descriptor
computation is done at real time during marching).

Focus in this study is on the gradient and curvature descriptors:
specifically, energy usage of (1) the commonly used central differ-
encing and associated higher order methods for gradient estima-
tion and (2) two methods for determining curvature values within
volume data that have previously been used in conjunction with
curvature-based transfer functions for DVR [KWTM03, HN20]. In
this section, we first briefly describe some related studies on energy
usage before providing background details on the specific gradient
estimation and curvature determination methods considered in our
studies (reported later).

2.1. CPU energy usage measurement and prior studies thereof

Energy usage of computing has been a focus of a number of prior
works, with that focus quite appropriate given a recent report, as
relayed by Jay et al. [JOL∗23], that approximately 6% of world
power use can be ascribed to digital activity – and this percentage
is growing. Many such works have introduced schemes to mea-
sure and/or reduce CPU energy usage. However, software compo-
nent energy use is typically unexplored and thus unknown [LV23].
One noted exception is the use of complexity plot visualisations
to consider energy cost of matrix multiplication [TWD∗13]. We
are not aware of any prior works related to energy usage specific
to the computation associated with the descriptors used by clas-
sic volume dataset visualisation (in particular, gradient estimation
and surface curvature determination), though the accuracy and/or
run time of some descriptors (e.g., gradients [WLMN10]) have
previously been analysed. However, studies of energy usage have
found that energy usage is not always correlated with execution
time [TWD∗13,HHR∗20], and thus those prior gradient and curva-
ture analyses provide limited guidance with respect to the energy
usage of such methods.

Many modern processors (including Sandy Bridge and later Intel
CPUs) provide a means to internally measure energy usage via the
Running Average Power Limit (RAPL) circuitry [WJK∗12]. RAPL
estimates the CPU’s energy usage via a model that considers fac-
tors such as hardware counters, leakage, and temperature. In our
studies of energy usage (presented later), we have used a RAPL-
capable processor in conjunction with the Performance API (PAPI)
software [BDG∗00] (which supports RAPL measurements).

Even before the inclusion of RAPL, some prior works were able
to measure energy usage on processors lacking this feature. For
example, Seng et al. [ST03] used 5w resistors inline with the Vcc
trace to the processor core to measure code energy use on a Pentium
4 CPU. They found that some C++ code exhibits energy efficiency
improvements when compiler-based loop unrolling is used, though
they found that some other code does does not. Later work on x86-
64 processors found that using very large loop unrolling factors (>
1024) may substantially increase energy consumption [HOK∗16].

Energy usage on non-Intel processors has also been studied. For
example, Vasilakis [Vas15] have studied instruction level energy

usage on ARM Cortex-A7 and Cortex-A15 CPUs. They found that,
on such CPUs, instructions use more energy when L1 cache misses
occur (compared to when L1 cache hits). They also found that, on
such CPUs, floating point instructions typically use more energy
(compared to integer instructions), and division instructions have
especially high energy usage. They further found that data depen-
dencies between instructions may result in significantly higher en-
ergy usage compared to otherwise identical instructions with no
data dependencies.

Pereira et al. [PCR∗17] have reported that C/C++ code tends to
be more energy-efficient than other languages. That finding moti-
vated our use of C/C++ for the work here.

In our own studies of C/C++ code, we have found that code can
sometimes increase its energy optimality via directives to inline fre-
quently called functions. Compiler general optimisation level (e.g.,
-O1, -O2, or -O3) and arithmetic optimisation settings (e.g., gcc’s -
ffast-math option) can also influence some code’s energy consump-
tion (e.g., code we examined in some preliminary studies exhibited
lowest energy use with the -O2 or -O3 optimisation levels com-
bined with -ffast-math).

2.2. Methods for gradient estimation

Central differencing (later denoted central here) is one gradient es-
timator explored here. Others include finding differences between
adjacent voxels (denoted inter); using third order polynomials–
with two versions considered here, one centred on either side of
the voxel–(denoted 3order_a and 3order_b); and using fourth or-
der polynomials (denoted 4order).

2.3. Methods for surface curvature determination

Two methods for determining surface curvature in volumetric data
are explored here. Both methods determine curvature by first esti-
mating the necessary (i.e., first, second, and mixed partial) deriva-
tives and then using these estimated derivatives in conjunction with
a standard surface curvature formulation (i.e., the one presented
in [KWTM03]).

One method, denoted OP, determines surface curvature using
derivative estimates obtained via convolutions with kernels sam-
pled from specially constructed orthogonal polynomials [HN20].
OP has one parameter: kernel size N. Smaller N’s allow for better
localisation, while larger kernels are more robust to noise–a prior
report [HN20], whose guidance we employ in our studies here, sug-
gested use of N = 7 to suitably balance these factors.

The other method, denoted TE, determines surface curvature us-
ing derivative estimates obtained via convolutions with kernels con-
structed from the Taylor expansion [KWTM03]. These kernels can
be constructed with specific continuity and accuracy properties. In
our studies, presented later, we used kernels with C3 continuity and
fourth order accuracy (following [HN20]).

3. Energy optimisation approaches

In this section, we describe the energy optimisation approaches we
devised. These approaches take inspiration from observations made
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in prior works (i.e., those described in §2.1). Our approaches at-
tempt to reduce energy usage via a variety of strategies, includ-
ing loop unrolling, mathematics optimisations, general compiler
settings, data organisation strategies, etc. First, we describe such
strategies for gradient estimation. Then, we describe strategies ap-
plied to determining surface curvature in volumetric data.

3.1. Energy saving approaches for gradient estimation

The gradient estimation is a loop-driven process that passes over
the volumetric dataset elements. For the higher order polynomial-
based gradients, there are somewhat intensive floating-point com-
putations in each step of the process. Thus, one focus was on loop
overhead reduction. Reduction of loop overhead could limit (1) ex-
ercise of loop prediction logic and (2) certain other loop-carried op-
erations, in turn lowering energy consumption, which may underlie
prior findings that loop unrolling sometimes yields energy savings.
Another focus was arithmetic computation optimisation. To realise
these foci for gradient estimation, we devised three strategies to
potentially save energy.

The first strategy, which focuses on loop overhead, is to unroll
the loops that perform the passes over the volume for each gradient
estimator. It is denoted Unroll. Here, such unrolling was performed
via gcc/g++’s -funroll-all-loops option.

The second strategy explores reducing some floating-point com-
putation overhead. It is denoted Fast. It involves avoiding checks
for certain floating point computation conditions. It was performed
here via the -ffast-math compiler option.

The third strategy, which focuses to some extent on both loop
and computation overhead, involves using a higher level of com-
piler optimisation (-O3) compared to a baseline implementation
(e.g., -O2). It is denoted O3. This level of optimisation includes
two features in particular that may benefit the descriptor computa-
tions: it attempts to reuse some computations, especially memory
loads and stores between loop iterations, and it attempts to find and
eliminate arithmetic subexpressions [Fre23]. (Another motivation:
some prior work has found this level of compiler optimisation tends
to reduce energy usage.)

3.2. Energy saving approaches for curvature determination

We devised six approaches to potentially save energy when deter-
mining surface curvature in volumetric data. They are described
here.

The first three are the Unroll, Fast, and O3 strategies, all of
which were also used as strategies for gradient estimation, as de-
scribed in the previous section.

Our fourth strategy, denoted Bespoke, aims to organise and stage
memory accesses in an efficient manner. It was motivated based on
prior findings that an increased L1 cache hit rate may result in an
energy savings [Vas15]. Both the OP and TE methods utilise con-
volution to estimate derivatives. Due to the multidimensionality of
volumetric data, convolution, which requires accessing neighbour-
ing data points in every axial direction in order to perform the nec-
essary multiplications / additions, often results in inefficient use of

memory as non-contiguous regions of memory are traversed. The
Bespoke strategy works to increase memory efficiency during con-
volution by carefully computing and storing intermediate convo-
lution terms across the volume, which allows later avoiding large
and/or unpredictable strides that may result in a less efficient use of
memory.

Specifically, the Bespoke strategy works as follows. First, as a
pre-processing step, a list of the unique values in the convolution
kernels for the respective curvature method is computed. (E.g., for
the TE method, a list of all the unique values present in the first
and second derivative C3 continuous, fourth order accurate convo-
lution kernels is manually constructed.) We use k to denote this list
of unique values in the kernels (of which there are ∥k∥ such values,
denoted k1 through kn). Next, during run time, ∥k∥ variants of the
original input volume (denoted v) are produced, with each of these
variants representing the multiplication of each value in v by one
of the values in k (requiring ∥k∥×∥v∥ extra memory, where ∥v∥
is the number of values contained in v). (I.e., one variant volume
consists of the original volume with each of its entries scaled by
k1; another one consists of entries scaling by k2; etc.) These multi-
plications proceed sequentially in memory in order to help ensure
cache efficiency. Once the scaled volumes are produced, the con-
volution is completed via summing relevant entries of these variant
volumes.

Our fifth strategy seeks to reduce data dependencies. It is denoted
Pipeline. It is motivated by prior findings that data dependencies
within code often result in increased energy usage [Vas15]. (More-
over, our own studies have found that the increase in energy usage
is especially notable when such code contains few additional in-
structions to be executed between the dependent ones.) To increase
the number of instructions available to be executed between depen-
dent instructions, we developed a software pipelined version of the
code that computes the final curvature values from the estimated
derivatives.

Our sixth strategy seeks to increase data locality by blocking. It
is denoted Blocking. Increased locality of reference is known to
improve cache efficiency, leading to improved computation speed,
which motivated us to determine if such increased locality could
also reduce energy consumption. It uses a blocked approach to tra-
verse the volume while producing final results. (Our experiments,
presented later, tried various block sizes from 8 × 8 × 8 up to
64× 64× 64. To save space, Blocking in conjunction with a spe-
cific blocksize n will be denoted Blockingn.)

4. Experimental setup and results

In this section, we report on energy usage of gradient and curva-
ture descriptor computation for a baseline realisation on x86, which
is probably the most common CPU environment for most desktop
scientific computation. We focus on CPU-based computation here
as that is one of the oft-used modes for computing descriptors for
DVRs of sensed volume data (such as CT or MR scans of indus-
trial or patient subjects). We also report experiments that evaluate
the energy saving strategies that were attempted. Lastly, analyses
of accuracy and memory effects are presented.

First, we detail the testing setup. Experiments were performed on

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

3



J.D. Hauenstein & T.S. Newman / Strategies for More Energy Efficient Volume Analysis and Direct Volume Rendering Descriptor Computation

(a) A slice of the Foot dataset.

(b) A DVR of the Foot dataset using curvature-
based transfer functions for colour (in a cool-to-
warm colourmap, Gaussian curvature).

Figure 1: Foot Dataset Renderings

central inter 3order_a 3order_b 4order
Baseline 0.75 J 0.72 J 1.20 J 1.20 J 0.84 J
Fast 2.34% 1.05% -0.11% -0.17% 0.57%
Unroll -3.81% -5.10% -15.48% -15.12% -1.50%
Fast, Unroll -2.45% -4.04% -14.66% -13.86% -0.77%
O3 1.13% -0.35% 0.22% -0.67% 0.83%
O3, Fast 1.27% 1.82% 0.12% -0.31% 1.01%
O3, Unroll -3.77% -5.45% -16.15% -15.22% -1.72%
O3, Unroll, Fast -3.32% -3.78% -14.34% -14.15% -0.54%

Table 1: A selection of Foot gradient results.

central inter 3order_a 3order_b 4order
Baseline 0.10 J 0.09 J 0.15 J 0.15 J 0.10 J
Fast 1.05% -1.16% -1.53% -1.43% 0.20%
Unroll -5.69% -6.21% -16.99% -17.50% -3.85%
Fast, Unroll -2.99% -5.07% -14.80% -16.29% -0.93%
O3 -0.48% -0.52% -0.12% -1.17% -0.52%
O3, Fast 0.15% -1.16% 0.74% -2.72% 0.16%
O3, Unroll -4.92% -8.11% -15.92% -18.08% -2.24%
O3, Unroll, Fast -4.35% -4.70% -15.03% -16.28% -2.18%

Table 2: Selected Genus3 gradient (energy usage) results.

a computer equipped with an Intel Core i5-8279U processor and
16GB of RAM (as that matched one used in some prior energy
usage reports). The operating system used was a minimal install of
Ubuntu Server 22.04.1 AMD64. The CPU governor mode was set
to “performance” (using the cpufreq-set utility). All experimental
code was written in C/C++. Double precision floats were used in
all curvature and gradient computations. The code was compiled
with gcc/g++ 11.3.0. PAPI was used to measure energy usage (via
RAPL). All experiments were run as the root user (to allow access
to the energy measurement hardware) on a single core.

We believe that, while the experiments here were performed on
the Intel Core i5-8279U CPU, many of the findings are likely ap-
plicable to all similar Intel processors.

4.1. Test Conditions and Energy Measurement

To evaluate the energy usage (and savings, if any) associated with
each of the approaches, we ran, on several volume datasets, each
of the gradient estimation and curvature determination methods us-
ing different combinations of the strategies previously described.
In total, 8 variants of each gradient estimation method were tested
(including a Baseline variant compiled with -O2 and using no
other energy optimisation strategies) and 70 variants of each curva-
ture determination method were tested (including a Baseline vari-
ant compiled with -O2 and using no other energy optimisation
approaches). Relative energy use versus the baselines were then
found.

To measure energy, PAPI was used to determine total energy us-
age (in Joules), ζ, of the RAPL PP0 plus the RAPL DRAM do-
mains during just the curvature determination / gradient estimation
steps (i.e., excluding I/O associated with loading the data or writ-
ing the results). The RAPL PP0 domain represents the power usage
of all the processor cores and excluding the DRAM or GPU. The
RAPL DRAM domain represents the power usage of the DRAM.
This measurement of PP0 + DRAM thus represents the sum of the
CPU and DRAM power usage of each method. (N.B., we chose
to include the DRAM domain because some of the energy saving
strategies, such as Bespoke, utilise more memory compared to the
baseline, and the inclusion of the DRAM domain ensures that the
extra memory usage associated with this is accounted for.)

To ensure consistent results, each variant was run five times and
the trimmed means of the PP0 and DRAM domains was computed,
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with those two values then summed to give the final energy usage
measurement.

4.2. The Datasets and Visualisation

Our experiments consider three types of volumetric data:
Marschner-Lobb (ML), Foot, and Genus3. These datasets were
used in prior curvature and gradient studies (e.g., [WLMN10,
HN20]). ML and Genus3 are synthetic data, while Foot is sensed.
ML and Foot are size 256× 256× 256 and Genus3 is size 128×
128× 128. All volumes were stored as double precision floating
point data. ML was considered with and without Gaussian noise
(σ = 0.0084).

A slice image of Foot is shown in Fig. 1a, and a DVR using
a curvature-based transfer function is shown in Fig. 1b; Fig. 1b
demonstrates one visualisation usage involving the descriptors con-
sidered here.

OP TE
Baseline 139.95 J 56.71 J
Fast 0.47% -0.14%
Unroll -3.56% -2.88%
Fast, Unroll -5.64% -5.42%
O3 -24.27% -13.17%
O3, Fast -26.87% -16.47%
O3, Unroll -20.81% -9.85%
O3, Unroll, Fast -22.98% -13.61%
Bespoke -41.54% -45.02%
Bespoke, Fast -41.81% -46.47%
Bespoke, Unroll -41.68% -44.47%
Bespoke, Unroll, Fast -42.33% -46.36%
Bespoke, O3 -53.25% -44.87%
Bespoke, O3, Fast -53.52% -47.04%
Bespoke, O3, Unroll -52.86% -44.55%
Bespoke, O3, Unroll, Fast -53.72% -46.69%
Bespoke, Blocking8, Unroll -42.08% -44.71%
Bespoke, Blocking8, Unroll, Fast -41.98% -45.64%
Bespoke, Blocking8, O3 -53.13% -43.74%
Bespoke, Pipeline, O3 -52.53% -44.37%
Bespoke, Pipeline, O3, Unroll -52.55% -43.71%
Bespoke, Pipeline, Blocking8, O3, Unroll -52.69% -43.83%
Bespoke, Pipeline, Blocking8, O3, Unroll, Fast -53.54% -45.80%

Table 3: Selected ML curvature (energy usage) results.

4.3. Gradient Estimation

Tables 1 and 2 show gradient energy usage results on Foot and
Genus3, respectively. The first rows in each table present energy
usage outcomes for the baseline computations while other rows
show energy usage change (as a percentage of Baseline) from use
of one of the strategies or combinations of strategies. Bold values
show the variant with the lowest energy usage. Cell colouring on a
red-green scale indicates the degree of improvement. Here, the Un-
roll strategy was quite effective in saving energy. The O3 strategy,
when coupled with Unroll, typically achieved modest additional
savings. Fast, on balance, had a negligible effect.

OP TE
Baseline 17.21 J 6.99 J
O3 -24.78% -12.79%
Bespoke -49.47% -48.62%
Bespoke, O3 -55.35% -48.38%
Bespoke, O3, Fast -53.63% -50.34%
Bespoke, Blocking8, Unroll -46.15% -46.47%
Bespoke, Blocking8, Unroll, Fast -46.07% -47.28%
Bespoke, Blocking8, O3 -63.60% -45.35%
Bespoke, Blocking8, O3, Unroll -62.64% -45.57%
Bespoke, Blocking32, O3, Unroll, Fast -64.11% -48.77%
Bespoke, Blocking64, O3, Unroll, Fast -63.38% -49.38%
Bespoke, Pipeline -50.50% -43.32%
Bespoke, Pipeline, Blocking8 -45.54% -43.98%
Bespoke, Pipeline, Unroll -45.76% -45.46%
Bespoke, Pipeline, Blocking8, Unroll -45.50% -45.70%
Bespoke, Pipeline, Unroll, Fast -45.87% -47.21%
Bespoke, Pipeline, Blocking8, Unroll, Fast -46.02% -47.89%
Bespoke, Pipeline, O3 -54.01% -48.12%
Bespoke, Pipeline, Blocking8, O3 -53.92% -46.54%
Bespoke, Pipeline, O3, Unroll -56.34% -47.06%
Bespoke, Pipeline, Blocking8, O3, Unroll -57.27% -47.63%
Bespoke, Pipeline, O3, Unroll, Fast -58.03% -49.36%
Bespoke, Pipeline, Blocking8, O3, Unroll, Fast -63.41% -49.13%

Table 4: Selected Genus3 curvature (energy usage) results.

OP TE
Baseline 10.80 sec 4.02 sec
O3 8.89 sec 3.64 sec
Bespoke, Unroll 6.66 sec 2.44 sec
Bespoke, O3, Unroll, Fast 5.34 sec 2.37 sec
Bespoke, Pipeline, Blocking8, O3, Unroll, Fast 5.37 sec 2.41 sec

Table 5: A selection of ML execution times.

4.4. Curvature Determination Results

Table 3 shows a selection of curvature determination energy usage
results on the ML dataset. Its first row presents the energy usage
outcomes for the baseline computations for the curvature methods.
The table again uses the energy differences and colour coding used
earlier. Best results were the combinations: (Bespoke, O3, Unroll,
Fast) in the case of OP and (Bespoke, O3, Fast) in the case of TE.
These same variants also exhibited the lowest energy usage on the
other 256×256×256 volumes (not shown here).

It is not always the case that the most energy-efficient realisation
is the fastest realisation. For the TE results in Table 3, for exam-
ple, the least energy-consuming combination is Bespoke, O3, Fast.
However, the fastest execution was achieved by the combination of
Bespoke, O3, Unroll, Fast. Table 5 shows a selection of execution
times on the ML dataset.

Table 4 shows a selection on energy usage results on the Genus3
dataset.

For all datasets, use of the Bespoke strategy alone produces a
large energy savings. Using the O3 strategy alone also produces
a notable energy savings. Combining Bespoke with O3 results in
further energy savings, although sometimes only if also combined
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PP0 DRAM
Baseline 136.25 J 3.70 J
O3 102.72 J 3.26 J
Bespoke, O3 59.80 J 5.64 J
Bespoke, Unroll 75.57 J 6.06 J
Bespoke, O3, Unroll, Fast 59.15 J 5.62 J
Bespoke, Pipeline, Blocking8, O3, Unroll, Fast 59.38 J 5.64 J

Table 6: A selection of ML energy uses of OP.

with at least one other strategy. For example, combination of one or,
especially, both with Fast typically results in additional energy sav-
ings. Unroll in isolation offers a modest improvement, but it was
less effective in combination with other strategies. The Bespoke
strategy commonly uses a little more energy in its memory-related
processing but substantially less energy for other parts of process-
ing, according to reports gathered from RAPL. Table 6 shows se-
lected energy uses (broken out by PP0 and DRAM) on the ML
dataset. These results reveal that the Bespoke strategy very effec-
tively trades off higher memory usage for overall power reduction.
For example, in the case of Bespoke, O3 for OP on the ML dataset,
2.42 J more DRAM energy is used, but an energy savings of 42.92
J is achieved in PP0 (compared to O3 alone).

Use of Blocking and Pipeline often did not produce substantial
energy savings. Changes in block size had little impact in the per-
formance of the Blocking approach.

4.5. Accuracy Considerations

For some codes, use of certain instruction optimisation settings, in
particular mathematics-based optimisation settings, can affect ac-
curacy of results. However, the optimisations used in our strategies
appear to not meaningfully degrade accuracy for gradients or cur-
vatures, as discussed next.

For the gradient determination on the ML dataset, the most
energy-efficient realisation had no difference in gradient values ver-
sus the baseline realisation.

For OP-based curvature determination on the ML dataset, the
most energy-efficient realisation had a maximal difference in cur-
vature values of 1×10−12 versus the baseline realisation. (That is,
no single curvature value from energy-optimal OP differed more
than a 1× 10−12 from the corresponding value in the baseline re-
sult.) For TE’s curvatures for ML, the most energy-efficient reali-
sation’s values never had a difference (versus the baseline) of more
than 4×10−12.

In summary, use of the energy optimisation approaches here can
enable achievement of more power-optimal volume data analysis
and visualisation apparently without a meaningful impact on accu-
racy.

4.6. Analyses

The Bespoke strategy produced, relative to the other strategies, the
most significant energy savings. To determine some of the underly-
ing causes of this occurrence, we explored aspects of its behaviour

via Intel’s VTune tool. The report and analysis using VTune here
is based on a run of the OP curvature determination on the ML
dataset.

In particular, we found that the Bespoke strategy was able to
utilise the memory access capability of the system more effectively.
On this CPU, the maximum memory bandwidth is 20 GB/sec. OP
using Bespoke and O3 together utilised a maximal bandwidth of
14 GB/sec whereas OP using O3 alone utilised a maximal band-
width of just 6.7 GB/sec. Additionally, for these scenarios, the av-
erage bandwidths utilised, respectively, were 7.96 GB/sec and 1.69
GB/sec.

Additionally, OP using Bespoke and O3 together incurred about
a factor of four improvement in the number of loads and stores
incurred by OP using O3 alone. Specifically, OP using Bespoke
and O3 incurred 4.7×109 loads and 1.6×109 stores. OP with O3
incurred 17.7×109 loads and 6.2×109 stores.

Thus, the Bespoke strategy has a major benefit of effectively or-
ganising and staging the data to allow much more optimal use of the
memory channel, decreasing both time and energy consumption.

5. Conclusions and Future Work

In this study of energy usage for the common DVR shading descrip-
tors of gradients and curvatures, a variety of approaches for reduc-
ing energy usage were described. The Bespoke approach, which
aims to decrease energy usage by organising memory accesses as-
sociated with convolution in a cache-efficient manner, along with
the Pipeline and Blocking approaches are applicable only to the
curvature determination process. Of these, the Bespoke approach
was among the most successful and was employed by all of the
most energy efficient curvature determination variants. The O3,
Unroll, and Fast approaches are applicable to both curvature de-
termination and gradient estimation. Of these, the O3 and Fast ap-
proaches were among the most successful when applied to curva-
ture determination, with all of the most energy efficient curvature
determination variants employing both O3 and Fast. In the case of
gradient estimation, nearly all of the most energy efficient variants
employed Unroll, often in conjunction with O3, and none of them
employed Fast.

Overall, close to 20% energy savings were achieved for gradi-
ent descriptor computation, and a factor-of-two improvement in
energy efficiency was achieved for curvature descriptor computa-
tion. These results are especially significant given that the work was
done in C/C++, already an energy-efficient environment [PCR∗17].
The findings thus point to energy-efficient descriptor use that can
benefit any DVR or analysis environment via calls to energy-
efficient routines.

For future work, we hope to consider energy consumption of
DVR descriptor computation on GPUs, in particular recent Nvidia
GPUs, as recent work has reported [JOL∗23] that the NVidia
Management Library (NVML) API reports power consumption
within 5% accuracy on the Fermi-class and newer GPUs. (For
earlier GPUs, such as Tesla-class GPUs, challenges in achieving
accuracy using the GPU’s built-in power sensor have been re-
ported [BZZ14].)

© 2023 The Authors.
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