EG UK Computer Graphics & Visual Computing (2019)
G. K. L. Tam and J. C. Roberts (Editors)

Hash-based Hierarchical Caching for Interactive Previews in Global
INlumination Rendering

T. Rothl’z, M. Weier!? ,P. Bauszat4, A. Hinkenjann] Y. Li?

"Hochschule Bonn-Rhein-Sieg University of Applied Sciences
2Brunel University London, 3Saarland University, 4TU Delft

Samples per Pixel: 1

HC 1spp HC 64spp PT 16384spp -

64 512 16,384

Path Tracing

Hash Cache

Path Tracing

Hash Cache

Figure 1: Comparison of images generated with pure path tracing and with the support of HashCache. Left: The full image subdivided
horizontally into areas rendered with HashCache at 1spp, 8spp, 64spp, 512spp, and Path Tracing at 16,384 spp. Insets in green are magnified
on the right for the various settings. Right: Zoomed-in rendering for comparison, rendered with Path Tracing and HashCache (with three
more frames in the sequence rendered before as a warm-up phase). For the upper inset, the HashCache system already yields a quality at
64spp (512spp for individual rendering) that is at least on par with the path traced image at 16,384spp.

Abstract

Modern Monte-Carlo-based rendering systems still suffer from the computational complexity involved in the generation of
noise-free images, making it challenging to synthesize interactive previews. We present a framework suited for rendering such
previews of static scenes using a caching technique that builds upon a linkless octree. Our approach allows for memory-efficient
storage and constant-time lookup to cache diffuse illumination at multiple hitpoints along the traced paths. Non-diffuse surfaces
are dealt with in a hybrid way in order to reconstruct view-dependent illumination while maintaining interactive frame rates.
By evaluating the visual fidelity against ground truth sequences and by benchmarking, we show that our approach compares
well to low-noise path traced results, but with a greatly reduced computational complexity allowing for interactive frame rates.
This way, our caching technique provides a useful tool for global illumination previews and multi-view rendering.

CCS Concepts

o Computing methodologies — Computer graphics; Ray tracing; Image-based rendering;

1. Introduction

Global Illumination (GI) rendering based on Monte Carlo (MC)
methods allows for generating images of astonishing realism that
can often hardly be distinguished from real photographs. Even
though these methods have been around for a long time, their com-
putational complexity remains a major challenge. Ray-based ap-

© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.

DOI: 10.2312/cgvc.20191261

proaches like path tracing may require a considerable number of
rays to be traced through a scene to determine an approximate solu-
tion for the Rendering Equation [Kaj86]. This process can take any-
where from mere seconds to hours until a noise-free result emerges.
In recent years, numerous methods have been introduced for filter-
ing the noise from images rendered with low sample counts. Al-

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org

https://doi.org/10.2312/cgvc.20191261

86 T. Roth & M. Weier & P. Bauszat & A. Hinkenjann & Y. Li / HashCache

though these methods often result in visually pleasing, noise-free
images, rendering the GI of a scene involves computing the light
transport at many surfaces that are not directly visible in image
space. Reusing this information for the computation of successive
frames can increase visual quality and shorten rendering times at
the same time. Therefore, we introduce the HashCache, a hierarchi-
cal world-space caching method for GI rendering of static scenes,
based on a linkless octree [CJC*09]. Using a hash-based approach
makes it possible to perform the reconstruction of cached illumi-
nation in constant time, depending only on the actual screen reso-
lution (assuming that the visible geometry is known). Despite only
caching diffuse illumination, our system explicitly supports non-
diffuse materials through a hybrid reconstruction scheme. Having
similarities to photon mapping [Jen96, SJ09], it can be interpreted
as a kind of approximate final gathering step before the actual re-
construction. Compared to precomputed radiance transfer, our pre-
processing time is much shorter as we only need to determine ge-
ometric cell occupations. In order to compute noise-free results
without visible quantization artifacts, we employ a spatial jitter-
ing method inspired by [BFK18] as well as a basic cross-bilateral
reconstruction method. Finally, we present image quality compar-
isons, performance benchmarks, and an analysis of memory re-
quirements, showing the practicability of our approach.

2. Related Work

Caching samples is a proven tool for several computer graphics ap-
plications [SYM*12]. Currently, most methods try to exploit the
temporal coherence in image-space. However, caching in world-
space has the advantage to prolong the validity of samples in case
of view-dependent (dis-)occlusions and surfaces that are not di-
rectly visible. This is especially beneficial for methods that handle
indirect GI. In the following section, we provide an overview of
the relevant research related to our system, including the fields of
world-space sample caching and interactive GI.

World-space Sample Caching Early work by Ward et al.
[WRC88] uses an octree to cache irradiance values in world-space.
This approach is easy to implement when rays are cast sequentially.
However, updating a data structure is challenging when data is ac-
cessed in a parallel fashion. In work by Christensen et al. [CB04],
a sparse octree is suggested as a 3D Mipmap to store irradiance
values. Radiance Caching [KGPBOS] is a method for accelerating
GI computation in scenes with low-frequency glossy BRDFs based
on spherical harmonics. Higher-frequency content is supported in
work by Omidvar et al. [ORC*15], using Equivalent Area Light
Sources. However, all the methods presented so far are offline pro-
cesses for non-interactive systems.

The Render Cache [WDP99] is an interactive caching and re-
projection technique with adaptive sampling. In order to be effi-
cient, only samples within the view frustum are reprojected from
one frame to the next. GI computations on surfaces outside the cur-
rent frame’s frustum are not cached at all. Dietrich et al. [DSS06]
propose a cache that employs a hash map as the spatial index struc-
ture to store shading and illumination without the need for a pre-
processing step. While the presented work shares many similarities
to this approach, the hashing mechanism by Dietrich et al. cannot
be easily ported to highly parallel systems such as the GPU. More-

over, it does not provide a level-of-detail mechanism. Hachisuka
and Jensen [HJ10] describe how to use spatial hashing for con-
structing photon maps on the GPU. Their method stores a single
photon stochastically instead of storing lists or aggregations. This
allows the approach to ignore hash collisions but limits the sample
set size and expressiveness. Caching samples in world space is ei-
ther computationally demanding or only worked for a limited set of
samples. Hence, there is a need for fast world-space sample caching
techniques that allow updating aggregated samples in parallel.

Interactive Global Illumination Ritschel et al. [RDGKI12]
present a comprehensive summary of the major challenges in in-
teractive GI. Their work includes the underlying theoretic aspects,
phenomena, and methods for the actual rendering task. A real-
time approach for approximating GI is presented by Thiedemann
et al. [THGM11]. While diffuse near-field GI is rendered at high
visual fidelity, voxel-based visibility computation causes glossy re-
flections not to be handled well. Crassin et al. [CNS*11] provide a
technique for real-time GI, based on approximate cone tracing us-
ing a sparse voxel octree. However, the appearance greatly differs
between renderings generated with their method and unbiased re-
sults. Mara et al. [MLM13] present a method for efficient density
estimation for photon mapping on the GPU. While their work also
contains information on using a hash map as their data structure,
it is strictly limited to photon mapping. Our approach, however,
can be used with several GI methods. A direct-to-indirect transport
technique is described in [SL17]. While the achieved visual quality
is convincing, this method requires a relatively long precomputa-
tion time. Our method works magnitudes faster to preprocess the
scene’s geometry and to build the hashing structure.

In addition to the methods presented so far, image-space filter-
ing techniques have been introduced to allow for real-time render-
ing with extremely low sampling rates (< 16 spp) whilst maintain-
ing acceptable image quality. Such techniques make use of fast
approximations of joint bilateral filtering [DSHL10], Guided Im-
age Filtering [BEMA11], or adaptive manifolds [GO12]. Schied et
al. [SKW™*17, SPD18] suggest methods for generating temporally
stable image sequences from GI at one sample per pixel. The effec-
tive sample count available to their approach is increased by accu-
mulating samples temporally. All of the methods above greatly ben-
efit from exploiting temporal coherence in image-space. We argue
that a world-space sampling caching technique can further improve
the image quality of such filtering methods, especially in complex
scenes with many occluding surfaces and arbitrary views.

3. Method

In this section, we give an overview of the employed caching struc-
ture and describe how it can be used to cache the data generated by
stochastic rendering methods. Subsequently, we give more details
on how samples are generated during the rendering process in or-
der to reuse recursively generated hitpoints. It is also shown how
the actual cache updates are performed. Eventually, we provide in-
formation about the reconstruction process, including the support
of non-diffuse materials.

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

T. Roth & M. Weier & P. Bauszat & A. Hinkenjann & Y. Li / HashCache 87

3.1. Cache Structure

MC-based rendering methods provide the means to solve the Ren-
dering Equation [Kaj86] numerically. In our implementation, a
straightforward path tracer with next event estimation and multi-
ple importance sampling is used for computing the illumination
data. The path tracing process generates millions of randomly and
sparsely distributed hitpoints located on the scene geometry in each
iteration. Consequently, a data structure that allows for efficient
caching of such data must allow for querying large amounts of
randomly distributed keys at a high performance. The core of our
HashCache system is a linkless octree [CJC*09], consisting of a
number of hash maps implemented with Cuckoo Hashing [Alc11],
where the latter allows for a worst-case constant lookup time. Being
a hierarchical data structure, the HashCache allows for choosing the
level of the hierarchy whose resolution most closely resembles the
projected pixel size in object space, hiding subsampling artifacts
effectively.

While the hash-based octree representation is a compact struc-
ture, there still is a trade-off between memory consumption and
access time. In order to construct the compact hash map, all cells
occupied with geometry have to be marked at the highest resolution
available in the octree. This information is determined by testing all
grid cells within each triangle’s bounding box for an intersection
with the triangle, resembling typical grid construction algorithms
such as the work by Perard-Gayot et al. [PGKS17]. Because of the
large number of grid cells at high resolutions, we choose to rep-
resent each cell by a single bit in a field of 32 bit types. Each 32
bit chunk forms a block, which is subdivided spatially at a resolu-
tion of (4 x 4 x 2)bits = 32bits. The implementation uses CUDA’s
atomic operations on the respective chunks, effectively yielding the
number of occupied cells. During the hash map initialization, this
number is used in combination with a space-usage factor to limit
the actual memory requirements. We choose an initial space-usage
factor of fy = 1.1. If the hash map construction fails, another at-
tempt is made with f, = 1.01f;,_; until construction succeeds. This
construction process is performed for each octree level, with cell
indices being adapted to match the coarser representation. As the
utilized hash map implementation is bound to 32 bit keys, we rep-
resent higher resolutions by splitting space into multiple hash maps
per octree level.

The values stored in the octree’s underlying hash maps are ac-
tual indices to global data arrays. Note that the presented imple-
mentation relies on caching only the outgoing diffuse illumination
without any directional information other than the front and back
of each cache cell. While it would be possible to store informa-
tion for more directions this would negatively influence storage
requirements and performance. However, storing at least two di-
rections is necessary since infinitesimally thin geometric primitives
may be illuminated differently from both sides. We construct the
arrays to contain diffuse illumination for the front and back of each
cell as six half values. Additional stored data includes cell normals
compressed as one 32bit value per cell, the current accumulated
number of samples per cell and the frame index each cell has last
been reset, aggregated in one 32bit value per cell. The reset infor-
mation is required to rebuild the cache when illumination changes
occur. Note that the diffuse illumination is not attenuated by the dif-

© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

Path | N .
Tracing generate—)(Hltpomts(Normals (Irrad|ance (

/ (/l |

~

HashGrid Binary _

Indices Orientation
] query Cached [Global Data(Sort and
] normals Indices Reduce
8 A
.(..‘3 Y
(o]
: &Rl

Arrays

Unique
<update| ol info
HashGrids
\ HashGridManager /

Figure 2: An overview of the actual caching process. Hitpoints,
normals and irradiance samples are generated by the path tracing
process. The hitpoints’ coordinates are then used to determine the
according HashGrid indices for each hitpoint. Using these indices,
the HashGridManager is queried for the global indices to the data
arrays and the cached normals. A binary orientation for each ir-
radiance sample, the actual irradiance sample and the global data
indices are now used to collate the data in a sort-and-reduce oper-
ation. The resulting unique information per grid cell is then merged
with the current cache data.

fuse material colour (albedo) at this point, which is accounted for
during reconstruction. This allows for a higher-quality representa-
tion of spatial variation in the appearance of diffuse surfaces. The
front normal for each cell is determined by performing an atomic
compare-and-swap if no normal is stored in the according cell. Af-
terwards, the generated samples can be assigned to the front or back
by comparing their stored normals with the newly set front normal.
The total amount of memory required for the data of one cell is
(12+4+ 4+ 4)Bytes = 24Bytes. There are no specific constraints
for the number of triangles per octree cell (or, vice versa, the num-
ber of octree cells per triangle), as the required resolution largely
depends on the lighting situation and the actual camera settings
and position — for quick previews during modeling of individual
objects, lower resolutions such as 256° or 512 may already yield
satisfactory results.

3.2. Caching

An overview of the process described in this section is given in Fig-
ure 2. During the caching process, rays are shot into the scene from
the current camera view and traced along randomly generated paths
X = X¢X] ...Xy, with X; being that path’s individual vertices located
on scene surfaces, and £y, being the maximal recursion depth. As
we want to cache data not only for the first hitpoint (which would
effectively only represent directly visible geometry), we compute
illumination along subpaths with a maximum length of ¢, and
store these for the first £sore hitpoints. Thus, since all vertices of a
path should account for the energy transported along the same num-

88 T. Roth & M. Weier & P. Bauszat & A. Hinkenjann & Y. Li / HashCache

=

O¥store =3
len —
Dgrec =k = Llstore + g[gn

Figure 3: Parameters for a single path. The parameter Lsore deter-
mines the maximum depth to which values are stored in the cache.
After that depth, the illumination along subpaths is computed up to
a maximum length of ;,,. The length of both determines the maxi-
mal recursion depth Lrec.

ber of consecutive vertices in order to provide consistent data, the
maximum path length is £sore + ¢}, and the indirect illumination
contributed to each vertex x; along the path has to be limited to the
subpath vertices X;i1,...Xj¢,,, i +£en < Lrec. This is illustrated
in Figure 3. As soon as the local illumination and the reflected di-
rection @; for the current vertex X; have been computed, the en-
ergy transported along the current path is updated by computing
the throughput T; = f;(i) /prob(x;)(w; - i) according to the locally
evaluated BRDF. The first vertex along the current path that should
still account for energy originating at the current vertex is at index
p =max{0, j — ¥}, }. In order to take into account the accumulated
throughput for the current subpath from vertex x; back to vertex
X, each preceding vertex X/ . ; is updated with the reflected local
energy L; by computing the component-wise multiplication

Ej/ :Lj@

T]
&o II Tm M
J m=j'+1

Here, the diffuse material colour C 7 is not accounted for in vertex
x;r. It is instead taken into account after reconstruction in order to
avoid loss of spatial variation in the appearance of diffuse materi-
als. All vertices from each path that belong to a Lambertian ma-
terial are stored in the respective arrays indexed by the hash map.
This includes diffuse illumination values E;, compressed normal
vectors 7ij, the linear map index H (only required if the hash map’s
resolution R > 1024%) and the linear cell index C, where and C
are necessary to store the data in our data structure correctly.

Now, the respective cells of the HashCache are updated with the
newly computed light transport data. When updating the individ-
ual octree levels, the collected data is pre-accumulated before per-
forming an update on the global data arrays in order to avoid syn-
chronization issues. Pre-accumulation is implemented using a radix
sort approach with the global data index as the primary key and
the binary orientation information (front or back) as the secondary
key. The individual samples’ normal vectors can be replaced with
a scalar: 1, if the sample lies within the front-facing hemisphere, -1
otherwise. However, if storage is not an issue more directions can
be represented, which may also allow for caching glossy materials.
Afterwards, the data is coarsened for the preceding octree level and
the process is repeated until all levels have been updated. The full
octree update is in O(nlogn), with n being the number of updated
cache cells.

Trace to diffuse material
or background

Layered

back-to-front

Filtering
Ray —)(Hitpoints(NormaIs Color+(

Tracing G-Buffer

-

/—\)I Denoising
HashGrid .
. Irradianc
Indices

A

Running Estimate
{ Output)

query

Sort by
octree level

Data
Arrays

Per Depth Layer

HashGrids

\ HashGridManager /

Figure 4: An overview of the reconstruction process. A ray tracing
step is performed to find the actual hitpoints that have to be recon-
structed from the cache. In order to support non-lambertian mate-
rials, this step includes tracing rays until a diffuse surface is found,
the background is hit or a user-definable maximum recursion depth
is reached. The HashGrid indices computed from the hitpoints are
then sorted by the appropriate octree-level and the cache is queried
for the actual data indices. Together with hitpoint-wise texture and
geometry information, the acquired irradiance is filtered in a de-
noising step in a layered back-to-front way. This means that each
recursion level is filtered individually and then combined with the
next (nearer) level, until the primary hitpoints are reached. The re-
sult is then combined in a running estimate to achieve higher image
quality when the camera is not moving.

3.3. Reconstruction

An overview of the process described in this section is given in
Figure 4.

As rendering scenes with Lambertian materials exclusively may
cause them to appear visually dull and unrealistic, our system pro-
vides the means for handling materials with glossy or specular
properties. For the reconstruction step, primary geometry hitpoints
are determined for each individual pixel, with the exception of
glossy and specular materials, where the specific rays are traced
further until they eventually arrive at maximum depth £y, a dif-
fuse material, or hit the background. For each path, the accumulated
throughput is stored for the first £,,_; vertices as Tace = [1;< 0,—1Ti
together with the diffuse material colour, the local normal, and the
appropriate octree level (selected by projecting the pixel area in
object space). The reconstruction is executed per-level and accu-
mulated in the image by selecting the correct orientation from each
cell and multiplying the retrieved diffuse illumination value with
Tace-Cy,—1-

In order to reduce the blocky appearance caused by low cache
resolutions, we employ a spatial jittering method. Finally, a basic
edge-aware cross-bilateral denoiser filters remaining noise for each
depth layer individually. Figure 1 shows a quality comparison of

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

T. Roth & M. Weier & P. Bauszat & A. Hinkenjann & Y. Li / HashCache 89

jitter off
denoise off }

LA

jitter on
i| denoise off }

i

jitter on \
denoise on Q»

Ix
jitter off
denoise on

:!

N

Figure 5: Comparison of the same viewpoint rendered with all
combinations of jittering and denoising. Top left: HashCache-
based reconstruction without any spatial jittering or denoising ap-
plied. Top right: While spatial jittering cannot get rid of the high-
frequency noise visible in the upper inset, it works well for hid-
ing quantization artifacts. Bottom left: Denoising alone does work
well for fine-grained noise, but cannot remove quantization arti-
facts very well. Bottom right: Combining jittering and denoising
works well for both kinds of artifacts.

the HashCache compared to path tracing. Figure 5 shows the effect
of jittering and denoising in two areas: While the wall in the back
shows more high-frequency noise, the statue in the front reveals
quantization artifacts due to great differences between neighboring
cache values. However, such artifacts are efficiently removed by the
denoiser.

Note that spatial jittering may result in slight artifacts when cells
are processed which do not have geometry in all neighboring cells
that lie on the respective tangent plane. This is mainly caused by
the fact that our data structure does not support enhanced sparsity
encoding, but rather relies on constrained access [LH06] to avoid
further memory consumption. Two cases may appear:

1. The hash key for the neighboring grid cell may belong to another
cell that belongs to the scene’s geometry. In such a case, visual
artifacts may occur.

2. The hash key for the neighboring grid cell may yield an empty
entry in the hash map. In this case, the irradiance value is set to
the average of the pixel’s neighbors, i.e., invalid or unsampled
pixels resulting from spatial jittering are filled in.

However, during our evaluation, we did not observe any major arti-
facts resulting from this. Thus, we decided not to include any way
of querying a cell for its grid coordinates.

(© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.

4. Results and Evaluation

In this section, we evaluate the visual quality, performance and
GPU memory requirements of the system. All measurements in
this section were performed on a Linux system equipped with a
GeForce GTX Titan X (Maxwell), a Core 17-7700 and 32GiB of
main memory. Images were rendered at a resolution of 1024 x 1024
pixels.

Visual Quality To determine the visual error, we rendered the
scenes Country Kitchen (CK) and Streets of Asia (SoA) using a
camera fly-through of 500 frames with different configurations of
the HashCache and regular path tracing for comparison. On the one
hand, standard path tracing was rendered for 1, 8, 64, 512, 4,096,
and 16,384 samples per pixel (spp) for both scenes. The outputs
with the highest sample counts are used as reference images for
error computation. On the other hand, results using the HashCache
system were generated with 1, 8, 64, and 512 spp with the presented
reconstruction technique. The hash map resolution was chosen to
be 4096° for CK and 2048° for SoA. All rendered images under-
went identical tone mapping processes. The results illustrated in
Figure 6 show a comparison of the visual quality measured as (top)
the relative mean-square error (relMSE) and (bottom) the multi-
scale structural similarity (MS-SSIM) [WSBO03] for varying sam-
ple counts. MS-SSIM takes perceptual phenomena into account
and is an important tool to judge image quality with the human
visual system taken into consideration. The reuse of already com-
puted information in combination with a basic cross-bilateral fil-
tering method already leads to the HashCache at 64spp yielding a
quality similar to path tracing at 4096spp for the scene CK. For
SoA, the HashCache does not show an improvement in reIMSE be-
tween 64spp and 512spp. At 64spp the reIMSE is similar to path
tracing at 512spp. Note that the scene SoA was rendered using a
HashCache with a lower maximal resolution of only 20483 As
the spatial extent of the scene is high and the camera gets close
to certain objects in the scene during the fly through, quantization
artifacts are likely to occur and cause a larger difference between
the reference solution and the cached irradiance. We expect even
better quality at low sample densities when more advanced state-
of-the-art filtering methods are integrated into our layered filtering
framework (see Section 5).

Performance Figure 7 shows rendering times and the average
number of samples cached per frame for two different cache set-
tings: (srore = 3,€1en = 3) and (Lrore = 8,%j., = 8). The caching
resolution factor (CRF) serves to adjust the number of rays cast in
the caching phase. If set to 1, the number of primary rays will be
the same as the chosen image resolution in the reconstruction step.
While the cache construction times behave quadratic with regard to
the CRF (because resolution is multiplied with the CRF both hori-
zontally and vertically), reconstruction times do not depend on this
setting. The average filtering time measured for the bilateral filter is
22ms, while the cache query took 4.5ms and the ray tracing phase
for determining the visible geometry took around 31ms. Thus, at a
frame rate of around 17fps, the reconstruction itself is well-suited
for interactive previews. The additional time taken by the caching
procedure depends largely on the rendering and caching parame-
ters. Setting low values for /gor and {,, causes the ray tracing
step not only to work with shorter but also more coherent paths,

90 T. Roth & M. Weier & P. Bauszat & A. Hinkenjann & Y. Li / HashCache

i

0 100 200
Country Kitchen
Path Tracing HashCache
1e+01- 1e+01- 1e+01-

e-01-

\
’
1
\

relMSE
relMSE [log]
\
\
\
|
)

Country Kitchen

= -
' __/\/\/ 1e-011 -‘\/
= —

300 400

Streets of Asia
Path Tracing HashCache

1e+01-

________ -7 ~

- — N - - -

Configurations

i _03- _03- _03- - 'PT 1spp
1e-03 1e-03 1e-03 1e-03 - PT 8spp
= PT 64spp
; ; ; ;])]] ! —PT 512spp
0 100 200 300 400 6 100 200 300 400 100 200 300 400 0 100 200 300 400 PT 4096spp
1.00- 1.00- e—— 1.00 sm=c 1.00- -
E _ —— Pl el == T - === = -ﬂ(éésppﬂf:llltenng
~ R 7 -~ = E iltering
- ~ ~ oo B ’ - ~ ! Spp + Filterin:
0.75- * e - 0.75- . 0.75- + 0.75- =HC 64spp + Filterin
(T) £ \ ¥ S.— S SEEN% ; ZHG 5138pp + Fittoring
= i et
o) Hoso- . N 0.50- 050- .+ "t 0.50-
. » ~ .7 - I
? - \. -
g 20.25' 0.25- 0.25- 0.25-
0.00- | 0.00- | | 1 | 0.00- | | | | 0.00- | | | |
0 100 200 300 400 0 100 200 300 400 100 200 300 400 0 100 200 300 400
Frame Frame Frame Frame

Figure 6: Relative mean square error (relMSE, lower is better) and Multi-scale Structural Similarity (MS-SSIM, higher is better) for the
scene Country Kitchen (maximal build resolution 4096°) and Streets of Asia (maximal build resolution 20483) at various sampling densities
using path tracing and the HashCache system. The shaded area in the background outlines the respective relMSE and MS-SSIM ranges for

the other rendering method for better comparison.

which is beneficial for its performance. However, despite the top
configuration delivering the fastest caching times, the number of
updated cache cells on the right also shows that cache convergence
should be expected to be relatively slow. Only storing the first ver-
tex for each path also causes issues with glossy, specular or trans-
parent materials where the positions of subsequent vertices have
not yet been seen directly by the user. Imagine a white wall re-
flected inside a mirror. It will only show a correctly rendered re-
flection if it has already been viewed before. However, this issue
can be easily avoided by choosing a higher setting for £sore, which
is desirable anyway in order to cache illumination for scene parts
that are not directly visible. The relatively slow cache update times
for high CREF settings and high recursion and storage settings vis-
ible in Figure 7 are not a real issue for interactive exploration; in
order to keep the process interactive, we modified our exemplary
implementation to adjust the CRF to maintain a certain framerate
while the camera is moving and only perform caching with the full
resolution in the absence of movement. As shown in Figure 8, the
actual reconstruction time is low enough to allow for fully interac-
tive camera movements when the CRF is lowered. While the initial
construction of the cache may take a couple of seconds depend-

ing on the set resolution, it is faster than Radiance Caching ap-
proaches [KGPB08, ORC*15]. Yet, it means that the HashCache
is too slow to support fully dynamic scenes. We hope to omit the
necessity of an explicit hash map construction step by using non-
perfect hashing schemes in our future work.

Memory Requirements The amount of required GPU memory
for both scenes Country Kitchen and Streets of Asia is shown in
Table 1. While data density decreases by a factor of roughly 0.5
from level i to i + 1, memory requirements still increase by a fac-
tor of roughly 4 to 5. In total, the 4096 representation of Coun-
try Kitchen required an amount of 2.17GiB for the data arrays and
406.92MiB for the hash maps, while Streets of Asia required 691.37
MiB for the data arrays and 126.75 MiB for the hash maps at a total
resolution of 2048. One possible approach to handle the memory
requirements resulting from higher resolutions would be the inte-
gration of an out-of-core component into our system, dynamically
loading currently required data from host memory to the GPU.

Comparison to the State-of-the-Art Methods such as the work
by Schied et al. [SKW ™17, SPD18] have lower filtering run times
(e.g. 4-5ms on Titan X vs. 22ms for the unoptimized HashCache

®© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

T. Roth & M. Weier & P. Bauszat & A. Hinkenjann & Y. Li / HashCache 91

Mean Number of Updated Cells

CACHING/REC. TIMES
L_STORE=3, L_LEN=3

L_STORE=3, L_LEN=3
2500

5.00E+06
4.50E+06

2000 Filtering 4.00£+06
3.50E+06

Z 1500 Query Cache 3.00E+06
= 2.50E+06
< N
g 1000 Reconstruction 2.00E+06 §
Trace 1.506+06 T
Cache Update ¥ 9 =2 e
500 || P Lo0E0s o & 3 P8 s
5.00E+05 5 § E g -
0 Caching Trace 0.00E+00
0.01 0.05 0.1 025 05 1 0.01 005 0.1 0.25 0.5 1
CACHING RESOLUTION FACTOR CACHING RESOLUTION FACTOR
CACHING/REC. TIMES Mean Number of Updated Cells
L_STORE=8, L_LEN=8
L_STORE=8, L_LEN=8 - .
5.00E+06
2500 ~
4.50E+06 &
&
S
2000 4.00E+06 E
3.50E+06 3
w
2 1500 3.00€+06 5
= 2.50E+06 ‘g
2 1000 | 2.00E+06 &
&
1.50E+06 w
o
500] 1.00E+06 &

ILECLL
€TT6LT'T

~
&
5.00E+05 @
5

0 0.00E+00
001005 0.1 025 0.5 1 001 005 01 025 05 1
CACHING RESOLUTION FACTOR CACHING RESOLUTION FACTOR

Figure 7: Statistics for the scene Country Kitchen with different
cache settings at a resolution of 20483, Left: Total rendering times,
split into different steps. Right: Avg. number of cells updated per
frame of the 500 frame sequence. These numbers include the update
of all octree levels. Note that the resolution factor can be adjusted
dynamically to the current situation, e.g., when the user is moving.

filter) and produce a comparably high visual quality. However,
these techniques rely on a temporal coherence between subsequent
views. In contrast, the HashCache allows for integrating GI data
from arbitrary spatial locations. Thus we are certain that all of
these techniques can benefit from the knowledge from world-space
caches. With the HashCache’s hybrid reconstruction method, spec-
ular materials can be supported with ease (see Figure 9). Notwith-
standing querying the world-space cache is slower than a cache
in image space (4.5ms for HashCache vs. ~0.5-1ms for Schied et
al. [SPD18]). Yet in contrast to techniques such as NVIDIA’s ma-
chine learning solution [CKS™*17] that needs specific training data
or might produce inconsistent results, the HashCache can be filled
at run time. Admittedly though the caching itself is a very costly op-
eration (see Figure 8), but the CRF can be freely adapted. The figure
also shows how the actual perspective influences caching and ren-
dering times. For Country Kitchen, rendering at the beginning takes
only little time because the camera is still outside the room, which
means that a lot of rays actually hit the background. As the camera
gets nearer to the room, recursion depth increases because the rays
are reflected between surfaces a lot more often. For the reconstruc-
tion, there is no vast difference caused by such a scenario. The only
increase in recursion depth is caused by non-diffuse materials.

Once caches are filled to a certain extent, it is possible to limit the
CREF largely and thus significantly reduce the cache update times.
Moreover, the run time and caching behaviour can be adapted dy-
namically to the user’s needs to stay within certain frame rate lim-
its.

(© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.

Country Kitchen

Level Res Density Data Mem. Hash Mem.
0 1 1 24 B 44B
1 2 0.5 9 B 17.6 B
2 4 0.375 576 B 105.6 B
3 8 0.193 2.32 kiB 4356 B
4 16 0.124 11.93 kiB 2.19 kiB
5 32 0.070 54.07 kiB 9.91 kiB
6 64 0.038 234.47 kiB 42.99 kiB
7 128 0.023 1.11 MiB 209.23 kiB
8 256 0.012 4.66 MiB 874.83 kiB
9 512 0.006 19.43 MiB 3.56 MiB
10 1024 0.003 81.60 MiB 14.96 MiB
11 2048 0.002 362.09 MiB 66.38 MiB
12 4096 0.001 1.71 GiB 320.90 MiB
Sum 2.17GiB 406.92 MiB

Streets of Asia
Level Res Density Data Mem. Hash Mem.
0 1 1 24B 44B
1 2 0.5 9% B 17.6 B
2 4 0.266 408 B 74.8B
3 8 0.197 2.37 kiB 4444 B
4 16 0.135 12.91 kiB 2.37kiB
5 32 0.074 57.14 kiB 10.48 kiB
6 64 0.043 265.92 kiB 48.75 kiB
7 128 0.025 1.21 MiB 226.35 kiB
8 256 0.014 5.50 MiB 1.01 MiB
9 512 0.008 25.68 MiB 4.71 MiB
10 1024 0.004 114.77 MiB 21.04 MiB
11 2048 0.003 543.88 MiB 99.70 MiB
Sum 691.37MiB 126.75 MiB

Table 1: Data densities and memory requirements. The data den-
sity is the quotient of occupied cells and the actual number of cells
for a full grid of resolution n’. Data memory is the amount of mem-
ory required to store the full data arrays. Hash Memory is the
amount of memory reserved for the hash map representation for
the respective level.

5. Conclusion and Outlook

In this paper, we presented a method for caching and reconstruct-
ing diffuse global illumination in a hash-based linkless octree to
store illumination data for subsequent views. While the introduced
reconstruction technique already produces images at a remarkable
quality, it is well possible to use the HashCache for enhancing the
visual quality of other more elaborate image-space filtering tech-
niques. We are certain that the HashCache can show its poten-
tial, especially in conjunction with methods that rely upon tem-
poral integration in image-space such as the work by Schied et
al. [SKW*17, SPD18] or machine learning techniques such as the
work by Chaitanya [CKS™ 17]. However, the latter will probably re-
quire a new training set due to the more stable output produced by
the HashCache.

While we left out the rendering of specular-to-diffuse transport,
using our system with a bidirectional path tracer would also allow
for such paths to be handled more effectively. Though, care has to
be taken of the high-frequency content such as caustics, as this may
quickly exceed the cache’s spatial resolution. One option would be

92 T. Roth & M. Weier & P. Bauszat & A. Hinkenjann & Y. Li / HashCache

Path Tracing vs. HashCache

Average Rendering Times, Country Kitchen

1400
1200

Path Tracing vs. HashCache

Average Rendering Times, Streets of Asia
1200

1000

1000
800 800

600

Time (ms)
Time (ms)

600
200 ~ . 400
ol : 200 ._._M_H

0 50 100 150 200 250 300 350 400 450 500 o
Frame Index 0 50 100 150 200 250 300 350 400 450 500

=@ PT: trace == HC: caching HC: Reconstruction Frame Index

Figure 8: Path Tracing and HashCache rendering times for Country Kitchen and Streets of Asia flythroughs. Rendering time is given for 1spp.
PT: trace is the time for pure path tracing at a maximum recursion depth of 8, HC: caching is the caching part of HashCache computations
which includes path tracing and cache updates, HC: Reconstruction is the reconstruction part of HashCache computations, which includes
ray tracing, fetching the respective data from the cache and reconstructing an image from the computed data (including filtering). While
caching times are significantly higher than pure path tracing times, data is reused between frames so that the actual caching resolution
factor (CRF) can be reduced either permanently or deactivated during user input, allowing for smooth interaction.

Samples per Pixel: 1 8 64 512

16,384

Hash Cache

Hash Cache individual

Figure 9: Comparison of images generated with pure path tracing and with the support of HashCache. Left: The full image rendered at
the reference sample count of 215 The green inset is magnified on the right for the various rendering settings. Right: Zoomed-in rendering
for comparison, rendered with Path Tracing, HashCache (with 4 more frames in the sequence rendered before as a warm-up phase), and
HashCache individual (without filling the cache in preceding frames). For the upper inset, the HashCache system already yields a quality at
64spp (512spp for individual rendering) that’s at least on par with the path traced image at 16,384spp.

to provide a dynamic local caching mechanism that works at higher
resolutions and adjusts to a scene’s light distribution. Also, instead
of storing each level of the octree in a separate hash map, we can
store all levels in one hash map with occupation information. This
approach avoids separate hash map queries per octree level. This
way the correct data array indices can be computed from the occu-
pation information. However, this increases memory requirements.

Ultimately, we want to modify the caching method and employ
a different hashing algorithm that allows for dynamic allocation on
GPUs. This would be interesting in order to avoid the necessity of
data structure rebuilds when geometry changes occur in a scene.

Also, we firmly believe that the HashCache can be a great tool to
improve multi-view VR systems. Extending the system to support
updates from multiple GPUs or even multiple machines, data qual-
ity throughout the scene could be improved in comparison to only
caching illumination for the currently used perspective.

6. Acknowledgements

The work is supported by the German Federal Ministry for Eco-
nomic Affairs and Energy (BMWi) funding the MoVISO ZIM-
project under Grant No.: ZF4120902

© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

T. Roth & M. Weier & P. Bauszat & A. Hinkenjann & Y. Li / HashCache 93

References

[Alc11] ALCANTARA D. A. F.: Efficient Hash Tables on the GPU. Dis-
sertation, University of California Davis, 2011. 3

[BEMA11] BAUSZAT P., EISEMANN M., MAGNOR M., AHMED N.:
Guided image filtering for interactive high-quality global illumination.
Computer Graphics Forum (Proc. of Eurographics Symposium on Ren-
dering EGSR) 30, 4 (Jun 2011), 1361-1368. 2

[BFK18] BINDER N., FRICKE S., KELLER A.: Fast path space filtering
by jittered spatial hashing. In ACM SIGGRAPH 2018 Talks (New York,
NY, USA, 2018), SIGGRAPH ’18, ACM, pp. 71:1-71:2. 2

[CB04] CHRISTENSEN P. H., BATALI D.: An irradiance atlas for global
illumination in complex production scenes. In Proceedings of the
Fifteenth Eurographics Conference on Rendering Techniques (Aire-la-
Ville, Switzerland, Switzerland, 2004), EGSR’04, Eurographics Associ-
ation, pp. 133-141. 2

[CIC*09] CHOIM.G.,JUE., CHANG J.-W., LEEJ., KIM Y. J.: Link-
less octree using multi-level perfect hashing. Computer Graphics Forum
28 (2009), 1773-1780. 2, 3

[CKS*17] CHAITANYA C. R. A., KAPLANYAN A. S., SCHIED C.,
SALVI M., LEFOHN A., NOWROUZEZAHRAI D., AILA T.: Interactive
reconstruction of monte carlo image sequences using a recurrent denois-
ing autoencoder. ACM Trans. Graph. 36, 4 (July 2017), 98:1-98:12. 7

[CNS*11] CRASSIN C., NEYRET F., SAINZ M., GREEN S., EISEMANN
E.: Interactive indirect illumination using voxel-based cone tracing: An
insight. In ACM SIGGRAPH 2011 Talks (New York, NY, USA, 2011),
SIGGRAPH ’11, ACM, pp. 20:1-20:1. 2

[DSHL10] DAMMERTZ H., SEWTZ D., HANIKA J., LENSCH H.: Edge-
avoiding a-trous wavelet transform for fast global illumination filtering.
In Proc. High Performance Graphics 2010 (2010), pp. 67-75. 2

[DSS06] DIETRICH A., SCHMITTLER J., SLUSALLEK P.: World-space
sample caching for efficient ray tracing of highly complex scenes. Tech.
rep., Citeseer, 2006. 2

[GO12] GASTAL E. S. L., OLIVEIRA M. M.: Adaptive manifolds for
real-time high-dimensional filtering. ACM TOG 31, 4 (2012), 33:1-
33:13. Proceedings of SIGGRAPH 2012. 2

[HJ10] HACHISUKA T., JENSEN H. W.: Parallel progressive photon
mapping on gpus. In ACM SIGGRAPH ASIA 2010 Sketches (New York,
NY, USA, 2010), SA *10, ACM, pp. 54:1-54:1. 2

[Jen96] JENSEN H. W.: Global illumination using photon maps. In Ren-
dering TechniquesAcaCrniaD¢ 96. Springer, 1996, pp. 21-30. 2

[Kaj86] KAIYA J. T.: The rendering equation. In ACM SIGGRAPH
Computer Graphics (1986), vol. 20, pp. 143-150. 1, 3

[KGPB08] KRIVANEK J., GAUTRON P., PATTANAIK S., BOUATOUCH
K.: Radiance caching for efficient global illumination computation.
In ACM SIGGRAPH 2008 Classes (New York, NY, USA, 2008), SIG-
GRAPH ’08, ACM, pp. 75:1-75:19. 2,6

[LHO6] LEFEBVRE S., HOPPE H.: Perfect spatial hashing. ACM Trans.
Graph. 25, 3 (July 2006), 579-588. 5

[MLM13] MARA M., LUEBKE D., MCGUIRE M.: Toward practical
real-time photon mapping: Efficient gpu density estimation. In Proceed-
ings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games (New York, NY, USA, 2013), I3D *13, ACM, pp. 71-78. 2

[ORC*15] OMIDVAR M., RIBARDIERE M., CARRE S., MENEVEAUX
D., BOUATOUCH K.: A radiance cache method for highly glossy sur-
faces. The Visual Computer (Oct. 2015), 1-12. 2,6

[PGKS17] PERARD-GAYOT A., KALOJANOV J., SLUSALLEK P.: Gpu
ray tracing using irregular grids. Comput. Graph. Forum 36, 2 (May
2017), 477-486. 3

[RDGK12] RITSCHEL T., DACHSBACHER C., GROSCH T., KAUTZ J.:

The state of the art in interactive global illumination. Comput. Graph.
Forum 31, 1 (Feb. 2012), 160-188. 2

© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.

[SJO9] SPENCER B., JONES M. W.: Hierarchical Photon Mapping. /[EEE
Transactions on Visualization and Computer Graphics 15, 1 (Jan. 2009),
49-61. 2

[SKW*17] ScHIED C., KAPLANYAN A., WYMAN C., PATNEY A.,
CHAITANYA C. R. A., BURGESS J., L1U S., DACHSBACHER C.,
LEFOHN A., SALVI M.: Spatiotemporal variance-guided filtering: Real-
time reconstruction for path-traced global illumination. In Proceedings
of High Performance Graphics (New York, NY, USA, 2017), HPG ’17,
ACM, pp. 2:1-2:12. 2,6,7

[SL17] SILVENNOINEN A., LEHTINEN J.: Real-time global illumination
by precomputed local reconstruction from sparse radiance probes. ACM
Transactions on Graphics 36, 6 (Nov. 2017), 1-13. 2

[SPD18] ScHIED C., PETERS C., DACHSBACHER C.: Gradient esti-
mation for real-time adaptive temporal filtering. Proc. ACM Comput.
Graph. Interact. Tech. 1,2 (Aug. 2018), 24:1-24:16. 2, 6,7

[SYM*12] SCHERZER D., YANG L., MATTAUSCH O., NEHAB D.,
SANDER P. V., WIMMER M., EISEMANN E.: Temporal coherence
methods in real-time rendering. Computer Graphics Forum 31, 8 (2012),
2378-2408. 2

[THGM11] THIEDEMANN S., HENRICH N., GROSCH T., MULLER S.:
Voxel-based global illumination. In Symposium on Interactive 3D
Graphics and Games (New York, NY, USA, 2011), 13D ’11, ACM,
pp. 103-110. 2

[WDP99] WALTER B., DRETTAKIS G., PARKER S.: Interactive Render-
ing using the Render Cache. In Rendering Techniques (Proceedings of
the Eurographics Workshop on Rendering) (June 1999), Lischinski D.,
Larson G. W., (Eds.), vol. 10, Springer-Verlag, pp. 235-246. 2

[WRC88] WARD G.J., RUBINSTEIN F. M., CLEAR R. D.: A ray tracing
solution for diffuse interreflection. In Proceedings of the 15th Annual
Conference on Computer Graphics and Interactive Techniques (New
York, NY, USA, 1988), SIGGRAPH 88, ACM, pp. 85-92. 2

[WSB03] WANG Z., SIMONCELLI E. P., BOVIK A. C.: Multiscale struc-
tural similarity for image quality assessment. In The Thrity-Seventh
Asilomar Conference on Signals, Systems Computers, 2003 (Nov. 2003),
vol. 2, pp. 1398-1402 Vol.2. 5

