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Figure 1: With our method we can transfer hand-crafted key-framed animations to a simulated character as demonstrated with the car-
toon dinosaur, performing a physically infeasible jumping motion. Transferring such movements to a simulated character requires a large
deviation from the original motion—which is not supported by previous methods that support only a narrow search band for optimization.

Abstract
The vision of fully simulating characters and their environments has the potential to offer rich interactions between charac-
ters and objects in the virtual world. However, this introduces a challenging problem similar to controlling robotic figures:
computing the necessary torques to perform a given task. In this paper, we address the problem of transferring hand-crafted
kinematic motions to a fully simulated figure, by computing open-loop controls necessary to reproduce the target motion. One
key ingredient to successful control is the mechanical feasibility of the target motion. While several methods have been suc-
cessful at replicating human captured motion, there has not yet been a method capable of handling the case of artist-authored
key-framed movements that can violate the laws of physics or go beyond the mechanical limits of the character. Due to the curse
of dimensionality, sampling-based optimization methods typically restrict the search to a narrow band which limits exploration
of feasible motions—resulting in a failure to reproduce the desired motion when a large deviation is required. In this paper, we
solve this problem by combining a window-based breakdown of the controls on the temporal dimension, together with a global
wide search strategy that keeps locally sub-optimal samples throughout the optimization.

CCS Concepts
•Computing methodologies → Physical simulation; Optimization algorithms;

1. Introduction

While feedback controllers have been created in the past for vari-
ous motions such as walking, running, swimming, aerial stunts and
bicycle riding [HWBO95, YLvdP07, TGTL11, HYL12, TGLT14],
they were designed on a case-by-case basis often using motion-
specific modeling, and cannot be used to produce other move-
ments. One way to generalize control to various movements is

to learn from examples [LYvdP∗10, LYG15, PBYvdP17]. While
much progress has been made over the past years on transferring
human captured motion to the simulation world, the methods fall
short when it comes to hand-crafted key-framed animations. The
main reason is the large search band required to explore deviations
from the desired motion, while at the same time avoiding the curse
of dimensionality.

© 2018 The Author(s)
Eurographics Proceedings © 2018 The Eurographics Association.

DOI: 10.2312/cgvc.20181205 https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.2312/cgvc.20181205


Dominik Borer & Martin Guay & Robert W. Sumner / Keys-to-Sim using Wide Band STO

For example, consider the case of a walk cycle. The character
could immediately start walking from the first frame, having the
back leg moving forward without any center-of-mass momentum—
causing the character to fall on its back. A mechanically feasible
version of such a movement would require a large deviation from
the desired motion. Hence, previous methods such as frame-by-
frame inverse-dynamics [AdSP07], and sampling-based optimiza-
tion [LYvdP∗10, ABdLH13], cannot be used successfully in the
context of hand-crafted key-framed motions, due to their narrow
search space.

In this paper, we solve this problem with a wide band sampling-
based trajectory optimization method. Given an artist-crafted an-
imation, our algorithm outputs mechanically feasible movements
(open-loop controls). To support a large coverage of the parameter
space, our algorithm relies on two key innovations. First, we break
down the controls into a sequence of overlapping control windows,
each typically of 0.5 seconds length. While this helps to converge
locally more successfully, it does not support finding global solu-
tions in the long run. Hence, our second key innovation is to keep
multiple samples and thus multiple sequences of control windows
alive, to finally select the best sequence of samples at the end—
by backtracking the entire process. We demonstrate the success of
this strategy compared to previous approaches in our accompany-
ing video.

Another key ingredient to the success of trajectory optimization
methods is the design of the mechanical figure. For example, the
overall mass of the character will often be very light, except for
its abdominal area (pelvis). The joint type (dimensionality) and PD
(proportional-derivative) stiffness and damping coefficients will of-
ten be tweaked for each motion, thereby reducing the search space
of the optimization. These aspects can be mind-boggling for ca-
sual users, which our system is designed for. In this paper, we de-
scribe a modeler that takes as input a kinematic skeleton and yields
a control-friendly character with minimal user interactions.

To summarize, our contributions are as follows:

• A wide band sampling-based trajectory optimization algorithm
to compute mechanically feasible open-loop controls from hand-
crafted key-framed animations (Section 5).
• A mechanical system modeler that abstracts the insights required

for creating a control-ready character from a kinematic skeleton
(Section 4).

2. Related Work

Physics-based character animation has a long history in computer
animation and robotics. We focus on the works most related to tra-
jectory optimization and policy learning, while referring the reader
to the recent survey of Geijtenbeek et al. [GP12] for a wider inspec-
tion.

Early controllers were designed manually for specific motions
using a combination of PD-control and virtual forces: human ath-
letics and running [HWBO95], locomotion [YLvdP07, WFH09,
LKL10, CKJ∗11], as well as swimming and aerial stunts [TGTL11,
HYL12]. For more general control methods, researchers have
looked at methods for tracking example motions with a simulated
character.

Model-based methods utilise the full equations of motion to
optimize for controls—for a single time step [AdSP07, MZS09,
MdLH10, dLMH10, YL10, RvdPK14], or a whole trajectory
[WK88, MTP12]—using local optimization such as quadratic pro-
gramming or BFGS. While these methods support tracking exam-
ple motions to some extent, they are inherently tied to specific me-
chanical modeling—in generalized coordinates—and transferring
the controls to a simulator operating in maximal coordinates re-
mains an issue. Additionally, coping with discontinuous contact
dynamics requires intricate modeling for compatibility with local
gradient-based optimization.

Motivated by these problems, several works focused on model-
free and gradient-free optimization techniques, where the simula-
tor (in maximal coordinates) is treated as a black box [LYvdP∗10,
ABdLH13, HL14, HET∗14, LYG15, HRL15, RH17, NRH17]. In
these works, sample controls (torques or PD joint targets) are sim-
ulated over a time window, and optimized using various sampling
schemes. While some can synthesize motions without example
movements [ABdLH13, HL14, HET∗14, HRL15, RH17, NRH17],
they require specific objective functions for each motion. Meth-
ods designed for tracking an example motion [LYvdP∗10, LYG15],
have focused mainly on feasible realistic human captured motion.
In the case of hand-crafted motions, these methods fail to converge
due to the limited scope of the optimization space considered. In
contrast, our sampling scheme supports a larger deviation from the
original example motion, while keeping a single set of objective
functions.

The approaches mentioned in the previous paragraph generate
open-loop controls, which are time-dependent control values to be
used in the same sequence of states they were computed for. In con-
trast, a state-dependent feedback policy function covers a portion
of the character’s state space and can adjust to different situations.
Surprisingly simple feedback policies such as factored linear func-
tions were shown capable of handling specific tasks such as balanc-
ing, and walking [DLvdPY15], and full rank linear functions have
successfully been used for parkour movements [LYvdPG12]. Lin-
ear functions alone however are not sufficiently powerful to model
the complex relations between the character’s state and the required
controls across multiple tasks. For example, transitioning from idle
to walking and then running has been broken down into different
linear feedback controllers in [LYvdPG12, LvdPY16].

The recent success with training deep neural networks has
brought a re-visitation of reinforcement learning with regard to
learning continuous feedback policies. The idea of deep Q-learning
has been combined with valid open-loop controls in the case of
humanoid skateboard balancing and riding [LH17]. A continu-
ous actor-critic model has been successfully trained to map high-
dimensional terrain data to controls of a 2D quadruped [PBvdP15,
PBvdP16], and more recently a hierarchical RL scheme has been
successfully trained for 3D biped locomotion [PBYvdP17] using
example human motion. The recent case of 3D biped locomo-
tion [PBYvdP17] has been successfully trained without having to
first initialize the policy with valid controller samples. However,
the method requires a realistic and feasible human reference mo-
tion. Given the general unstable convergence rate of RL algorithms
(e.g. trust region policy optimization and continuous actor-critic),
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we conject that without physically feasible reference motions, con-
vergence could only be worse and most likely fail—hence the need
for feasible movements and the relevance for our method to gener-
ate such movements from hand-crafted animations.

Control-ready Character Modeler One of the key ingredients
for control algorithms is a well designed mechanical system for
the character. The characters are often very light to reduce control
magnitudes. The mass is often concentrated at the pelvis to improve
stability of the overall system’s dynamics. In many cases, the PD
stiffness and damping coefficients are specific to certain motions
to reduce the optimization search space. To our knowledge, tools
that include these insights directly to create a mechanical system
for the character have never been presented. As a consequence, op-
erating a simulated character requires intricate engineering knowl-
edge. In [CBvdP10], the user can adjust the proportions of a biped,
but new characters such as a quadruped must be engineered. While
in [LWH∗12] it is mentioned that the articulated rigid body system
is automatically generated from the kinematic skeleton of the char-
acter, it lacks details—for example how joint configurations as in
Figure 3 are handled—which we provide in this paper.

3. Overview

Our trajectory optimization algorithm optimizes the controls of a
simulated character, while digital artists typically design kinematic
motions using a kinematic skeleton (KS). Unfortunately, the kine-
matic skeleton cannot be used directly for simulation and must be
converted into an articulated rigid body system (ARBS).

Because each aspect of the ARBS (body shapes, masses, joint
types, and PD stiffness and damping coefficients) can each influ-
ence the stability and feasibility of the control, we provide a mod-
eler (Section 4) to facilitate creating it from a kinematic skeleton.
The user simply drag-and-drops the kinematic skeleton and with a
few edits recovers a fully modeled ARBS.

The next step is to provide the trajectory optimization with a
target motion. Because joint dimensionalities can be different be-
tween the ARBS and KS representations (e.g. hinge joints), we first
transfer the set of key-frames in the KS to a set of key-frames in the
ARBS representation, using full body inverse kinematics.

We then convert these target motions into mechanically feasible
movements using our wide band sampling-based trajectory opti-
mization algorithm (Section 5). This optimization results in open-
loop controls (PD joint angles) for a sequence of overlapping con-
trol windows (of 0.5 seconds each). The final motion is created by
sampling the controls over the first half of each window sequen-
tially over time.

4. Articulated Rigid Body Modeler

The user provides a character skinned with a Kinematic Skele-
ton (KS), which lacks mechanical information such as rigid body
shapes and masses, joint types and PD stiffness and damping co-
efficients. To use the character within a simulation, we first need
to set up a corresponding rigid body and joint structure, with ap-
propriate mechanical properties, which is referred to as Articulated

Rigid Body System (ARBS) (Figure 2). We observed that it was
easier to prune an existing ARBS, than model one from scratch.
Hence when the user drag-and-drops a KS into our modeler, our
system first creates an initial ARBS automatically. To create this
ARBS special care has to be taken to create the proper rigid bodies
(Section 4.1) and joints (Section 4.2) in order to mimic the motion
space of the KS. Due to missing information in the given KS the
created ARBS might have undesired artifacts, such as wrongly ori-
ented rigid bodies or joint axes, which can be tweaked by the user
with a few interactions (Section 4.3).

Figure 2: Using our modeler, the user-designed cartoon dinosaur
character with its kinematic skeleton (KS) is easily converted to the
corresponding articulated rigid body system (ARBS).

4.1. Creating Rigid Bodies

Directly mapping the kinematic joints to the simulated joints, with
rigid bodies in-between, leads to a structure with more degrees of
freedom (DoF) than the KS allows (Figure 3(b)). By observing the
function of the kinematic joints, we see they are in fact rigid bodies
with full 3D rotation and several children (whereas ARBS joints
have only one parent and child). Thus to mimic the motion space
of the KS with the ARBS, we associate a rigid body to a KS joint
and create simulation joints between the rigid bodies (Figure 3(c)).

(a) (b) (c)

Figure 3: The kinematic skeleton (a) is represented through cir-
cles for the joints and connections pointing from the parent to the
child joint. Rigid bodies are represented with gray ellipses. Creat-
ing a rigid body per connection (b) results in too many degrees of
freedom whereas associating a rigid body with a skeleton joint (c)
leads to the proper structure.

Preserving the connections to all child skeleton joints, leads to
the following three different configurations:

No Child Joint: A KS joint without children marks the endpoint
of a hierarchy. These KS joints are usually not animated and not
associated with any bone, and thus no rigid body is created.
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Exactly one Child Joint: KS joints with exactly one child joint
represent simple bones as we see in arms or legs. For those, a rigid
body with its endpoints at the two KS joints is created.

More than one Child Joint: KS joints with more than one child
joint represent more complex bones as in Figure 3 (e.g. pelvis or
upper body). For these, we need to create a rigid body that covers
all the associated joints. To get an estimate of the orientation, we
perform a principal component analysis on the KS joint positions
and orient the rigid body along the principal direction.

Rigid Body Properties Before a rigid body can be used in a sim-
ulation, it needs to be set up properly. As colliders we use capsules,
with the radius set to 10% of its length. The mass is estimated based
on the volume of the capsule—assuming a uniform distribution—
while the moment of inertia is approximated from a box enclosing
the capsule.

4.2. Creating Joints

The constraints between the rigid bodies are imposed through
joints. Because we want to keep the dimensionality as low as
possible—to help optimization convergence—we use only hinge
joints with 1 DoF. Since the artist is not constrained when creat-
ing the character, the KS usually comes with 3 DoF per joint. This
introduces an ambiguity: which rotation axis to use for the hinge
joints. We make a guess and let the user edit the axis. Our guess is
defined as the direction orthogonal to the directions from the joint
position to the two associated rigid bodies.

4.3. Editing the ARBS

Although the automatically generated ARBS is estimated from the
KS in a reasonable fashion, it requires additional tweaks to yield
best results; for example, with the orientation of the hinge joints, or
the need for end-effectors for stable ground contacts. Our modeler
thus provides the following set of tools to quickly tweak the ARBS:

• Rigid bodies: change position, orientation, size and mass.
• Joints: change rotation axis and limits.
• End-effectors: add to a terminal rigid body and change its posi-

tion and size.
• Structure: select new root, delete or merge rigid bodies.

With the final ARBS ready, we transfer the target motion key-
frames from the KS to the ARBS representation using full body
inverse kinematics. Given the desired motion in the same represen-
tation, we turn to optimizing for the controls that can mimic the
desired motion, but in a simulated environment.

5. Wide Band Stochastic Trajectory Optimization

The simulated character state Q is controlled through PD-control
using control poses Qc (a set of joint angles). Naive tracking of
the target poses (Qc = Qt ) through PD-control does not work and
the character quickly falls. The goal of the wide band trajectory
optimization is to compute control offsets ∆θ for the control pose
Q′c = Qt +∆θ, such that the simulated motion fsim(Q′c) is similar
to the target motion as illustrated in Figure 4.

Figure 4: The goal is to reproduce the target curve Qt (orange)
through the simulation. Using Qt as the control pose results in
fsim(Qt) (red), which is far away from the goal. Adding offsets ∆θ

to the target curve and use the control pose Q′c = Qt +∆θ leads to
a much better result fsim(Q′c) (green). The simulation does usually
not exactly match because the character has to maintain balance or
build up momentum which may contradict with the target motion.

During the simulation, the torques τ driving the joint orientation
q and angular velocity ω towards the control orientation qc and
angular velocity ωc are computed through PD-control as:

τ = kp ·Dq(qc,q)+ kd ·Dω(ωc,ω),

where kp and kd are joint stiffness and damping coefficients and Dq
and Dω are appropriate distance functions.

The control offsets are broken down into time steps of 0.1s while
the simulation runs at a time step of 0.0005s, using linear interpo-
lation in-between to sample the controls. Optimizing the full space
and time of the motion suffers from the curse of dimensionality.
Hence we break down the controls into different temporal windows
that quickly converge locally. To obtain a wide search band in the
parameter space, we sample from a Gaussian distribution which
is adapted over multiple optimization iterations, and keep multiple
samples per control window alive over time. The best solution is
then recovered by backtracking the results from the end state. The
entire algorithm is summarized as pseudocode in Algorithm 1.

Algorithm 1 Wide Band STO
1: procedure TRAJECTORYOPTIMIZATION(n, k, NCMA)
2: n (number of samples to generate per window)
3: k (number of samples to keep per window)
4: NCMA (number of CMA-ES iterations for each initial condition)

5: ns← n
k (number of samples to generate for each initial condition)

6: Sstart ← sinit k-times (character states at begin of window)
7: Ψselected ← empty (samples kept alive per window)
8: idwindow← 0 (current window index)

9: while motion not finished do
10: Ψgenerated ← GenerateSamples(Sstart ,ns,NCMA)
11: Ψselected [idwindow]← SelectSamples(Ψgenerated ,k)
12: Sstart ← SimulateHalfWindow(Sstart ,Ψselected [idwindow])
13: idwindow = idwindow +1
14: end while
15: κ← BacktrackFinalTrajectory(Ψselected)
16: end procedure
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5.1. Control Windows

While optimizing for the offset poses for the entire motion is not
possible due to the curse of dimensionality, sequentially optimiz-
ing for small control windows of 0.1s is too short sighted and lacks
context. We conject that such an approach is successful only when
applied with close-to-feasible motions such as human captured mo-
tion, as in [LYvdP∗10]. To provide enough far-sightedness and en-
rich the control windows with context of close-by states, we split
the controls into larger windows of 0.5s length that overlap each
other half-way (every 0.25s). This way the optimization has a 0.25s
takeoff to be compatible with the previous window, and 0.25s ex-
ploration that the next window will start from. The optimization
is then performed over the whole motion following an advancing
schedule, as shown in Figure 5.

Figure 5: To provide enough far-sightedness while still keeping the
dimensionality feasible, the optimization considers a shorter con-
trol window containing only a few offset poses. Using overlapping
control windows allows to take goals of the next window into ac-
count which ensures good initial conditions for the next window.

5.2. Sampling Scheme

For each control window, we generate n random samples from a
multivariate Gaussian distribution, where each sample is a set of
offset poses within the control window. The samples are then evalu-
ated by running the simulation through the entire window and com-
puting a cost function (1) comparing the resulting simulated motion
to the target motion. Using these cost estimates, the sampling dis-
tribution is adapted towards the better samples, and the process is
repeated for several iterations before advancing to the next control
window.

Optimizing the window locally to a single optimum and moving
to the next window in a greedy fashion, can however lead to the
character diverging and falling in the long run, since the optimiza-
tion is agnostic to the global optimum. We address this problem
by keeping multiple samples k << n for each control window alive
throughout the global process, and advancing all of them to the next
window, to recover the final globally optimal solution, once the last
window is reached. In total, we generate n samples for each win-
dow, and then select k << n of those to advance to the next window,
leading to k initial conditions.

When optimizing the next window, for each initial condition
we generate ns =

n
k samples to keep the total number of samples

bounded, as illustrated in Figure 6. To support a wide search band
in a sample-efficient manner, we employ a distribution adaptation
scheme. Specifically, we use Covariance Matrix Adaptation Evo-
lution Strategy (CMA-ES) [Han06] to adapt the distribution of each

“alive” sample, during the subsequent window optimization. As
can be seen in Figure 7, the globally best solution is often not lo-
cally optimal, which shows that keeping samples of earlier itera-
tions of CMA-ES is beneficial.

Figure 6: Example of the sampling process for n = 10 and k = 2.
Samples from different initial conditions are represented in different
colors. The final best trajectory is shown in red.

We used the following parameters during the CMA-ES window
optimizations: we set the initial mean and standard deviation to
µ = 0 and σ = 0.01. Then we run CMA-ES for 200 steps each with
a population of size 30. For all experiments we generated n = 400
samples per window from which we kept k = 20 to proceed to the
next window. This means for each of the k initial conditions in the
next window we generate ns = 20 samples, which means that dur-
ing the 200 steps of CMA-ES, every 10 steps the current best solu-
tion is stored as a sample.

5.3. Evaluating Samples: Cost Functions

To adapt the sampling distribution, we evaluate the samples using
cost functions comparing the resulting motion to the target motion.
The samples are a sequence of pose offsets (control poses) that we
use to move the character forward in the simulation window. While
the simulation of the character runs at a higher frequency (0.0005s),
we compute the cost function at a low frequency (0.05s).

Because the target motion is not necessarily feasible, we need
cost functions that are not strictly measuring the similarity between
poses. Instead we compute a loose measure of similarity that em-
phasizes feature points such as the end-effectors and global root
position, while weighting the pose similarity less. Hence the final
cost energy to minimize is:

Ewindow = Eroot +Epose +Eee. (1)

Root Eroot measures the global position and orientation:

Eroot = Eh +Ep +Eq,

Eh = wh · |htarget −hsim|2,

Ep = wp · ‖ptarget −psim‖2
2,

Eq = wq · ‖axisAngle(q−1
target ·qsim)‖2

2,

where h is the height, p the position and q the orientation of the root
in world coordinates. We used wh = 25, wp = 15, and wq = 15.
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Pose Epose measures internal joint angles to asses the overall pose:

Epose = wpose ·
1

N j

N j

∑
i=1
‖axisAngle(q−1

i,target ·qi,sim)‖2
2,

where N j is the number of joints and qi the relative orientation of
the i-th joint. We used wpose = 10.

End-Effector Eee measures the motion of important body parts
such as hands/feet/head/tail:

Eee = wee ·
1

Nee

Nee

∑
i=1
‖pi,target −pi,sim‖2

2,

where Nee is the number of end-effectors and pi is the world posi-
tion of the i-th end-effector. We used wee = 50.

5.4. Selecting Samples

Part of our global optimization strategy is to keep a subset of the
window samples and investigate the outcome at the end of the
full motion. To select this subset of samples, we follow the same
scheme as in [LYvdP∗10], which we detail here for closure. We
want to keep samples that span a diverse range of costs, while still
favouring low values. To avoid picking very bad samples, which
are not promising, we sort the samples by cost and discard the
worst 40%. Next we map uniformly sampled values in [0,1] into
the range from the lowest cost cmin to the highest cost cmax of the
remaining samples. Specifically, we compute the values yi in the
range [cmin,cmax] as:

yi = cmin +(cmax− cmin) ·
(

i
k−1

)6

, with i = 0 .. (k−1),

where k is the number of samples to keep. For each yi we then
select the sample with the closest cost without replacement. An ex-
ample of this selection process and the samples of the final control
sequence is shown in Figure 7.

Figure 7: The cost distribution of the generated samples (blue), the
samples kept alive (green), and the final minimal cost solution (red
solid line). The final solution is locally usally not the best solution,
which shows the importance of keeping multiple samples alive.

6. Results

To demonstrate the capabilities of our wide band trajectory opti-
mization, we applied it to various motions: a walk cycle repeated
multiple times, a boxing motion sequence that includes punching,
blocking, as well as a hovering jumping motion. We compare with
the greedy version (sequentially optimizing windows without keep-
ing multiple samples alive) for the jumping motion, which results in
a failure (see accompanying video). While we optimize for open-
loop controls, the now feasible motions and controls can be used
to facilitate training a closed-loop feedback policy. To demonstrate
this, we trained a factored linear function that adds robust control
to walking cycles, allowing the character to repeat multiple cycles.

For all our results we used the Open Dynamics Engine (ODE)
v0.15 [Smi17], with a simulation time step of 0.0005s, a friction
coefficient of 0.8, and a restitution coefficient of 0.2. We used the
ARBS shown in Figure 2 for each result. It was created with our
modeler (see supplementary video), and holds 21 joints with a total
mass of 50kg. The PD stiffness and damping coefficients are set to
kp = 500 and kd = 50, and the torque limit is set to τlimit = 400.

Multiple Walk Cycles The walk cycle designed by an artist as-
sumes the character is already moving at the first frame. In other
words, it has significant momentum, and thus starting from the first
frame without any initial velocities is not mechanically feasible.
Therefore the trajectory optimization has to find controls that first
build up some momentum, which requires a large deviation from
the original motion. One can see in Figure 8 how the first cycle of
the walk deviates more from the target motion, and how the charac-
ter then catches up to the desired overall position and motion during
the next walk cycles.

Boxing and Jumping Sequence The second motion is less struc-
tured and more diverse. It contains fast blocking and boxing move-
ments, as well as a mechanically challenging forward jump that
hovers above the ground. The blocking and boxing motions can
be tracked quite accurately, without the character throwing himself
out of balance, but the jumping motion is hard to recreate, as can
be seen in Figure 9. Despite deviating from the original motion,
our wide band trajectory optimization is robust enough to perform
a similar jumping motion, while maintaining balance.

Wide Band STO Performance While we consider multiple op-
timizations per window, the different instances can be run in par-
allel. Each instance can be further parallelized by evaluating the
samples in each step in independent simulations. We then run the
parallelized optimizer on a cluster with 120 cores. We empirically
found that generating n = 400 samples and keeping k = 20 sam-
ples alive worked well for our experiments. Given this configura-
tion, optimizing the controls for 1 second of motion for our cartoon
dinosaur requires about 25 minutes of computation. The motion
with multiple walk cycles (6s) took about 2.5h, and the boxing and
jumping sequence (9s) took about 4h. The bottleneck remains the
simulation. It could be interesting to investigate using a fast pseudo-
physics engine in early stages to explore more solutions efficiently,
and then switch to a full simulator with more accurate contacts.
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Figure 8: The designed walk cycle assumes some initial velocity and thus starting from idle is not meachanically feasible. The optimized
controls first have to build up some momentum, which leads to a large deviation from the original motion for the first cycle (top), while
subsequent walk cycles can then be tracked more accurately (bottom).

Figure 9: The designed motion contains some fast blocking and boxing movements and a mechanically challenging forward jumping motion.
While the blocking and boxing movements can be tracked quite accurately, the jumping motion requires a very large deviation from the
original motion in order to perform a similar jump.
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6.1. Closed-loop Feedback Policy Example of Walking

Compared to open-loop controls, a state-dependent feedback pol-
icy allows to repeat a motion multiple times and react to slight ex-
ternal disturbances or perturbations. However, optimizing a state-
dependant control policy directly from an infeasible motion exam-
ple is very challenging, as the action space needs to cover many
more possibilities. Given open-loop controls optimized with our
wide band stochastic trajectory optimization, we can add a simple
reduced (factored) linear feedback function to perform tasks such
as walking, as shown in our supplementary video. We defer the de-
tails of the feedback policy to the appendix in the supplementary
material.

7. Limitations and Future Work

While our wide band stochastic trajectory optimizer allows to trans-
fer hand-crafted key-framed animations to simulated figures, the re-
sulting motions are considerably noisy. We have experimented with
smoothness costs, and smoother action space representations (such
as low-dimensional splines), but could not find a balance between
succeeding at reproducing the motions, and obtaining a smooth mo-
tion with these schemes. We believe additional factors such as the
mechanical system of the character (mass distribution, joint types
and collision primitive types), as well as the type of motions that
we considered prevent us from investigating our method with full
clarity and in a reasonable amount of time.

Control techniques are often presented along a mechanical
model that has advantageous properties. Often characters will be
very light, or the mass will be concentrated near the pelvis. In our
experiments we kept the mass of the character proportional to its
body parts, resulting in a dinosaur with a heavy head (and oscilliat-
ing head motion).

Additionally, we did not use joint-specific PD-coefficients, nor
joint-specific angle search spaces (search interval). In consequence,
the large stiffness (and angle) required to move large bodies, lead
to large torques for light bodies.

We observed that cyclic motions are in fact more stable than mo-
mentum gaining or losing systems. A cyclic motion such as a run
turns out to be easier to control than a standing still motion after
stopping a run, or starting a run from an idle position. We observed
that the cyclic motions were less noisy and converged faster.

Finally, another aspect of our approach that could be improved
is the performance. While our sampling scheme is parallelized and
adapts the sample distribution in each window, it does not share
information across each optimization sub-routine. As a result, bad
samples can be re-evaluated through costly simulations multiple
times. One idea could be utilize a simple classifier that keeps track
of bad samples and can discard early newly drawn samples instead
of evaluating the cost function each time.

8. Conclusion

We presented an approach for transferring hand-crafted key-framed
animations to mechanically feasible movements for under-actuated
mobile figures (in a simulated environment). The motion is broken

down into control windows, each optimized separately. However,
instead of proceeding solely in a greedy fashion, sub-optimal con-
trol samples in the short run are kept alive throughout the global
optimization, to finally recover the global optimum via backtrack-
ing. We showed examples of motions where the greedy sampling-
based approach fails, compared to our wide band version. In the
future, we would like to investigate ways to learn a closed-loop
feedback policy using the open-loop control torques computed with
our method.
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