EG UK Computer Graphics & Visual Computing (2015)
Rita Borgo, Cagatay Turkay (Editors)

Natural Phenomena as Metaphors for Visualization of
Trend Data in Interactive Software Maps

H. Wiirfel, M. Trapp, D. Limberger, and J. Dollner

Computer Graphics Systems Group, Hasso Plattner Institute, University of Potsdam, Germany

Negative Trend < Neutral » Positive Trend
Abstract

Software maps are a commonly used tool for code quality monitoring in software-development projects and decision
making processes. While providing an important visualization technique for the hierarchical system structure of a
single software revision, they lack capabilities with respect to the visualization of changes over multiple revisions.
This paper presents a novel technique for visualizing the evolution of the software system structure based on
software metric trends. These trend maps extend software maps by using real-time rendering techniques for natural
phenomena yielding additional visual variables that can be effectively used for the communication of changes.
Therefore, trend data is automatically computed by hierarchically aggregating software metrics. We demonstrate
and discuss the presented technique using two real world data sets of complex software systems.

Categories and Subject Descriptors (according to ACM CCS): D.2.2 [Software Engineering]: Design Tools and
Techniques—Computer-aided software engineering (CASE) D.2.7 [Software Engineering]: Distribution, Mainte-
nance, and Enhancement—Documentation 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism

—Color, shading, shadowing, and texture

1. Introduction

Almost every software system is subject to constant change
due to evolving technology and user requirements. Its contin-
uous development is largely driven by corrective, adaptive,
perfective as well as preventive maintenance [LS80]. The
responsible development teams undergo changes as well and
developers not involved in the previous development process
are required to spent a considerable amount of their time
understanding the system under maintenance. Furthermore,
creating a mental model of a software is difficult, as it is
virtual and intangible [KMOO], thus, making it hard to com-
municate the structure and behavior of the system to decision

(© The Eurographics Association 2015.

DOI: 10.2312/cgvc.20151246

makers. Visualization tools can provide communication arti-
facts such as software maps that assist software engineering
and maintenance, e.g., by allowing for actionable insights.

In recent years software maps were established to com-
municate static, dynamic, and evolutionary information of
software systems as well as their software development pro-
cesses by means of information visualization. The application
of 2D or 3D map-oriented techniques constitute a fundamen-
tal approach in software visualization, software analytics,
and software diagnosis. Its primary applications include risk
analysis for and monitoring of code quality, team activity, or
software development progress [BD11].

delivered by

www.eg.org

-G EUROGRAPHICS
: DIGITAL LIBRARY

diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/cgvc.20151246

70 H. Wiirfel, M. Trapp, D. Limberger, and J. Dollner / Natural Phenomena as Metaphors for Trend Data in Software Maps

Evolution of Software Systems The evolution of a software
system can be tracked by, e.g., revision control systems, mak-
ing it possible to analyze changes over revision ranges by
sampling revisions over time. This information can be used
for example to retrace, whether a design decision (e.g., an
architectural refactoring) resulted in an expected change that
manifests itself in an improvement of respective software
metrics. Existing approaches either use transition animations
between multiple revisions to depict the evolution process or
they convey a progress within a single static image: Transi-
tion animations have the advantage of keeping the established
metric mappings but do not scale for large software system
or revision ranges with much change information to be dis-
played at once. Conveying the characteristics of an evolution
process within a static image does not suffer from this prob-
lem but existing approaches sacrifice at least one attribute
mapping to encode an evolution measure.

Metaphors for Trend Visualization To overcome those
shortcomings, a software map which uses natural phenom-
ena as metaphors to visualize software metric trends within a
static representation (trend map) is used. In this paper, a static
representation of the trend map denotes a visualization arti-
fact that exhibits no transition animation with a revision range,
but it can be explored using 3D interaction metaphors [JH12].
It combines the visualization of the static system structure
with evolutionary information by augmenting interactive soft-
ware maps with additional visual variables represented by
natural phenomena (e.g., fire, rain) or material properties
(e.g., rust, shininess, glow). Thereby, the visual variables that
are used to depict the properties of the static system structure
by mapping software metrics to color, area, and height can
be maintained. Furthermore, the automatic computation of
trends in metrics (metrics trends) enables forecasting their fu-
ture course, e.g., increase, decrease, and stagnation. With the
support of specific software metrics trends, decision makers
can initiate preventive maintenance actions.

When faced with unfamiliar concepts, our cognitive sys-
tem searches for the best mapping between the unknown
concept and existing knowledge of other domains [Zha08].
Software maps use a virtual city metaphor yielding a familiar
2.5D reference geometry. In this context, the application of
natural phenomena as metaphors seems promising, since it
can be assumed that they closely match to virtual 3D envi-
ronments: At best, their semantics are intuitively decoded
making an additional legend non-obligatory. Examples of
natural phenomena are objects aging in terms of their asso-
ciated materials or degeneration within their environment
(overgrown by grass, silted, gathering dust), changing in radi-
ant emittance, as well as being exposed to natural forces such
as fire, rain, wind, or sunshine (Figure 1).

Challenges & Contributions A main challenge is the iden-
tification of natural phenomena that are suitable to effectively
communicate trend data. For it, metric values have to be

Positive Trend

Negative Trend

Figure 1: This example depicts the trend of a system’s test-
coverage: Area comprises lines-of-code, height relates to
source code complexity, and color indicates test-coverage
(red for lower and blue for higher coverage). Glowing items
depict a positive trend, while a rough surface symbolizes a
decrease in test-coverage during a specific time interval.

mapped to parameters of respective rendering techniques in a
comprehensive way. Furthermore, to extend their application
to hierarchical structuring elements (e.g., software modules)
instead of individual leaf items only, hierarchical metric value
aggregation is required. All in all, the challenges for an inter-
active visualization of trend data using natural phenomena as
metaphors within software maps comprise (1) a concept for
mapping natural phenomena to software map items, (2) the
aggregation of software metric values within revision ranges,
(3) the metrics based parametrization of rendering techniques,
and (4) rendering within real-time constraints.

With respect to these challenges, this paper contributes:

1. A novel concept for the visualization of trend data within
interactive software maps using natural phenomena.

2. A technique for hierarchical aggregation of software sys-
tem information and metrics automatically extracted from,
e.g., , revision control systems as well as a respective map-
ping to parametrize the real-time rendering techniques
used for synthesis of natural phenomena.

3. A prototypical implementation using the Unreal Engine
4 [EpilS5] capable of handling actual software system data.

The remainder of this paper is structured as follows. Related
work with respect to interactive software visualization is
reviewed in Section 2. Section 3 presents a concept for trend
visualization using item-based and context-based metaphors
and Section 4 describes our hierarchical metric aggregation. A
prototype is briefly described in Section 5 and demonstrated
using actual software system data presented and discussed in
Section 6. Finally, Section 7 concludes this work.

(© The Eurographics Association 2015.

H. Wiirfel, M. Trapp, D. Limberger, and J. Déllner / Natural Phenomena as Metaphors for Trend Data in Software Maps 71

2. Related Work

Related work comprises the fields of 2.5D software maps and
metaphor-based visualization of software system evolution.

Interactive Software Maps Treemaps are commonly used
to visualize hierarchical datasets. The original space-filling
algorithm introduced by [Shn92] slices parent nodes recur-
sively by their child nodes properties, alternating in horizontal
and vertical direction. Due to undesirable aspect ratios pro-
duced by this slice and dice algorithm, Bruel et al. as well
as Bederson and Shneiderman proposed squarified treemaps
[BHVW99] and strip treemaps [BSWO02]. Furthermore, while
preserving the visualization of the hierarchy, Fekete and
Plaisant added visual attributes, such as color and size, to
treemap items [FP02]. The first 2.5D treemap was described
in the Step Tree approach presented by Bladh et al. [BCS04].
The geometric representation of sub-directories is stacked
on top of their parent directories. This extension to the third
dimension enables metaphor-based visualizations as shown
in Information Pyramids [AWP97] and Code City [WLOS],
a city metaphor for 3D treemaps in which the height of
treemap’s cuboids is used to map an additional software
system metric. Similar to actual cities, these code cities
are partitioned into several districts, including downtown
areas and suburbs. Referenced as software maps, the city
metaphor was adopted and extended by several other publi-
cations [LHM*09, BD11]. Bohnet and Déllner describe the
usage of software maps as a decision-making tool. Recently, a
comparative performance evaluation of rendering techniques
for 2.5D treemaps was presented [TSD13]. With it, a de-
ferred shape-generation algorithm outperforming existing
approaches is presented. The basic idea is to generate and
render an attributed point-cloud and to expand the points to
cuboids on the GPU.

Visualization of Software Evolution The visualization of
software evolution implies an additional time dimension.
Most techniques visualize the change process by animat-
ing the transition phase between two software revisions. The
VERSO visualization tool [LSPO8] uses linear interpolation
of color, height, and twist between two revisions. Another ap-
proach uses an Evolution Storyboard consisting of an ordered
sequence of animated panels showing the structural changes
during a time period [DB06]. In contrast to animation, the
Evolution Matrix approach displays the entire evolution of
the software system in a single image [Lan01]. Rectangles are
used to map the number of methods to width and the number
of attributes to height. Each revision is visualized next to its
consecutive revision in a separate column.

Metaphors in Software Visualization Besides the city
metaphor, other metaphors for software system visualization
were proposed. Balzer et al. presented a software landscape
metaphor [BNDLO04] using landscape-like distributions of
three dimensional objects on a 2D reference plane. Depend-
ing relationships between subsystems are visualized using

(© The Eurographics Association 2015.

a hierarchical network. Further, Graham et al. proposed a
solar-system metaphor [GYBO04] for object-oriented software
metrics. Planets represent classes, orbits depict the inheri-
tance level within a package: planets in each orbit represent
an inheritance hierarchy, while the lines-of-code of a class
are mapped to the planet size. A thoroughly written survey
of visualization techniques for static and evolutionary in-
formation of software systems is presented by Caserta and
Zendra [CZ11]. Holten et al. presented a 2D treemap vi-
sualization of software metrics using the surface structure
of treemap elements by applying texture- and bump map-
ping to them [HVvWOS5]. Their approach is based on the
fact that the human visual system can rapidly process vi-
sual cues such as shading and textures [Enn90, HE98, HE99].
Panas et al. use a realistic city metaphor to map code quality
metrics to building textures [CZ11]. Furthermore, they pro-
posed visual effects such as fire and bolts to communicate hot
spot information in code execution and frequent component
modifications [PBG03]. However, neither an implementation
nor an evaluation of such visual mappings are provided. An
empirical study by Borgo et al. suggests that visual embel-
lishments aid memorization performance in both accuracy
and response time, though it might have a negative impact
on speed of visual search [BARM™12]. It further proves that
visual embellishments aid concept grasping.

3. Natural Phenomena as Metaphors for Software Maps

The proposed concept of trend maps is a metaphorical exten-
sion to existing interactive software maps. However, there
are various definitions of metaphors in multiple science dis-
ciplines. Hereinafter, a metaphor consists of a target do-
main, target item, source domain, source item, and matching
part [Zha08]. The source item (e.g., weathering effect) from
a well-known source domain (natural phenomena) is mapped
to target items (cuboids representing software entities) of the
target domain (software maps). The target domain is rela-
tively unknown and the match will never be perfect. However,
the larger the matching part the better the metaphor works.

3.1. Preliminaries and Assumptions

For the usage of natural phenomena we assume an appropriate
match. This assumption is made due to our prior experience in
assessing the semantics of natural phenomena. Furthermore,
it is based on human usage of linguistic metaphors in idioms
concerning natural phenomena such as “to go up in flames”
and “grow grass upon”. With respect to the application and
design of natural phenomena, we further assume that their
image-synthesis can be performed in real-time to facilitate an
interactive system. Therefore, this paper focuses on hardware-
accelerated rasterization for real-time rendering [AMHHO8].

3.2. Conceptual Overview

Our approach is structured as pipeline comprising data min-
ing, metrics aggregation, and trend map rendering (Figure 2).

72 H. Wiirfel, M. Trapp, D. Limberger, and J. Dollner / Natural Phenomena as Metaphors for Trend Data in Software Maps

Attributed Point-Cloud

Layout Geometry Map Rendering
Computation Creation

Data Mining Metric Aggregation

O Metrics Attribute Attribute Trend Data
‘ Computation ‘ Extraction Aggregation || Computation

Repository Database

]—O)—b[Mapping }[Rendering

Trend Data

Trend Map

F

O Natural Phenomena

Figure 2: Schematic overview (data and control flow) of our trend map pipeline comprising three conceptual stages.

Data Mining At first, software metrics are computed on a
per-item basis. Therefore, each revision of a software system
is analyzed independently. The resulting artifact is a database
encoding a revision tree per revision. This step is performed
once for a given repository and allows for successive updates
if new revisions have to be considered.

Metric Aggregation In this stage, a revision range R =
[n, m] with n,m € N,n < m is specified by the user and used
to compute the trend data later. The user also selects the met-
rics of which he wants to observe trends. The trend data of
every treemap item is defined as a time series of metric data
points over the revision range: For example, items that already
existed at the start revision n and outlast the end revision m,
consist of a time series with m —n+ 1 data points. Trend data
is then aggregated with respect to particular parent items of
the hierarchy. Subsequently, a treemap layout is computed
and encoded as attributed point-cloud for efficient rendering
in the next stage. Simultaneously, the trend data is computed
by analyzing the time series for all treemap items.

Map Rendering The rectangular treemap geometry is cre-
ated based on the attributed point cloud. Trends are mapped
to the parametrization of natural phenomena (Section 4). De-
pending on the degree of change, five discrete levels are de-
picted in one trend map to facilitate visual distinction: strong
increase, moderate increase, stagnation, moderate decrease,
and strong decrease. Up to two distinct effects can be speci-
fied by the user, one for negative and one for a positive trend.
The effects are parametrized according to the computed trend
and combined with the static system structure encoded in
the attributed point-cloud. The latter is used for final image
synthesis (Section 5).

4. Design and Parametrization of Natural Phenomena

Before focusing on suitable metaphors and their automatic
parametrization, this section describes the design space of
natural phenomena and how these can be mapped to software
maps for effective visual communication. Considering 2.5D
treemaps as reference geometry [DRST14], a differentiation
between item-based and context-based metaphors, can be
made with respect to the design elements:

Item-based metaphors Modifying the visualization of a sin-
gle treemap item by changing its surface appearance using
additional or altered materials,

Context-based metaphors Modifying a group of treemap
items or modifying their surrounding context (3D space)
of the visualization elements affected.

4.1. Item-based Metaphors

The surface properties of a treemap cuboid define a material
that determines how light interacts with them and hence how
it is perceived. To find suitable metaphors to communicate the
change of an object state over time we pair contrary phenom-
ena (Figure 3). We identified the roughness of a surface to
be a suitable metaphor to visualize “how neat” a component
implementation is: A negative trend is depicted by a high
surface roughness, optionally amplified by texture based (dis-
placment mapping) as well as geometry based (tessellation)
displacement (rough). In contrast thereto, a positive trend
is depicted using a low surface roughness in combination
with a high specular reflection property, resulting in a shiny
and clean cuboid (shiny). Concerning the evolution of test
coverage of individual items, corrosion is a suitable metaphor.
Thereby, high degree of corrosion relates to decreasing test
coverage (rusty). Due to the fact that no corrosion would
result in the neutral state (which results from the applied
color mapping), a high radiant emittance (glow) is used to
effectively communicate a positive trend in test coverage
(glowing).

A

Neutral
o voTSwaa
. J

Neutral Glowing

Figure 3: Two examples for item-based metaphors covering
the transition between negative and positive object states.

(© The Eurographics Association 2015.

H. Wiirfel, M. Trapp, D. Limberger, and J. Déllner / Natural Phenomena as Metaphors for Trend Data in Software Maps 73

Context-based metaphor using fire effect

Context-based metaphor using rain effect

Figure 4: Context-based metaphors, automatically assigned to development hot spots (e.g., strong decrease or stagnation,).

4.2. Context-based Metaphors

Context-based metaphors are either natural phenomena or
effects that affect the area surrounding treemap items or a
group of adjacent items. In order to parametrize such effects
properly, context-based metaphors require information about
the hierarchical aggregation of software metrics to determine
trends for parent items. Particle systems are mainly used to
visually communicate hot spots (or regions-of-interest) in
source code, e.g., so-called “code smells”. Therefore, we use
a fire effect or rain (Figure 4) to indicate negative trends.

4.3. Trend-based Parametrization

To fully automate the trend-based parametrization, each effect
contains a self description comprising all of its parameters. A
single parameter description consists of the parameter type
(i.e., vector, scalar, and color), the value range [imin, imax] Of
the parameter v, a default value and a boolean value that deter-
mines whether to inverse the mapping or not (e.g., a positive
trend is mapped to a roughness of zero). The parametrization
is performed by mapping the trend v from an input trend
value range [imin, imax] to an output parameter value range

[jmin, jmaX] by Vmapped = (V - imin) % + Jmin- EVCFY ef-
fect defines parameter sub-ranges that discretize the mapped
parameter value vipapped to the five categories: strong increase,

increase, stagnation, decrease, or strong decrease.

4.4. Hierarchical Aggregation of Software Metrics

Similar to software maps, the hierarchical structure of trend
map mirrors the directory tree of the current revision chosen
from a code repository. To determine software metric trends
for individual (i.e., files) as well as groups of items (e.g., pack-
ages), trend data is aggregated bottom-up within the hierarchy
in a specified revision range. Post-order and reversed level-
order traversals are suitable for this task. Therefore, a node in
a revision range tree holds a bucket k for each revision within
the revision range. The respective metric value x; contained
in the bucket is computed using weighted average. Empty
buckets represent items that are not present in a specific re-
vision. The weights wy, are determined by counting the leaf

(© The Eurographics Association 2015.

nodes in the sub-tree where the node for which we want to
aggregate the metric values is the root node.

5. Implementation Overview

In contrast to previous work in the field of software visu-
alization, our approach is based on utilizing the rendering
capabilities of modern GPUs for image synthesis of 2.5D
treemaps that are augmented with complex surface materials
and particle systems in real-time (Figure 5).

5.1. Rendering Engine Integration

We have chosen to evaluate the Unreal Engine 4 (UE4) for
our prototypical implementation since it offers us to rapidly
prototype materials and particle systems for our purposes. At
the date of writing, Unreal Engine 4.8 is the latest iteration of
the game engine created by Epic Games Inc. It offers libraries
and tools as well as the engines source code to develop graph-
ics applications. Game development in C++ with UE4 works
by implementing a shared library (game module) which is
loaded by the engine at runtime. To change or extend the
engine functionality there are two options: source code modi-
fications and plugins We have integrated our own software
visualization library using plugins and instead of our own
renderer, we use the unreal renderer. The game module uses
the plugin to visualize the trend map and implements a basic
navigation and graphical user interface to interact with it.

5.2. Surface Materials for Item-based Metaphors

Shaders for rendering surfaces are denoted as surface ma-
terials in UE4. Usually, they are developed using a visual
interface in a material editor based on creating a directed
acyclic graph (DAG) of operations. Internally, these DAGs
are compiled to shader code. UE4 implements a physically-
based shading model with a small set of intuitive parameters
(base color, metallic, specular, roughness, emissive color).

Rust is modeled using multi-texturing: The com-
bination of color and texture (rust distribution) is
controlled using Perlin noise with two octaves.

74 H. Wiirfel, M. Trapp, D. Limberger, and J. Dollner / Natural Phenomena as Metaphors for Trend Data in Software Maps

Radiant emittance is modeled by setting the base color as
well as the emissive color multiplied by an emissive strength
to the vertex color of the respective cuboid.

Roughness is implemented using a combination
of geometry tessellation, normal mapping, and
vertex displacement along a normal vector that
represents the original surface orientation modi-
fied using a 3D noise function.

Shininess is created using the metallic parameter,
with a high specular value and roughness close
or equal to zero.

5.3. Particle Systems for Context-based Metaphors

Similar to surface materials, particle systems can be config-
ured visually in an interactive editor. Multiple emitters can be
specified and each emitter comprises various parameters such
as spawning rate, collision behavior with scene geometry,
and particle color and size. Ideally, a particle system is in-
stantiated inside the bounding box of its affected item group.
Since the engine (as of this writing) does not offer the option
to specify a dynamic volume for the particle systems, we
work around this by spawning several particle systems inside
the bounding box. To ensure a minimum distance between
multiple systems, Poisson disk sampling is used [Bri07].

5.4. Automatic Effect Parametrization

For item-based effects, the parametrization is based on the
material system. The material parameters are mirrored in a
material representation in main memory. We change material
properties at runtime by querying the materials defined as
negative or positive trend as well as their corresponding pa-
rameter descriptions, and finally applying a trend-dependent
parametrization. The trend is computed over a revision range
by analyzing the time series using linear regression. By as-
suming that the underlying trend function is linear, the slope
of the trend line can be used to discretize the trend easily into
the previously used five categories.

Figure 5: Unreal editor showing a trend map during setup.

However, a linear regression model for time series is rarely
the best choice, since (1) its deviation from the data is often
larger at the end of the time series or (2) the underlying data
is simply not linear. Our system is designed to be extensible
to different trend computation models, since other prediction
models might be better suited. For an overview of statistical
forecasting methods and respective applications scenarios we
refer to Robert F. Nau [Naul5].

A material is also an implementation of an element-based
effect. Context-based metaphors using surface properties are
implemented top-down by propagating aggregated metric
values down the hierarchy. Particle systems are handled in a
similar manner.

6. Results and Discussion

The results of our technique are discussed by means of appli-
cation examples using real-world data sets and directions for
future research are provided. With respect to to performance,
the technique was tested using datasets of two software sys-
tems with different complexity, i.e., different static structure
components and number of revisions (Figure 6):

Data Set #Rev.

libzeug 248
PocoProject 2038

Rev. Range max. # Items

[130,155] 243
[1000,1200] 2635

For each revision, the repository was downloaded, making it
yet impractical for repositories containing binary files. Gath-
ering the revision data, computing and aggregating metric
values for 72 software metrics for every revision of the master
branch resulted in expensive preprocessing. However, both
projects can be rendered at interactive frame rates:

Data Set Metric Comp. Aggr. Rendering
libzeug appr. 04h O4sec 16ms
PocoProject appr. 48h 17min 43ms

Our trend maps facilitate the depiction of metric changes
over a revision range by extending software maps of a cer-
tain revision x € R. Hence, a conceptual limitation of our
approach, is that a trend map only shows trends for items
which are still present at the respective revision x. A proper
visualization of deleted or added system components within
a software map is still subject to research.

Besides the static image approach for our trend maps, we
have also tested several animated transitions for trend data
of a revision range. We tested linear interpolation and cubic
interpolations using uniform, chordal, and centripetal catmull-
rom splines [YSKO09]. By additionally rendering these trend
curves the user gets a familiar view to explore the trend data
of a particular item or a group of items. However, we found
that using these trend curves to parametrize the natural phe-
nomena during a transition animation overstrains the user’s
perception for complex real-world data sets, since there are
too many change processes visualized simultaneously.

(© The Eurographics Association 2015.

H. Wiirfel, M. Trapp, D. Limberger, and J. Déllner / Natural Phenomena as Metaphors for Trend Data in Software Maps 75

_libzeug with R=[130,155]

poco project with R:[lOOO,lQOO]W

Figure 6: Applications of the presented visualization technique using two real data sets using item-based natural phenomena as
metaphors. The underlying software maps encode lines-of-code to item area, the mean nesting-level to height, and the number of
file changes within the revision range to color. Left: the trends of the McCabe metric is mapped into the range between a rough
surface and glow. Right: the inverted trend of the lines-of-code metric is mapped using the same metaphor.

The presented approach can be used to facilitate overview
of hot spots in software maps according to the information
“seeking mantra: overview first, zoom and filter, then details-
on-demand” [Shn96]. Especially effects such as glow seem
to support pre-attentive processing and can be used for high-
lighting purposes, but in contrast to rust or shiny effects, it
alters the item’s color mapping significantly and complicates
the perception of shape. However, the perception of surface
effects such as rust or corrosion depends on items’ screen
sizes. Also, when depicting larger revision ranges the number
of affected items and regions tend to cause cluttering and
context-based metaphors (e.g., fire) comprising large regions-
of-interest sometimes cause occlusion.

Future Work We plan to focus our research on evaluation
and adjustment of the visual metaphors by conducting a com-
prehensive user study. With respect to this, further effects that
allow to emotionalize data might be identified (e.g., thunder-
storms). Furthermore, care has to be taken on how many nat-
ural phenomena implemented can be applied simultaneously
and still be perceived and distinguished by users (Figure 7).
Another topic for future work can be to evaluate different
forecasting methods for software metrics and directly map
them to metaphors commonly used in daily weather forecast-
ing visualizations. To allow for natural phenomena to be used
on larger data sets, level-of-detail (LoD) compliance of the
presented techniques has to be evaluated, e.g., for surface
appearances, since fine surface details are hard to perceive if
the virtual camera is far away from a region-of-interest.

7. Conclusions

This paper presented trend maps, a novel technique using
natural phenomena as metaphors for visualizing the evolution
of software system structures based on software metric trends.

(© The Eurographics Association 2015.

It has been demonstrated that by analyzing the time series
of software metrics values and visualizing their trends using
our technique, it is possible to communicate the (1) number,
(2) magnitude, and (3) gradient of software metric changes.
Based on our experiences with the prototypical implementa-
tion, natural phenomena can also be used to emotionalize the
visual communication by providing memorable visualizations
of the software system.

This research was concerned with the application of nat-
ural phenomena within interactive software maps; however,
the results can be applicable also to other fields in informa-
tion visualization, though, caution for applying metaphors in
visualization remains advisable.

Acknowledgments

The authors would like to thank the anonymous reviewers
as well as Martin Rohlig for their valuable comments. This
work was funded by the Federal Ministry of Education and
Research (BMBF), Germany, within the InnoProfile Transfer
research group “4DnD-Vis” (www. 4dndvis.de).

Figure 7: Superposition of multiple natural phenomena.

www.4dndvis.de

76 H. Wiirfel, M. Trapp, D. Limberger, and J. Dollner / Natural Phenomena as Metaphors for Trend Data in Software Maps

References

[AMHHO8] AKENINE-MOLLER T., HAINES E., HOFFMAN N.:
Real-Time Rendering 3rd Edition. A. K. Peters, Ltd., 2008. 3

[AWP97] ANDREWS K., WOLTE J., PICHLER M.: Information
pyramids™: A new approach to visualising large hierarchies. In
Proc. of IEEE VIS (1997), ACM Press, pp. 49-52. 3

[BARM*12] BORGO R., ABDUL-RAHMAN A., MOHAMED F.,
GRANT P. W., REPPA 1., FLORIDI L., CHEN M.: An empirical
study on using visual embellishments in visualization. [EEE
TVCG 18,12 (2012), 2759-2768. 3

[BCS04] BLADH T., CARR D. A., SCHOLL J.: Extending tree-
maps to three dimensions: A comparative study. In Proc. of
APCHI (2004), Springer Verlag, pp. 50-59. 3

[BD11] BOHNET J., DOLLNER J.: Monitoring code quality and
development activity by software maps. In Proc. of ACM MTD
(2011), pp. 9-16. 1,3

[BHVYW99] BRULS M., HUIZING K., VAN WIIK J.: Squarified
treemaps. In Proc. of EG & IEEE VISSYM (1999), pp. 33-42. 3

[BNDLO4] BALZER M., NOACK A., DEUSSEN O., LEWERENTZ
C.: Software landscapes: Visualizing the structure of large soft-
ware systems. In Proc. of VISSYM (2004), Eurographics Associa-
tion, pp. 261-266. 3

[Bri07] BRIDSON R.: Fast poisson disk sampling in arbitrary
dimensions. In ACM SIGGRAPH Sketches (2007), ACM. 6

[BSW02] BEDERSON B. B., SHNEIDERMAN B., WATTENBERG
M.: Ordered and quantum treemaps: Making effective use of 2d
space to display hierarchies. ACM Trans. Graph. 21, 4 (2002),
833-854. 3

[CZ11] CASERTA P., ZENDRA O.: Visualization of the static
aspects of software: A survey. IEEE TVCG, 7 (2011), 913-933. 3

[DB06] DIRK BEYER A. E. H.: Animated visualization of soft-
ware history using evolution storyboards. In Proc. of IEEE WCRE
(2006), IEEE Computer Society, pp. 199-210. 3

[DRST14] DUBEL S., ROHLIG M., SCHUMANN H., TRAPP M.:
2d and 3d presentation of spatial data: A systematic review. In
1IEEE VIS International Workshop on 3DVis (11 2014). 4

[Enn90] ENNS J. T.: Three-Dimensional Features that Pop Out in
Visual Search. Taylor & Francis, 1990. 3

[Epil5] EPIC GAMES, INC.: Unreal Engine 4. https://www.
unrealengine.com/, 2015. 2

[FPO2] FEKETE J.-D., PLAISANT C.: Interactive information
visualization of a million items. In Proc. of IEEE InfoVis (2002),
IEEE, pp. 117-. 3

[GYB04] GRAHAM H., YANG H. Y., BERRIGAN R.: A solar
system metaphor for 3d visualisation of object oriented software
metrics. In Proc. of APVis (2004), Australian Computer Society,
Inc., pp. 53-59. 3

[HE98] HEALEY C. G., ENNS J. T.: Building perceptual textures
to visualize multidimensional datasets. In Proc. of VIS (1998),
IEEE Computer Society Press, pp. 111-118. 3

[HE99] HEALEY C. G., ENNS J. T.: Large datasets at a glance:
Combining textures and colors in scientific visualization. /[EEE
TVCG 5,2 (1999), 145-167. 3

[HVvWO05] HOLTEN D., VLIEGEN R., VAN WUJK J. J.: Visual
realism for the visualization of software metrics. In Proc. of
VISSOFT (2005), IEEE Computer Society, pp. 1-6. 3

[JH12] JANKOWSKI J., HACHET M.: A Survey of Interaction
Techniques for Interactive 3D Environments. In EG STAR (2012),
Sbert M., Szirmay-Kalos L., (Eds.). 2

[KMO0O] KNIGHT C., MUNRO M.: Virtual but visible software. In
Proc. of IEEE IV (2000), pp. 198-205. 1

[LanO1] LANZA M.: The evolution matrix: Recovering software
evolution using software visualization techniques. In Proc. of
IWPSE (2001), ACM, pp. 37-42. 3

[LHM*09] LIGGESMEYER P., HEIDRICH J., MUNCH J., KALCK-
LOSCH R., BARTHEL H., ZECKZER D.: Visualization of software
and systems as support mechanism for integrated software project
control. In Proc. of HCI (2009), pp. 846-855. 3

[LS80] LIENTZ B. P., SWANSON E. B.: Software Maintenance
Management. Addison-Wesley Longman Publishing Co., Inc.,
1980. 1

[LSPO8] LANGELIER G., SAHRAOUI H., POULIN P.: Exploring
the evolution of software quality with animated visualization. In
Proc. of IEEE VLHCC (2008), pp. 13-20. 3

[Naul5] NAUR. F.: Steps in choosing a forecasting model. http:
//people.duke.edu/~rnau/411fcst.htm, 2015. 6

[PBGO3] PANAS T., BERRIGAN R., GRUNDY J.: A 3d metaphor
for software production visualization. In Proc. of IV (2003),
pp. 314-319. 3

[Shn92] SHNEIDERMAN B.: Tree visualization with tree-maps:
2-d space-filling approach. ACM Trans. Graph. 11, 1 (1992),
92-99. 3

[Shn96] SHNEIDERMAN B.: The eyes have it: A task by data type
taxonomy for information visualizations. In Proc. of IEEE VL
(1996), pp. 336—. 7

[TSD13] TRAPP M., SCHMECHEL S., DOLLNER J.: Interactive
rendering of complex 3d-treemaps with a comparative perfor-
mance evaluations. In Proc. of GRAPP/IVAPP (2013), pp. 165—
175.3

[WLO08] WETTEL R., LANZA M.: Codecity: 3d visualization of
large-scale software. In Proc. of ICSE (2008), ACM, pp. 921-922.
3

[YSKO09] YUKSEL C., SCHAEFER S., KEYSER J.: On the pa-
rameterization of catmull-rom curves. In Joint Conference on
Geometric and Physical Modeling (2009), ACM, pp. 47-53. 6

[ZhaO8] ZHANG J.: The implication of metaphors in information
visualization. In Visualization for Information Retrieval, Zhang J.,
(Ed.), vol. 23. Springer, 2008, pp. 215-237. 2,3

(© The Eurographics Association 2015.

https://www.unrealengine.com/
https://www.unrealengine.com/
http://people.duke.edu/~rnau/411fcst.htm
http://people.duke.edu/~rnau/411fcst.htm

