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Figure 1: The evolution stalactites formed from three random ceilings during 1500 years. Stalactites grow from the existing protuberances
without user intervention. The proposed model allows the animation of the evolution of stalactite growth. Distances are in cm.

Abstract
Producing large-scale scenarios in video games, animation, and the VFX industry is inherently complex and time-consuming.
As a consequence, procedural modelling of landscapes, either natural or generated by human activity, is a recurring topic in
computer graphics. In this paper we propose a model for the growth of stalactites that is based on physical-chemical models.
The model, which is presented here for 2D landscapes, is able to generate animations of the evolution of these speleothems
along time. The resulting formations are consistent with the theoretical models and with observed speleothems, and provide
realistic stalactite appearance in a cave ceiling.

CCS Concepts
• Computing methodologies → Computer graphics; Shape modeling; Mesh models; Mesh geometry models;

1. Introduction

Procedural modelling of complex scenarios is an active research
topic in computer graphics [STBB14]. Algorithmic generation
of natural [GGP∗19, GCRR20] or urban landscapes [RPPGP17,
MMP20] provides faster production times, specially for large scale
scenes, and, in many cases, more realistic results that are difficult
to achieve through manual modelling. In this work we address the
problem of procedural modelling of stalactites in caves, through the
simulation of their growth along time (Figure 1). Our contribution
is a procedure to simulate the growth of stalactites, that enables the
animation of the formation process and that uses physics based cri-
teria to their formation in a particular cave ceiling. This dynamic
approach offers advantages over static representations by illustrat-
ing the evolving process, enhancing understanding of stalactite for-
mation and cave environments. The model enables spontaneous sta-
lactite growth in an irregular cave ceiling and is able to simulate the
evolution of complex scenes without manual intervention.

2. Related Work

The two key processes responsible for the formation of many
cave types are the solution of the calcium carbonate present in
rocks, usually limestone, that leaves voids, and the deposition
of the carbonate on the walls of these cavities, generating com-
plex formations called speleothems, such as stalactites and stalag-
mites [SH03, MJ10]. Generation of cave scenarios can be done by
modelling and reproducing these natural processes. To obtain cavi-
ties that resemble real caves, a common strategy is to simulate water
flow to create channels across rock substrate. This approach ranges
from the use of L-systems [MBMT15] or the computation of paths
across an existing cavity [BC09], to more complex and realistic
models to generate large cave networks that take into account dif-
ferent rock layers [PM15].

Several authors have also focused on stalactite formation. Stalac-
tite growth is due to carbonate precipitation as water flows on the
surface of rock. Short et al. [SBB∗05] develop a governing equa-
tion for the growth of stalactite surface, and prove that stalactites
tend to an asymptotic shape using a polynomial law for the radius
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along the formation. This asymptotic shape has been used to gener-
ate stalactites in voxel based procedural caves [CCZ11], and also in
caves represented with triangle meshes that describe the wall sur-
face [TW09, FM22]. These works present a good degree of control
on the manipulation of stalactite morphology, but have the limita-
tion that the stalactite geometry is generated in its final shape, over-
looking the formation process. Moreover, in these models, the loca-
tion of the stalactites is random or user defined, and does not con-
sider the natural process that decides where a stalactite is formed
on the cave ceiling. Our work differs with their approach in that we
use Short’s growth model to compute time evolution, instead of the
resulting asymptotic shape.

3. Stalactite growth model

In this work we present the model for two-dimensional scenes. We
will assume that the ceiling of the cave, from which stalactites will
grow, is discretised by a series of points and edges that link them.
That is, our ceiling is defined as C = {pi ∈ R2}i=0,...,n, with pi−1
connected to pi, as depicted in Figure 2. Since we aim to build a
model that simulates the evolution of the speleothem along time,
we need a governing equation for the position of each point, pi.

According to Short et al. [SBB∗05], stalactites grow due to pre-
cipitation of carbonate as saturated water flows through the surface
of stone. By solving a free surface flow problem, they deduce that
the normal velocity of point p on a stalactite can be obtained as

v = ṗ ·n = α · lQ ·
(

lQ
r sinθ

)1/3

, (1)

where r is the radius of the stalactite cross-section at p, θ is the
angle between the wall surface and the horizontal, lQ is a charac-
teristic length and α is a constant that depends on the chemical
environment inside the cave. Typical values that lead to stalactite
growth are lQ ∼ 0.1mm and α ∼ 1(yr)−1, resulting in a stalactite
length velocity vc = α · lQ ∼ 0.1mm/yr. Our proposal is to use this
differential equation to determine the evolution of the stalactite wall
points along time. In order to use Eq. (1), we will proceed in sev-
eral steps. First, for each pi ∈C we will determine whether it is part
of a stalactite or not. Then, we will estimate the radius ri and the
angle θi of the stalactite at pi. Next, we will compute vi applying
Eq. (1) and integrate the location of pi. Since the equation is not
determined when θ = 0, we will treat separately the evolution of
points that are close to the stalactite tip.

3.1. Characterisation of stalactite points

Our first step is to identify which ceiling points can be considered
as belonging to a stalactite. These will be the points that will dis-
place using Eq. (1). We will consider as a stalactite any sequence
pk,pk+1, . . . ,pk+n of ceiling points for which the curvature of ceil-
ing height is p′′

j > εs, with εs ≥ 0 a small threshold (in Figure 2 a
sequence of points that form a stalactite have been highlighted). To
prevent small ceiling oscillations to be considered as stalactites, the
length of the sequence n can be forced to have a minimum value.
The curvature is computed assuming that our ceiling representation
is a discretisation of a differentiable ceiling profile.

3.2. Estimation of local stalactite growth

Once we have identified the regions that correspond to stalactites,
we need to compute r and θ for each point. Given a point pi, the
angle θi and the normal direction ni are computed using central
differences, as shown in Figure 2, inset. Then, for each sequence
of points that represent a stalactite, we take the point with mini-
mum height pt = (xt ,ht) which, by construction, will be unique.
We consider the radius of the stalactite at pi, r, as the horizontal
distance from point pi to pt . After all these values have been com-
puted, Eq. (1) can be computed for every point where θ ̸= 0, and its
position can be integrated using an explicit Euler scheme.

3.3. Stalactite tip growth

At points close to the stalactite tip, both the angle θ and r will
nearly vanish and, thus, the growth velocity defined by Eq. (1)
has a singularity. For this reason, we will compute the tip shape
by interpolating the ceiling function at these points. Let’s consider
points pk,pk+1, . . . ,pk+n that form a stalactite, with coordinates
pi = (xi,hi). Let’s take T = {pt ,pt+1, . . . ,pt+m} as the points that
have a value of r · sinθ ≤ εt , being εt > 0 a threshold to identify tip
points, with t > k and t +m < k+n. We will proceed as follows. In
the first place, we compute the evolution of the points that do not
belong to T using the differential equation. Then we interpolate the
value of h for the points in T , using Hermite interpolation on the
height and derivative of the two immediate neighbours of the tip,
pt−1 and pt+m+1. Figure 3 shows an scheme of this process.

3.4. Ceiling remeshing

As stalactite grows, the set of points that represent its surface tend
to separate from each other, specially close to the tip. On the con-
trary, the points where the stalactite meets the ceiling will displace
almost horizontally, moving towards the next ceiling point. In order
to maintain a proper resolution and a well defined ceiling function,
we propose adding and removing points in these two situations.

For points moving apart, we define a threshold εd > 0. When-
ever two adjacent points of a stalactite separate a distance larger
than this value, a point is added between them. To preserve con-
vexity, Hermite interpolation is used as in the case of the stalactite
tip. For points next to the ceiling, stalactite growth will push them
towards neighbour ceiling points. In Figure 4, if point pi+1 is added
to the stalactite, it will eventually collapse against the next ceil-
ing point, pi+2. To prevent this, if the horizontal distance between
points pi and pi+1 falls below a threshold, point pi+1 is removed.

4. Results and discussion

We have tested our model in two scenarios: a straight horizontal
ceiling with a protuberance, and a ceiling with a random profile.
The aim of the first test is to determine how a single stalactite
evolves. We have set four different initial conditions, changing the
shape (conic or parabolic) and the width of the starting protuber-
ance. The results are shown in Figure 5. It is very noticeable that
stalactites with a narrower shape grow faster than wider stalactites.
We have observed small velocity increases when the tip is remeshed
in narrower shapes, which could explain this behaviour. All the
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Figure 2: We consider a ceiling represented by a series of points pi. We characterise a stalactite as a connected sequence of convex points
(grey dots). The angle of the ceiling surface, and the normal direction, are computed from this discretisation to approximate a growth model.
Inset figure: the normal vector ni and the angle to the horizontal, θi at each point pi are obtained by subtracting the two adjacent points,
pi−1 and pi+1, which also give a direction orthogonal to the ceiling surface at pi.
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Figure 3: The stalactite growth described by Equation 1 is unde-
fined at the stalactite tip. The tip is interpolated using a cubic Her-
mite spline to preserve stalactite continuity. In the figure, height at
pt and pt+1 is interpolated from the location of points pt−1 and
pt+2 and the tangent at these two points defined by pt−2 and pt+3
respectively.

growth rates are, however, within the velocities observed in natural
caves. In the figure, the final shape of all four stalactites after 1000
years is also compared. We observe that, regardless the initial con-
figuration, the stalactites tend to adopt a similar asymptotic shape,
as expected according to the theoretical model [SBB∗05]. Com-
pared to previous computer graphics research [TW09,CCZ11], this
means that our model is able to achieve equivalent results, with
the advantage that we are able to provide a physics-based anima-
tion of the stalactite growth, although further comparison is still to
be done. The second scenario is run upon a random initial ceil-
ing, in order to evaluate our model in a more general situation,
similar to its potential usage in a production environment. The

p
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p
i p

i
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n i n i

Figure 4: As stalactite grows, point pi+1 will eventually run
through its neighbour pi+1. To prevent instabilities, when pi
reaches horizontally the location of pi+1, this vertex is removed.

goal is to test whether stalactites grow naturally from the exist-
ing local minima and how different stalactites interact during their
growth. Figure 1 presents the results for three simulations of 1500
years long. In these simulations we see how the proposed model
is able to generate stalactites at the locations where they would
naturally appear, and how several stalactites can grow and evolve
together. It is noteworthy how two stalactites can merge or split
during their evolution, as it happens in the second and third sce-
narios. In this sense, our model is more general than previous pro-
posals [TW09, CCZ11], in which predefined stalactite shapes are
just placed at prescribed locations. The model, however, has sev-
eral limitations. The most obvious is that it currently applies only
to 2D scenarios. Also, tip remeshing causes velocity changes as
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Figure 5: The evolution of four stalactites with different initial shape (all distances in cm). From left to right, a narrow, conic stalactite; a
wide, conic, stalactite; a narrow, parabolic stalactite; and a wide, parabolic stalactite. Growth rates are similar to those of real speleothems,
although dependence on curvature is observed in our model.

the speleothem grows, which could explain velocity dependence
on shape. Moreover, we have observed that it is not straightforward
to control the width to height ratio of stalactites, as it is in previ-
ous work [TW09, CCZ11]. This feature would be desirable for the
development of authoring tools. The model is limited to the genera-
tion of stalactites, but it can be easily extended to stalagmite growth
using equivalent governing equations [Kau03].

5. Conclusion

We have presented a physics-based model of stalactite growth that
is consistent with theoretic stalactite models and with previous
computer graphics literature. Our model enables the automatic gen-
eration of these sepeleothems on a predefined cave scenario and
the animation of their evolution. Despite its current limitations, our
proposal is a very promising base for the future development of a
method to generate 3D stalactites and other speleothems.
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