
CEIG – Spanish Computer Graphics Conference (2021)
A. Chica and L. Ortega (Editors)

Comparison of GPU-based methods for handling point cloud
occlusion

Alfonso López1 , Juan M. Jurado 1 , Emilio J. Padrón2 , Carlos J. Ogayar1 and Francisco R. Feito1

1Department of Computer Science, University of Jaén
2Department of Computer Science, University of A Coruña

Figure 1: Performance comparison: OpenGL and CUDA implementations for a dataset of 271 million points and 1352 different viewpoints.

Abstract
Three-dimensional point clouds have conventionally been used along with several sources of information. This fusion can be
performed by projecting the point cloud into the image plane and retrieving additional data for each point. Nevertheless, the
raw projection omits the occlusion caused by foreground surfaces, thus assigning wrong information to 3D points. For large
point clouds, testing the occlusion of each point from every viewpoint is a time-consuming task. Hence, we propose several
algorithms implemented in GPU and based on the use of z-buffers. Given the size of nowadays point clouds, we also adapt our
methodologies to commodity hardware by splitting the point cloud into several chunks. Finally, we compare their performance
through the response time.

CCS Concepts
• Computing methodologies → Massively parallel algorithms; Visibility; Point-based models;

1. Introduction

Remote sensing of world environments typically outputs three-
dimensional (3D) point clouds that integrate points with no con-
nectivity. There is a significant variety of tools for surveying a
scene as a point cloud, from laser scanners measuring the distance
from the sensor to the surface to image-based sensors that rely on
post-processing techniques. Photogrammetry methods estimate 3D
models from a sequence of overlapping images through the detec-
tion of features visible on multiple images, thus allowing to recon-
struct 3D positions and camera’s motion. Structure from Motion
(SfM) or SfM-MVS (Multi-View Stereo) algorithms are typically
used as part of software solutions for generating 3D point clouds.

Projection from 2D to 3D world allows estimating a 3D struc-

ture. In addition, points can be associated with further data, mainly
from other sensors active while inspecting the environment. Naive
reconstruction methods assign colour information from the se-
quence of images used for generating the 3D point cloud, e.g. RGB
values. Recently, mapping complementary sensors to a primary
point cloud is gaining interest, as 3D features are also relevant for
analysis purposes along with visible spectrum data. For instance,
[JOCF20] proposed a method focused on mapping multispec-
tral images on previously estimated RGB point clouds, whereas
[JGPS19] combines RGB and thermal imagery in the same point
cloud. Fusion of several sources of information can also be per-
formed through the alignment of multiple point clouds [WWRJ18],
although this method is proved to be prone to inaccurate results
[JGPS19].

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

DOI: 10.2312/ceig.20211364 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0003-1423-9496
https://orcid.org/0000-0002-8009-9033
https://orcid.org/0000-0002-6864-3737
https://orcid.org/0000-0003-0958-990X
https://orcid.org/0000-0001-8230-6529
https://doi.org/10.2312/ceig.20211364


A. López & J. M. Jurado & E.J. Padrón & C. J. Ogayar & F. R. Feito / Comparison of GPU-based methods for handling point cloud occlusion

Beyond the projection problem, mapping alternative data sources
to a primary point cloud involves a commonly omitted problem,
given by the occlusion of visible object surfaces. Consequently, it
leads to assigning wrong colour data from foreground surfaces to
occluded objects. Provided the utility of working with 3D points
and reliable data, this work is focused on solving the occlusion
problem for 3D point clouds. Although world surfaces are here dis-
cretized as points, dense reconstructions allow using depth-testing
techniques. However, it requires large point clouds ranging from
a few millions points to several hundred million of them. On the
other hand, alternative methods based on mesh reconstruction are
more likely to fail on complex surfaces, as occurs with the vegeta-
tion represented in our case study.

Therefore, parallel computing is an adequate alternative to solve
the occlusion problem with minimal response time. Modern graph-
ics processing units (GPUs) can work with several millions of
points in real-time, whereas hundreds of millions of points require
further optimizations, e.g. using Level of Detail (LOD) methods for
rendering. Therefore, this work aims to provide an efficient GPU
method to determine which points are visible from a sequence of
viewpoints (cameras). Furthermore, there exist a wide variety of
frameworks to develop GPU-accelerated solutions, either focused
on rendering, such as OpenGL, or High-Performance Computing,
such as CUDA, OpenCL or OpenACC.

Hence, our work proposes several methods for occlusion testing
suitable for commodity hardware. Whereas further preprocessing
is possible, we aim to provide a simple and efficient workflow that
minimizes the use of GPU memory. Therefore, point clouds are
processed through several batches to identify visible points on each
image pixel. For that purpose, we use the OpenGL cross-platform
to develop both rendering and compute based methods to solve
the same problem. In addition, their performance is compared to
a CUDA implementation.

2. Related work

Regarding fusion techniques in remote sensing, few works study
the augmentation of point clouds by projecting images to the 3D
space, as alignment-based methodologies are simpler to implement.
Among them, occlusion tests are frequently omitted. [JCO∗20] de-
tects occluded points by estimating a minimal triangle mesh for
each point and its surrounding points. However, complex objects
require sophisticated approaches in order to reconstruct them, e.g.
synthetic tree modelling. [SHLW10] addresses the occlusion prob-
lem with a complex solution based on ground segmentation and
3D clustering for LiDAR point clouds and RGB imagery. [HL12]
detects shadows and occlusion in high-resolution imagery using Z-
buffers in GPU, although they apply this test as a post-processing
technique from a previously generated orthophoto. Therefore, it is
observed that the occlusion problem has barely been addressed to
project additional sources of information to 3D point clouds.

On the other hand, the speedup of methods focused on point
cloud processing and occlusion testing has been previously as-
sessed using several compute mechanisms and buffer ordering
methods [SKW21], thus proving the benefits of different OpenGL
pipelines.

3. OpenGL Rendering pipeline

We propose an approach for occlusion testing based on the use
of a depth buffer (also known as z-buffer) since it is an efficient
alternative to prevent wrong colouring in large point clouds. Fur-
thermore, this problem can be straightforwardly solved through the
OpenGL Rendering Pipeline as it already addresses the occlusion
for a frame, either it is rendered as a point cloud (GL_POINTS) or
not. More specifically, it is the merging phase at the end of the clas-
sic rasterization pipeline that is in charge of the visibility test, thus
determining which primitive is visible on each pixel [AMHH∗18].
In our case study, the size of a depth buffer depends on the res-
olution of the imagery. Furthermore, we do not aim to solve the
visibility test by itself but to determine which point (primitive) is
visible on a pixel. Then, colours from additional sources of infor-
mation could be aggregated from the 3D point indexed by a given
pixel. For that purpose, points are transferred to the GPU as a set of
vec4 values (i.e. four floating-point numbers) to fit the data align-
ment rules of subsequent buffers.

Figure 2: Overview of a) rendering and b) compute shader
methodologies for a single batch of 3D points.

Consequently, a framebuffer with two textures of the same size
is required during this procedure. The first texture saves unsigned
integer values, whereas the second texture is the aforementioned z-
buffer. Resetting the framebuffer implies clearing the depth buffer
and assigning a large value (∞) to the indexing texture. The us-
age of this framebuffer is given by the workflow depicted in Fig-
ure 2. Once cleared, we draw the whole point cloud over the
framebuffer by applying the camera projection matrix, thus retriev-
ing the nearest primitive visible on each pixel. The first texture
is then transferred to the CPU through an asynchronous reading
(glReadPixels). As opposed to limited GPU memory, CPU
capacity is considered large enough to maintain a buffer of size
nv · gx · gy, provided that nv is the number of viewpoints and gx,gy
is the imagery resolution.

However, large point clouds cannot be completely contained in a
single buffer in OpenGL. Hence, we propose an alternative version
of the workflow depicted in Figure 2, where the maximum amount

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

44



A. López & J. M. Jurado & E.J. Padrón & C. J. Ogayar & F. R. Feito / Comparison of GPU-based methods for handling point cloud occlusion

of active points is bounded by the number of usable gigabytes. Nev-
ertheless, the ordering of received points is not known, therefore the
occlusion is not solved by disjoint stages that affect distinct areas
of the index buffer. Consequently, the asynchronous reading step
implies reading the content of both the depth and index buffers,
which are then transferred to GPU for the next batch of points (in-
stead of being reset). To transfer the downloaded z-buffer content
to the GPU, another rendering stage is needed for each iteration,
where its core is given by the built-in attribute gl_FragDepth
in the vertex shader. Also note that the framebuffer is not cleared
on each iteration anymore, but only for the first batch of points.
An alternative solution would be to solve the occlusion problem
for each viewpoint on a single iteration, although data transferring
from CPU to GPU increases and so does the response time, since
every point cloud batch is transferred once per viewpoint (nv · nb
data transfers, instead of nb, provided that nb is the number of point
cloud subdivisions).

4. Compute shaders

Compute shaders are general-purpose shaders for GPGPU pro-
gramming. Thus, it can be used for tasks not related to render-
ing, although it is also convenient for rendering purposes as it gets
rid of a static pipeline [SKW21]. However, z-buffers are not self-
contained in this shader stage. Consequently, we need to simulate a
z-buffer through a Shader Storage Buffer Object (SSBO).

The main drawback of depth buffers in multi-threaded environ-
ments is to control the concurrent access to buffer objects. Whereas
compute shaders allow performing atomic operations, our problem
requires swapping two values through the same atomic block (dis-
tance, stored in the z-buffer, and point index, for our index buffer).
However, distance and its associated index can be packed into a sin-
gle integer of 64 bits (uint64_t), where the depth is stored in the
most significant bits. Consequently, encoded values are sorted ac-
cording to their distance to the viewpoint, whereas the correspond-
ing index is simply carried out during the atomicMin operation.
By splitting 64 bits equally, we can represent up to 4 billion differ-
ent values for distance and index. A naive solution to fit float values
into an unsigned integer of 32 bits is to multiply the depth by a fac-
tor k, e.g. 10000. The larger k is, the more accurate is the depth
sorting. Nevertheless, we can obtain the encoding of a floating-
point value as an unsigned integer through floatBitsToUint
while it preserves bit-level representation. The encoded depth is
then shifted 32 bits to occupy the most significant bits.

Before depth ordering, the z-buffer must be initialized with ∞
so that pixels not visible from a viewpoint are represented by the
maximum value of 64 bits. Once the z-buffer is computed, it is sim-
plified as a single buffer of 32 bits per pixel, thus discarding the
depth term. Consequently, the allocated memory in CPU is half the
memory needed for allocating the z-buffer in GPU. Not to mention
that response time for transferring from GPU to CPU is also re-
duced. When working with several partitions of the point cloud, the
workflow is similar to the described for the OpenGL methodology.
However, previous optimizations related to resource allocation are
here omitted, since we need to transfer the whole buffer of encoded
values to CPU, as each point cloud batch only solves the occlusion
problem partially (64 bits ·nv ·gx ·gy).

5. CUDA

The CUDA kernel for computing the nearest 3D point for every
pixel and viewpoint is analogous to the compute shader workflow.
The main challenge in the CUDA implementation is to hide the
CPU↔ GPU transfers by overlapping computation and communi-
cation as much as possible. Multiple CUDA streams exploit asyn-
chronous transfer operations and kernel executions to achieve an
efficient result. Hence, while points from a batch are being pro-
jected and their depth tested/updated by an atomic operation in the
CUDA kernel, the next batch is being transferred to GPU. Further-
more, while a viewpoint is being processed by the current kernel,
the results from the previous one are being transferred to the CPU.

6. Projection behaviour

To simulate a real case study, each viewpoint has its projection ma-
trix. Furthermore, images commonly present induced aberrations,
e.g. fisheye distortion. For that purpose, 3D points are projected
into the image plane and subsequently transformed to obtain the
distorted pixel from where the colour should be retrieved. Accord-
ingly, radial and tangential distortions are straightforwardly solved
as described in [BB01]. Consequently, the resulting point can either
be within the image area or not.

7. Evaluation

We have measured the performance of the GPU-based methods
considering several configurations of the same scene. From the ini-
tial environment, with 271 million points and 1352 cameras, we
have extracted a simplified dataset with 66 million points and 180
cameras. Hence, up to four configurations are reported through-
out this section. The evaluation was performed on a PC with Intel
Core i9-9900 3.1 GHz, 48 GB RAM, RTX 2080 Ti GPU with 11
GB RAM (Turing architecture) and Windows 10 OS. The proposed
methodology is implemented in C++ along with OpenGL (Open
Graphics Library) both for rendering and massively parallel com-
puting tasks, whereas the CUDA method is also developed in C++.

Table 1 shows the response time measured from a block of code
that includes data transfers to GPU or CPU as well as the described
behaviour. Single batch configuration loads the point cloud as a
single buffer when it is possible. However, the maximum size of an
SSBO is far behind the GPU memory. Therefore the main differ-
ence between Single batch and Multiple batches is that the first
approach allocates buffers of the maximum allowed size, although
it works as a Multiple batches method for large point clouds. On
the other hand, CUDA allows loading the largest point cloud (271M
points) in a single buffer. For each configuration, the reported re-
sults are the lowest response time from five executions.

From the results reported in Table 1 and Figure 3, we can observe
that Compute Shader significantly improves the response time ob-
tained using Rendering Pipeline and CUDA. Also, Rendering
Pipeline offers slightly better results than CUDA for the single
batch workflow, although their response time is indeed very simi-
lar. Regarding the use of multiple batches, Rendering Pipeline and
Compute Shader approaches worsen its performance, whereas the
CUDA method presents results similar to the previously reported
response time.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

45



A. López & J. M. Jurado & E.J. Padrón & C. J. Ogayar & F. R. Feito / Comparison of GPU-based methods for handling point cloud occlusion

Table 1: Response time of OpenGL and CUDA methodology, including data transfers between CPU and GPU and the core behaviour.

Environment

180 cameras 1352 cameras

Proposed methods 66M points 271M points 66M points 271M points

Single batch
CUDA 2,97s 10,30s 23,58s 84,45s
Rendering Pipeline 2,52s 10,38s 20,70s 77,28s
Compute Shader 1,43s 6,21s 8,90s 37,75s

Multiple batches (1 GB)
CUDA 3,22s 11,19s 25,42s 84,50s
Rendering Pipeline 3,71s 13,35s 29,15s 96,99s
Compute shader 2,57s 7,61s 18,16s 46,90s

Figure 3: Response time in seconds of both OpenGL methods and
CUDA implementation for the most complex configuration (271M
points, 1352 viewpoints).

8. Conclusions and future work

We have explored multiple massively parallel methodologies to
solve the occlusion problem when adding a new source of infor-
mation to a 3D point cloud. For that purpose, we used the render-
ing pipeline as well as general compute shaders from the OpenGL
framework, and we compared them with a CUDA implementation.
The main drawback of the rendering procedure is the use of a set
of static stages, instead of early discarding some points not visi-
ble from a viewpoint. On the other hand, compute shaders were
proved to be more flexible, although it implied implementing a z-
buffer through a buffer of encoded values. Nevertheless, the com-
pute shader solution was proved to be more efficient than CUDA
and rendering-based approaches for every configuration, although
we observed that the performance of CUDA implementation was
more stable throughout the different proposed tests.

In future work, we would like to conduct a deeper study on the
performance impact from reordering the point buffer. Also, spatial
data structures can be relevant for reducing the response time. Fi-
nally, we could provide even more competitive results with multiple
GPUs in heterogeneous architectures such as clusters.

Acknowledgements

This work has been partially supported by the Spanish Min-
istry of Science, Innovation and Universities via a doc-
toral grant to the first author FPU19/00100 and through the
research projects TIN2017-84968-R and PID2019-104184RB-
I00/AEI/10.13039/501100011033.

References
[AMHH∗18] AKENINE-MÖLLER T., HAINES E., HOFFMAN N., PESCE

A., IWANICKI M., HILLAIRE S.: Real-Time Rendering 4th Edition. A
K Peters/CRC Press, Boca Raton, FL, USA, 2018. 2

[BB01] BEAUCHEMIN S. S., BAJCSY R.: Modelling and removing ra-
dial and tangential distortions in spherical lenses. In Multi-Image Anal-
ysis. Springer Berlin Heidelberg, 2001, pp. 1–21. doi:10.1007/
3-540-45134-x_1. 3

[HL12] HU X., LI X.: Fast occlusion and shadow detection for high
resolution remote sensing image combined with LiDAR point cloud.
ISPRS - International Archives of the Photogrammetry, Remote Sens-
ing and Spatial Information Sciences XXXIX-B7 (Aug. 2012), 399–402.
doi:10.5194/isprsarchives-xxxix-b7-399-2012. 2

[JCO∗20] JURADO J. M., CÁRDENAS J. L., OGAYAR C. J., ORTEGA
L., FEITO F. R.: Semantic segmentation of natural materials on a point
cloud using spatial and multispectral features. Sensors 20, 8 (Apr. 2020),
2244. doi:10.3390/s20082244. 2

[JGPS19] JAVADNEJAD F., GILLINS D. T., PARRISH C. E., SLOCUM
R. K.: A photogrammetric approach to fusing natural colour and
thermal infrared UAS imagery in 3d point cloud generation. Interna-
tional Journal of Remote Sensing 41, 1 (July 2019), 211–237. doi:
10.1080/01431161.2019.1641241. 1

[JOCF20] JURADO J. M., ORTEGA L., CUBILLAS J. J., FEITO F. R.:
Multispectral mapping on 3d models and multi-temporal monitoring for
individual characterization of olive trees. Remote Sensing 12, 7 (Mar.
2020), 1106. doi:10.3390/rs12071106. 1

[SHLW10] SCHNEIDER S., HIMMELSBACH M., LUETTEL T., WUEN-
SCHE H.-J.: Fusing vision and LIDAR - synchronization, correction and
occlusion reasoning. In 2010 IEEE Intelligent Vehicles Symposium (June
2010), IEEE. doi:10.1109/ivs.2010.5548079. 2

[SKW21] SCHÜTZ M., KERBL B., WIMMER M.: Rendering point
clouds with compute shaders and vertex order optimization, 2021.
arXiv:2104.07526.

[WWRJ18] WEBSTER C., WESTOBY M., RUTTER N., JONAS T.:
Three-dimensional thermal characterization of forest canopies using
UAV photogrammetry. Remote Sensing of Environment 209 (May 2018),
835–847. doi:10.1016/j.rse.2017.09.033. 1

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

46

https://doi.org/10.1007/3-540-45134-x_1
https://doi.org/10.1007/3-540-45134-x_1
https://doi.org/10.5194/isprsarchives-xxxix-b7-399-2012
https://doi.org/10.3390/s20082244
https://doi.org/10.1080/01431161.2019.1641241
https://doi.org/10.1080/01431161.2019.1641241
https://doi.org/10.3390/rs12071106
https://doi.org/10.1109/ivs.2010.5548079
http://arxiv.org/abs/2104.07526
https://doi.org/10.1016/j.rse.2017.09.033



