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Abstract
Automated visual inspection is an ongoing machine vision challenge for industry. Faced with increasingly demanding quality
standards it is reasonable to address the transition from a manual inspection system to an automatic one using some advanced
machine learning approaches such as deep learning models. However, the introduction of neural models in environments such
as the manufacturing industry find certain impairments or limitations. Indeed, due to the harsh conditions of manufacturing
environments, there is usually the limitation of collecting a high quality database for training neural models. Also, the imbal-
ance between non-defective and defective samples is very common issue in this type of scenarios. To alleviate these problems,
this work proposes a pipeline to generate rendered images from CAD models of industrial components, to subsequently feed
an anomaly detection model based on Deep Learning. Our approach can simulate the potential geometric and photometric
transformations in which the parts could be presented to a real camera to faithfully reproduce the image acquisition behavior
of an automatic inspection system. We evaluated the accuracy of several neural models trained with different synthetically gen-
erated data set simulating different transformations such as part temperature or part position and orientation with respect to a
given camera. The results shows the feasibility of the proposed approach during the design and evaluation process of the image
acquisition setup and to guarantee the success of the real future application.

CCS Concepts
• Computing methodologies → Quality Inspection; Industrial Manufacturing; Photo-realistic Rendering; CAD Models;
Anomaly Detection; Deep Learning; Generative Adversarial Networks;

1. Introduction

With the emergence of Industry 4.0 paradigm,i.e. a more digital
and intelligent industry, visual quality control has become indis-
pensable in many advanced manufacturing processes. This means
that the industrial manufacturing sector is facing high quality stan-
dards. One of the biggest industrial challenges is to achieve fast
and accurate visual inspection of manufactured components. In or-
der to improve the efficiency and minimise manual labour cost and
scrap it is essential to have a system that can effectively detect de-
fects before out-of-tolerance manufacturing occurs. Usually, ma-
chine vision techniques and image processing algorithms are used
for this task, as described in [KD21]. Although automated visual
inspection offers many benefits, it is by no means a simple task.
Nowadays, new machine learning approaches such as Deep Learn-
ing have started to be used to increase the capability and robustness
of industrial inspection systems. However, in order to obtain the
full potential of these neural models, it is necessary to have a suffi-
ciently large, varied and high quality set of images.

During the design phase of a machine learning based vision in-
spection system some decisions need to be tackled such as how the
components to be analyzed are going to be shown to the camera.
These decisions are many times constrained by how the manufac-
turing line transfer the parts from one stage to the other and needs
to be carried out not always with sufficient prior knowledge and
validation. Some constraints such as the position or orientation of
the part with respect to the inspection system may have a severe
impact in terms of accuracy of the final system.

Having a system that allows the simulation of such constraints
during the system design phase can save a lot of time and costs,
while ensuring optimal performance. In addition, it can make pos-
sible to validate whether the inspection strategy is appropriate or
whether it is feasible [FB20].

The use of these types of tools becomes very interesting in com-
plex scenarios where data acquisition and testing is not trivial, such
as in the aforementioned manufacturing industry due to the con-
ditions of the manufacturing process. Moreover, the challenge of
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collecting such data limits the deployment of Deep Learning based
detection systems in the industry. One of the main problems in
Deep Learning based approaches is the difficulty of generating a
balanced database that truly represents the variability that may oc-
cur in the production line, thus producing biases in the detection
and errors due to the unbalanced data sets. To alleviate this prob-
lem, in addition to use synthetically generated data, unsupervised
anomaly detection (AD) has become a very powerful approach
[AaAAB19]. These type of approaches rely on training mainly with
non-defective samples.

In this context, the present research work focuses on the study
and application of a process pipeline for generating images repre-
senting several spatial and photometric conditions of some indus-
trial components and how to use these images for training and vali-
dating Deep Learning based inspection systems. In order to validate
the proposed approach, this work simulates a hot components sur-
face inspection system for defect detection in forged components.

The structure of this paper is as follows: Section 2 provides a
survey of the state of the art of synthetic data set generation for
training. Section 3 describes our approach for the synthetic data
generation and training. Section 4 describes the results obtained
during the evaluation of the proposed approach, followed by a dis-
cussion. Finally, conclusions are depicted in Section 5.

2. Related works

This section presents a state-of-the-art on the industrial components
rendered images generation. On the other hand, work on training
neural models using synthetic data sets is reviewed. Finally, a re-
view on AD neural networks with an unsupervised learning ap-
proach is presented.

2.1. Synthetic data generation

Synthetic data sets applied to machine learning have been used
in different areas, such as object detection [PBRS15], 3D object
position recognition [JSBB19] or text recognition [JSVZ16]. Non-
photorealistic image data sets are easy to generate but usually tend
to obtain poor results when used for training a machine learning
models for detection or classification. When those trained mod-
els are applied to real images they use to fail because the gen-
erated synthetic data does not correctly represent the reality and
therefore the trained models are not able to generalize well. Stud-
ies like [MAKS16, HPMMHM20] show that the more realistic the
synthetic data set is the better results are obtained. Recent ad-
vances in computer graphics [EAP∗20] allow these systems to be
more realistic, being able to generate images that better approxi-
mate those obtained in real scenarios [TFT∗20, WGLY19]. These
new advances in computer graphics techniques are an increasingly
popular tool for training deep learning models. Indeed, some deep
learning methods have obtained good performance on complex
real-world images when trained only with synthetically generated
data [AGL∗21]. However, the deployment of deep learning models
in multiple sectors is still limited by the difficulty and high con-
suming task for collecting high-quality data sets for the training
phase. The lack of real data may require the use of synthetic ren-
dered images to train neural networks. This modality of digital data

generation has been already proposed in several papers in differ-
ent fields [DBL, HLWK18, TPA∗18, WGLY19, WMH18, CRC17,
KvdBK19]. Specifically in the manufacturing sector, CAD models
of many industrial components are often available. Therefore, it is
feasible to generate rendered images to use Deep Learning in pro-
duction environments, often with excellent results, as discussed in
the articles [SMVG21, AHR∗18, LGPÅ19, Seu20, LSP∗20].

Real-time rendering engines like Unreal Engine, Unity or
CryEngine are now used to generate realistic synthetic data sets
[SAS∗18, RE20] in real-time thus accelerating the data sets gen-
eration and therefore accelerating the whole training models pro-
cess [HPMMHM20].

2.2. Unsupervised anomaly detection neural networks

The contributions [FLZ∗20, CCM∗20, ZZKC21] collect multiple
existing works on visual inspection of industrial processes. All of
them agreed that deep learning-based methods are excellent solu-
tions to solve the inspection problem. However, they emphasise that
neural models require a large number of samples and manual anno-
tations to achieve an acceptable detection rate. Annotation task can
become a really exhausting task, which requires a lot of manual ef-
fort and thus can be a limitation for using deep learning algorithms.
Thanks to the inclusion of synthetic data set generation annotation
task can be alleviated because annotations are automatically gener-
ated during rendering process [AMM∗18].

A growing number of studies propose anomaly detection (AD)
approaches to get over these limitations. The paper [HG16]
provides a baseline in AD using CNNs. Similarly, the papers
[SLF19, TAMS20, NHVC17] use a CNN model to classify the
set of defective or normal samples with an AD perspective. Al-
though currently, the most popular methods as anomaly detectors
are the encoder-decoder (autoencoders) and generative adversarial
network (GAN) architectures, both of which are based on learn-
ing the distribution of a given class. A common approach is to
learn a generative model of normal images and define the error
between the reconstructed image and the input. Several popular
GANs that focus on AD can be found in AnoGAN [SSW∗17],
BEGAN [BSM17], EGBAD [ZFL∗18], GANomaly [AAAB18] or
Skip-GANomaly [AaAAB19].

In the industrial domain, the concept of AD is being used as a vi-
sual inspection of defective products. The approach in [LLW∗19]
deals with the automatic detection of defects on the surface of steel
strip. It uses a GAN network to learn the characteristics of good
samples in order to detect defective components, achieving an av-
erage accuracy of 94% in the validation phase. On the other hand,
the work [HDZ20] follows the approach of AD by using autoen-
coders for the automatic inspection of sheet metal. In addition, the
research in [TKL∗20] also performs a series of training steps of
the DAGAN model with the MVTec AD data set [BFSS19], con-
sisting of 15 categories of rendered industrial components. It aims
to detect surface defects on different materials or objects, thus dis-
criminating outlier samples for each category. It is of special inter-
est to highlight that they achieve an AUC metric of 0.815 with the
DAGAN model compared with an AUC of 0.79 obtained with 0the
Skip-GANomaly neural network. It worth mentioning that one of
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the classes that forms the MVTec AD data set is very similar to the
one used in our experiments.

3. Methods

3.1. Description of surface defects of the dataset

In order to generate a dataset as realistic as possible, an analysis
of the types of defects that can occur in a real manufacturing envi-
ronment is carried out. Defects that arise during the manufacturing
process are scratches and cracks, as shown in Figure 1. As the Fig-
ure 1 shows, there is not much diversity among classes. This makes
it easier to reproduce the defects graphically.

As shown above, the defects to be detected are superficial. Al-
though these defects have dimensional variations, some small de-
fects lose relevance in the 3D acquisition. In addition, due to the
high production rate of the manufacturing line in this simulation,
there is not much time for data acquisition. For these reasons, it
was decided to perform this simulation from a 2D surface analysis
point of view.

Figure 1: Some examples of defectology in the synthetic dataset
generated

3.2. Synthetic data generation

For the generation of synthetic images, a web application tool was
developed based on the work of [AGL∗21]. This tool allows to ob-
tain photo-realistic images quickly and easily to be used for training
AD based approaches. The photo-realistic images can be generated
starting from the 3D model (.gltf format) of the industrial compo-
nent. Once the model is loaded in the application, a series of pa-
rameters can be configured so that the generated scene resembles
the real environment. This set of parameters defines how geometric
and photometric transformations are applied to 3D objects and to
the virtual scene in order to mimic the real conditions of a future
image acquisition setup.

In order to create realistic images, a 360º environment can be
loaded through HDR images. Through the 360º environment not
only realistic reflections are created on objects but also serves to
illuminate the scene. The application also allows to define different
parameters of the camera such as focal distance or lens aperture,
thus being able to reproduce some aspects such as deep-of-field.

Regarding the spatial or geometric transformation we wanted to be
able to simulate how the parts could be shown to the camera taking
into account requirements or constraints related with a given manu-
facturing process or manufacturing line. For example, we simulated
the conditions of a hot forging process where the parts are trans-
ferred and uncontrolled to the next process, after the forging press.
If a machine learning based system for surface inspection of these
components is planned to be deployed just after the forging press,
should we try to design an automation for aligning the components
in the same line before image acquisition?, should we integrate a
mechanism for reorienting every component in the same orienta-
tion? or should we wait till the temperature of the components re-
mains under some value before inspection?. These opened ques-
tions can be alleviated by integrating these set of transformations
or degrees of freedom to the simulator for generating data sets that
resemble aforementioned situations. In this regard, we integrated
the following constraints or degrees- of-freedom in the simulator:

The constraints to be applied are:

1. The x,y position of the component on the image plane.
2. The rotation of the part about the z axis.
3. The surface tonality of the component, considering that it is

directly related to its temperature. The hotter the component is,
the more light the material will irradiate. As the product cools
down, simultaneously the surface tone darkens. The heterogene-
ity of size and mass of the manufacture means that it radiates
more or less heat. So the camera can capture different amounts
of irradiated light, which affects the tonality of the component
on the image.

4. The scale of the part versus the field-of-view of the camera.
Simulates the size variations of different components and also
the camera focal length.

We propose to generate three different data set representing
different scenarios, starting from completely uncontrolled envi-
ronment to scenarios where several degrees-of-freedom are con-
strained or cancelled. Table 1 presents the constraints that are de-
fined in each scenario.

Table 1: Applied restrictions in each scenario

Restrictions applied for each scenario
Degrees of
freedom
cancelled

Scenario 1 Scenario 2 Scenario 3

x,y position in
the scene

Scale

Surface
tonality

3 different
levels of
tonality

Required level
of automation

High Medium Low

In the section a brief description of each proposed scenario is
given:

• Scenario 1: This first scenario represents the highest level of
automation of the experimentation. This scenario represents the
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(a) Images of non-defective components

(b) Images of defective components

Figure 2: Set of images extracted from scenario 1 data set

ideal inspection state, where the positions of the parts are fully
controlled, so just leaving the rotation around the Z-axis as the
only one degree of freedom. To generate this data set, these con-
straints have been set in the data generation tool. A total of 340
normality images was obtained for the training and 85 and 400
images for the test set of normality and abnormality respectively.
Some images of this scenario can seen in the Figure 2.

• Scenario 2: The second scenario is less demanding in terms of
automation. In this case, it was assumed that the parts are not
subject to an exact position and that they can be translated and
rotated randomly. This scenario would be the ideal one for saving
automation costs. Moreover, it would mean greater flexibility for
the production line. In this case, the number of samples obtained
for the data set is the same as in Scenario 1, in order to make a
fair comparison between them. An example of obtained images
can be seen in Figure 3.
• Scenario 3: This scenario changes in the temperature suffered by

the component. As described previously, the objective is to eval-
uate a multi-reference inspection system of components in hot
state. As the cooling time of the parts varies according to their
mass, the state at which they will arrive at the inspection station
will vary according to the reference. Therefore, in this scenario,
scale changes are introduced to represent the different references
to be analysed, as well as the changes in temperature, which will
be represented in the tone of the images. In this case, the ob-
tained data set is bigger, in order to not over-fit the model with
the introduction of a large number of variables. Starting from the
degrees of freedom established in the second scenario, we now
add the changes in scale and intensity, thus obtaining a data set
of 850 normality images for the training set, and 225 and 1100
for the test set of normality and abnormality respectively. Fig-
ure 4 shows some example images obtained after these transfor-
mations.

3.3. Anomaly detection neural network training

The method to be used as quality control model is based on a gener-
ative adversarial neural network (GAN). More precisely, it is based

(a) Images of normal components

(b) Images of defective components

Figure 3: Set of images extracted from scenario 2 data set

(a) Images of normal components

(b) Images of defective components

Figure 4: Set of images extracted from scenario 3 data set

on the Skip-GANomaly network [AaAAB19] and the implementa-
tion used in this work is [AaPB19]. This particular network relies
on the concept of AD to fit the unbalanced data set due to the large
number of good samples available in production environments. The
used GAN structure is composed of a generative network and a dis-
criminative network. The key objective is to learn and replicate the
normal component images distribution. The loss function of this
networks tries to reflect the distance between the distribution of the
real-data and the data generated by the GAN.

Figure 5 shows the architecture of the aforementioned Skip-
GANomaly model. The training process has a first stage related
to the elaboration of artificial images using the generative network.
These new generated samples are intended to be as similar as possi-
ble to the training set. This generative network does not try to make
the generated data identical to the training data, instead it tries to
make the generated images fit the normal distribution of the train-
ing set and provide as much variability as possible to the dataset. In
the context of GANs, the data that compose the training set are re-
ferred to as real data, while the samples generated by the generative
network are often referred to as fake or synthetic data.
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Figure 5: Skip-GANomaly generative adversarial neural network architecture.

The generative network is based on an encoder-decoder struc-
ture. In the encoder, the tensor size is reduced after passing through
the convolution stage, while its depth increases. After the encoder
comes the decoding stage (decoder), which consists of gradually
recovering the spatial information until it reaches the same dimen-
sions as the input image by using transposed convolutions. The de-
coding procedure takes into account the tensors belonging to the
encoder to improve the reconstruction, as shown in Figure 5 with
dashed arrows. In a second phase of the training process, a new
data set is created that mixes the real data with the synthetic data
produced by the generative network. Subsequently, this new data
set feeds the discriminative network, which performs a binary clas-
sification between real image or false image. Thanks to the GAN
architecture, the model learns to faithfully approximate any training
data distribution.

Regarding training, the Skip-GANomaly neural network specif-
ically proposes to train with normal samples and to testing with
normal and abnormal samples. The goal as mentioned before is
that the generative model learns the distribution of normal sam-
ples and correctly reconstructs these good images. Therefore, the
model will fail when reconstructing the abnormal samples as they
will not follow the learned distribution. Consequently, in the case of
anomalous data,i.e. a defective component, a higher loss in the re-
construction of the output image is expected. In order to determine
if a sample is normal of abnormal, an abnormality score metric is
used based on [SSW∗17] and [ZFL∗18]. This anomaly score also
evaluates the loss generated by the generative network. Hence, an
abnormal sample will result in a higher anomaly score, since the
generative network caused a higher loss by not being able to recon-
struct it correctly.

The Table 2 shows how the set of rendered images was dis-
tributed during the experimentation. The data set was divided into
three subgroups: the training set, the test set and the validation

set. A Skip-GANomaly model was trained for each scenario, us-
ing only normal samples (first row of the Table 2). At the end of
each epoch of the learning phase, a test with good samples and
anomalous samples is performed to evaluate how the GAN train-
ing progresses (second row of the Table 2). After completing the
training and obtaining the weights with the best evaluation metrics,
a validation stage was carried out with the data from the last row of
the Table 2, as described in more detail in the section 4.

4. Evaluation and Discussion

The purpose of this experiment is to observe the behaviour and
results of the AD model trained with the different image data sets of
each scenario. This allows us to evaluate which scenario offers the
best performance for this particular use case, as well as to evaluate
how the constrained degrees-of-freedom impacts the performance
of the neural network,i.e, how many degrees of automation would
require a real application in order to achieve a given performance
in terms of accuracy.

The performance of the model was evaluated using different met-
rics: the area (AUC) under the receiver operating characteristics
curve (ROC curve) [LHZ∗03], F1 score, AUPRC and Accuracy.
Table 3 records the mentioned metrics resulting from the evaluation
of each scenario. It can be seen that the first scenario provides the
best result of the whole experimentation, presenting a significant
improvement compared to the rest of the scenarios. Accordingly, a
relationship between the performance of a particular training data
set and the level of automation could be appreciated. It can be de-
termined that the higher the degree of automation, the better the
performance of the visual inspection model would be.

As described in section 3.3, during neural network inference
Skip-GANomaly computes an anomaly score to predict whether
the input sample is normal or abnormal. This value is then scaled
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Table 2: Data set distribution and division in the different proposed scenarios for the Skip-GANomaly model training and testing

Scenario 1 Scenario 2 Scenario 3
Number of normal samples: N

Number of abnormal samples: A N A N A N A

Training set 340 - 340 - 850 -
Test set 85 400 85 400 255 1100

Validation set 10 50 10 50 30 150

to [0,1] range. Therefore, ideally the anomaly scores caused by the
inference of abnormal samples should be around the value of 1,
while normal samples should be around the value of 0. A series of
graphical representations of the anomaly score histograms of the
normal and abnormal data during the validation phase are shown
in Figure 6. These representations can indicate how discriminative
is the anomaly score, produced by Skip-GANomaly, for the clas-
sification between normal and abnormal samples. Ideally the his-
togram curve of the normal samples should be close to the value
0. In contrast, the histogram curve of the abnormal samples should
be close to the value of 1. In Figure 6(a) can be seen that in the
first scenario the curves are quite far apart, meaning that there is an
excellent classification between the two classes,i.e. between defec-
tive and non-defective components. On the other hand, Figures 6(b)
and 6(c) demonstrates that it is clearly more complicated to classify
from the anomaly score, consequently these scenarios will be worse
for industrial inspection.

These results show that a high degree of automation over the in-
spection system favours the performance of the Skip-GANomaly
neural model. Inability to cancel these constraints (shown in Ta-
ble 1) considerably compromises the evaluation result, as shown in
Table 3. Consequently, this knowledge should be taken into consid-
eration for the design of the real future application.

Table 3: Skip-GANomaly model evaluation metrics for the different
scenarios during validation phase

Validation of neural model performance
Evaluation

metrics Scenario 1 Scenario 2 Scenario 3

AUC 0.935 0.75 0.7
F1 score 0.989 0.914 0.916
AUPRC 0.996 0.871 0.88

Accuracy (%) 98.33 85 85.56

5. Conclusions

In this work,we propose a pipeline to generate rendered images
from CAD models of industrial components, to subsequently feed
an anomaly detection model based on Deep Learning. The objec-
tive was to create a pipeline that allows to simulate the image ac-
quisition setup of an automatic inspection system. We validate our
proposal through the simulation of several scenarios related with
hot surfaces inspection for defect detection in forged components
using an AD approach.

The proposed pipeline allows to faithfully simulate a real im-
age acquisition system thanks to the generation of photo-realistic
renders from CAD models. With the aim to simulate the proposed
validation scenario, several geometric and photometric transforma-
tions were applied to the 3D models using the developed tool. We
evaluated three possible scenarios introducing different degrees of
freedom, from uncontrolled part position and uncontrolled temper-
ature to a more constrained situation.

By means of the quality control method, Skip-GANomaly model
was tested in each scenario. The obtained evaluation metrics show
that in the first scenario the system achieves an AUC of 0.935,
thus demonstrating the need for a well constricted image acquisi-
tion system. The performed scenario comparison demonstrates the
high positive impact that the addition of automation has on the per-
formance of the inspection system. Specifically, the accuracy met-
ric has decreased from 98% for scenario 1 to 85% for scenario 2.
Therefore, it is clear that the design and automation of the image
acquisition system of the future real application should be based on
the restrictions defined or imposed in the first scenario.

As a concluding statement, after the experiments carried out it
can be asserted that the proposed pipeline allows to obtain knowl-
edge about the constraints to be applied in the design of the future
application. Proposed approach allows us to anticipate the prob-
lems that we would have to face if we had not previously carried
out this simulation.

As future research lines, it is proposed to extrapolate the results
obtained in this work to a real industrial application. The objective
of this proof is to compare a simulated surface inspection system
using photo realistic renderings with an inspection system working
in the factory with real images. In addition, the power of the simu-
lation to anticipate certain useful information for the design of the
real application and how it impacts on the results of the visual in-
spection will be tested. On the other hand, it is proposed to combine
both 2D surface visual inspection and 3D dimensional inspection.
In this way, a more complete quality control could be achieved,
which would provide additional information about the dimensional
affectation of the component.
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