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Abstract
The cost-effective generation of realistic vegetation is still a challenging topic in computer graphics. The simplest representation
of a tree consists of a single texture-mapped billboard. Although a tree billboard does not support top views, this is the most
common representation for still image generation in areas such as architecture rendering. In this paper we present a new
approach to generate new tree models from a small collection of RGBA images of trees. Key ingredients of our method are
the representation of the tree contour space with a small set of basis vectors, the automatic crown/trunk segmentation, and
the continuous transfer of RGBA color from the exemplar images to the synthetic target. Our algorithm allows the efficient
generation of an arbitrary number of tree variations and thus provides a fast solution to add variety among trees in outdoor
scenes.

1. Introduction

Vegetation (trees, bushes and grass) is an essential part of nat-
ural outdoor scenes. Many different plant representations have
been proposed in the literature, including polygonal-based, image-
based [BCF∗05], point-based [DCSD02], volume-based [DN04],
relief mapping-based [ACA16], and procedural [ACV∗14] ap-
proaches. Here we focus exclusively on image-based representa-
tions of trees.

Billboards are the simplest tree representation and as such they
are extensively used today in many applications including archi-
tecture rendering and video games. A billboard consists of a single
texture-mapped quad that is rotated around its vertical axis so that it
always faces the camera, thus exploiting the apparent axial symme-
try of trees. Billboard textures are RGBA, where the alpha (opacity)
channel segments foreground (tree) from background pixels, allow-
ing non-tree parts of the texture to be easily discarded.

Billboards suffer from some well-known limitations. They do
not support top views of the trees, since the image only shows a
side view, and the billboard is allowed to rotate only around its ver-
tical axis. Since billboards are planar, shading effects are limited,
even when equipped with normal maps. Cast shadows correspond
to that of the tree silhouette and these shadows are received as if
the trees were planar. Concerning real-time rendering, billboards
do not support view-motion parallax, and the fact that they always
show the same side of the tree might become apparent e.g. when
the camera rotates around the tree.

Despite the limitations above, the simplicity, speed and compact-
ness of billboards, the realism provided by actual photographs of
trees, and the availability of large collections of ready-to-use tree
textures make tree billboards ubiquitous in many CG applications.

In this paper we explore different strategies for the automatic
generation of tree variations from a collection of RGBA images
(this image collection will be referred to as the tree library). We
consider two main usage scenarios. The first one is oriented to-
wards the authoring of new tree images. Given a user-defined sub-
set of exemplars from the tree library, the algorithm creates plau-
sible trees through random combinations of the chosen exemplars.
These variations can be used to enrich existing plant libraries.

The second scenario aims at avoiding the perception of repeated
copies of trees. If the same tree image is instanced multiple times,
users will easily detect the repeated copies, resulting in poor, overly
repetitive vegetation. Straightforward per-instance variations oper-
ating on shape (e.g. scaling) or appearance (e.g. HSL perturbations)
do not suffice to overcome the impressive pattern-matching ability
of the human visual system. Given an input tree image, the algo-
rithm creates an arbitrary number of variations of the tree image by
perturbing its shape and appearance using features extracted from
the library.

A key ingredient of our approach is the combination of multiple
tree shapes and color textures so that the resulting images have a
realistic tree appearance. Regarding the overall tree shape, we en-
code tree contours by a fixed-length high-dimensional vector that
enables high-quality morphing between two or more tree shapes.
Indeed, we use contours from library exemplars to build a set of
basis vectors that represents the contour space and facilitates the
computation of tree variations. Concerning the tree appearance, we
transfer color (and opacity values) between tree images through the
use of Mean Value Coordinates [HF06] computed over simplified
contours. We also present a fast and efficient method to segment
tree images into crown/trunk pixels, so that their respective con-
tours and appearances are combined and transferred properly.
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The main contributions of the paper are: (a) a completely-
automatic pipeline for creating tree variations from existing RGBA
images of trees; (b) a robust method to extract the overall shape of
a tree, including the automatic trunk segmentation; (c) the encod-
ing of the overall external contour of a tree as a fixed-length high-
dimensional vector; arbitrary contours are supported, not being lim-
ited to convex nor star-shaped polygons; highly fractal contours are
supported; (d) the representation of the contour space as a relatively
small set of basis vectors, in the spirit of EigenFaces [KBG11];
(e) the synthesis of random contours from convex combinations of
contours from the library; and (f) methods for transferring color
and opacity values from one or more source exemplars to a target
image; the use of Mean Value Coordinates along with pinned con-
tour points found through trunk segmentation avoids excessive area
distortion during color transfer.

The rest of the paper is organized as follows. Section 2 reviews
relevant previous work on tree creation through procedural, inverse
procedural, and contour-based techniques. Section 3 provides an
overview of our preprocessing and synthesis algorithms, which are
further developed in Sections 4 and 5. Results with a large collec-
tion of tree exemplars are presented in Section 6. Conclusions are
presented in Section 7.

2. Previous work

2.1. Procedural generation

The problem of generating plausible vegetation has received con-
stant attention in computer graphics research. The first techniques
used to model trees were based on procedural generation due to the
lack of proper scanning devices. These models can be used triv-
ially to create image-based tree representations. Honda introduced
in [Hon71] a model that focused on the effect of certain parameters
(such as branching angle and branch length) on tree shapes. These
findings were applied to recursive algorithms which produced the
first tree structures resembling their real counterparts [AK84]. Ad-
ditional research was devoted to transform the generated branching
hierarchy into a 3D model. Bloomenthal et al. [Blo85] examined
the transformation process proposing techniques to represent the
trunk, branches, and bark of a tree more faithfully.

Another set of techniques were introduced by Linden-
mayer [Lin68] that, exploiting the capabilities of formal languages,
managed to imitate plant development. L-systems have been widely
used for modeling all types of plants and have been extended to
support most of its peculiarities. These extensions include the inte-
gration of production rules and differential equations to represent
the development of the plant over time [PHM93], the interaction
with the environment [MP96], the expression of plant attributes
based on their spatial location [PMKL01], and many others [PL96].

A different possibility is to exploit the factors that influence the
final shape of a tree to be able to generate several species from
a relatively small set of parameters. In particular, competition for
resources (sunlight, space) by different branches of a tree seems
to be critical for the general shape of temperate-climate trees. The
space colonization algorithm presented by Runions et al [RLP07]
uses this fact. In order to represent how branches compete for
space first it generates a set of attractors in the volume defined by

the tree’s foliage. These attractors are then iteratively conquered
by the branches as they occupy the available space. Palubicki et
al. [PHL∗09] extended this algorithm using a signaling mecha-
nism to mimic different types of growth. In [XM15] Xu and Mould
improved the performance of tree generation algorithms based on
space competition by using pregenerated guiding vector fields and
Yao graphs.

Kohek and Strnad [KS15] on the other hand used competition for
incoming light as the main competition resource. They computed
on the GPU how the shadows projected by the growing branches
propagated through a regular grid. Then branches could grow on
directions that maximized the amount of received light while the
shadow grid was being updated.

Wind and surrounding space also influence a tree’s growth. Pirk
et al. [PSK∗12] presented a technique that made it possible for con-
tent creators to change a tree’s position inside a scene and see its
shape adapt to changes in light distribution and the occupation of
surrounding space. In [PNH∗14] it was extended to include the ef-
fect of wind.

2.2. Tree generation from contours

Generating a tree from its contour is already possible applying the
space colonization algorithm [RLP07], but there are other contri-
butions that compute a tree from its silhouette. It is possible to
provide the overall crown shape using a gesture based system that
guides the resulting tree’s growth [LRBP12], reducing modeling
time while maintaining the artist’s ability to obtain the desired re-
sult.

Okabe et al [OOI05] were able to generate 3D tree models
from 2D sketches by taking the assumption that trees spread their
branches far apart from each other. Such a system also allows users
to apply gesture-based editing operations and manually generate
trees from given examples. Wither et al. [WBCG09] made use of
successive silhouettes sketched at different zoom levels to create a
3D tree.

Other techniques generate trees from a single photograph. These
algorithms extract the silhouette of the crown and use it to generate
the crown and its foliage. In [TFX∗08] the user draws strokes in
the photograph to identify the crown and the branches. The crown
is segmented and the visible branches are converted to 3D using
the approach proposed in [OOI05]. The initial skeleton is extended
into the crown by iteratively substituting an existing branch by a
subtree from a database. Guenard et al. [GMBC13], on the other
hand, extract the foliage and compute a vector field from the seg-
mented shape that is used to obtain a skeleton. This base skeleton
is populated by leaves and branchlets via an L-system.

For dense trees it is possible to extract more compact representa-
tions. Argudo et al [ACA16] present a complete pipeline for synthe-
sizing and rendering detailed trees with minimal effort. A rough es-
timate of the crown shape is created by solving a thin-plate energy
minimization problem. Then detail is added through a simplified
shape-from-shading approach. The final models are encoded into
radial relief maps that may be rendered directly or used to populate
the crown with billboards or a branch skeleton.
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All these approaches use an input contour provided by the user
or extracted from a photograph, which they preserve. Thus the sil-
houette of the generated trees is always the same.

2.3. Inverse procedural modeling

One way of generating variations from a single tree could be to
identify the input parameters of a given procedural modeling al-
gorithm, then alter those parameters slightly. Despite the difficulty
of predicting the outcome produced by procedural modeling gram-
mars, it is possible to control the process and produce the desired
output. One possibility is to let the user explore the space of all
possible models while guiding this search [TGY∗09]. In order to
help users explore the space of possible models it is interesting to
provide a relatively small set of parameters that control the genera-
tion. These may be provided by the procedural algorithm designer
but they may also be obtained semi-automatically. In [YAMK15]
Yumer et al. use autoencoder networks to find a lower dimensional
space that can be used as the set of parameters for users to play
with. A weak point of these systems is that the resulting trees fol-
low the intention of the artist more closely but the cost of generating
a great quantity of similar models is very high.

Consequently, to automate the process Talton et al. [TLL∗11]
presented an approach using Markov chain Montecarlo, but its
convergence is affected by the fact that the algorithm receives
its feedback from completely-generated models only. Ritchie et
al [RMGH15] improved upon it by developing a new sequential
Montecarlo algorithm capable of using incremental feedback pro-
vided by incomplete models. Stava et al [SPK∗14] developed an in-
verse procedural modeling algorithm specifically tailored for trees.
An input tree is used to estimate the parameters of a recursive al-
gorithm similar to that of [AK84], then new trees resembling the
input one may be generated. Still, the needed optimization step is
quite expensive.

2.4. Dimensionality reduction for variation synthesis

The main disadvantage of inverse procedural modeling techniques
is the computation time required to extract the parameters of an
input tree. Instead, our approach finds a base of vectors that repre-
sents the tree contour space. In this our algorithm is similar to how
Eigenfaces represent faces for their recognition. The Eigenfaces al-
gorithm [KBG11] reduces the high-dimensional space of all face
images to a subset of the eigenvectors (called eigenfaces) of the as-
sociated covariance matrix. Any face can then be projected onto the
span generated by the set of eigenfaces and thus be represented as
a linear combination.

A similar method is used by Blanz et al. [BBPV03] to reanimate
faces from input images. The animations are transferred by defining
a vector space of 3D shapes and textures. Given the complexity of
computing an eigendecomposition of a large set of exemplar 3D
scans, these models are used as the base for the vector space of
faces. The consequence is that the exemplars have to be chosen
carefully so that they are representative of any faces we wish to
reanimate.

As far as we can tell our contribution is the first one that applies

this approach to the characterization of tree shapes. An advantage
of its application to tree contours is the fact that the span gener-
ated by the computed eigenvectors always results in plausible tree
shapes. The same cannot be said about its use for face represen-
tation. Many of the linear combinations of the eigenfaces result in
invalid faces. This allows us to apply this algorithm to generate
variations from a single photograph of a tree.

3. Overview

We assume a library L of tree images (RGBA side views of trees)
is available. Tree images from the library (or a user-defined subset
of it) will be referred to as exemplars. Our approach has two main
stages: exemplar processing and tree synthesis.

An overview of the exemplar processing stage is shown in Fig-
ure 1. We start by resizing all exemplars to a fixed resolution (Sec-
tion 4.1). A transparent border is added if necessary to preserve
the aspect ratio. Each non-transparent exemplar pixel is then seg-
mented into crown and trunk classes using a trained Convolutional
Neural Network (Section 4.3). We then extract all contours of the
alpha channel using a border following algorithm, and take the
largest external contour as the overall tree contour C (Section 4.2).
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Figure 1: Overview of the exemplar processing algorithm. Given a
collection of RGBA images of trees, we generate fixed-length con-
tours representing the overall shape of the trees.

Then we re-sample C to create a new contour Cr with a fixed
number N of 2D points (Section 4.5). The resampling uses three
pin points (tree bottom, trunk top-left, trunk top-right) that are com-
puted from the intersection of the tree contour with the segmented
crown/trunk components (Section 4.4).

We then concatenate the (mean-subtracted) (x,y) coordinates of
the N contour points onto a 2N vector uuu that represents the overall
tree shape in R2N space. The resampling above guarantees that a
fixed range of uuu components correspond to crown contour points
and another fixed range of uuu components to left/right trunk contour
points. Although we could use PCA to extract a suitable base for
the contour space, in practice we just take UUU = {uuu000, . . .uuummm} as such
a base. We then re-sample again the contour Cr (Section 4.6) to ob-
tain a simplified contour Cs that will be used later to encode interior
points of the tree as Mean Value Coordinates.

The output of the preprocessing step is, for each tree exemplar, a
couple of contours Cr and Cs, along with a binary mask represent-
ing the crown/trunk segmentation.

Regarding tree image synthesis, we propose two variants. The
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first one creates tree variations from scratch, using exemplars from
the library. A new overall contour is created by computing a ran-
dom convex combination of uuu ∈UUU vectors (Section 5.1). This con-
tour already defines a preliminary segmentation of the output alpha
channel. Then, we transfer the RGBA color from some exemplars
to the target tree, using Mean Value Coordinates (Section 5.2). This
allows us to associate each point of the target image to a matching
point on the source(s) images from which we will compute the final
RGBA color. Since we also transfer alpha values, the final shape of
the tree is richer than the original contour.

The second synthesis variant requires the user to specify a tree
image T . This image will be combined with features from the li-
brary to create variations of T . In this case, we apply to T all the
processing steps we apply to exemplars, and then apply a similar
synthesis procedure but giving higher weights to T features.

4. Exemplar Processing

We now describe the preprocessing steps to be performed for each
exemplar RGBA image from the library. The main outcome of
these steps is a suitable encoding of the overall tree shape through
a fixed-length contour.

4.1. Image normalization

We start by normalizing the images so that all exemplars have the
same size. This normalization is beneficial for subsequent steps,
specially for the segmentation through FCN. In particular, we per-
form the following normalization steps. We first compute a binary
version of the alpha channel through alpha thresholding, and set all
transparent pixels to black to simplify the classifier task. We then
crop the image to the minimum axis-aligned rectangle that encloses
all opaque pixels, and add a padding black (and transparent) border
to make the image square without distorting the tree. Finally, we
resize the image to a fixed size (we used 1024× 1024 pixel images
for the experiments). Figure 8 shows the normalized versions of a
collection of exemplars.

4.2. Contour extraction

We extract the overall (external) tree contour from the alpha chan-
nel A. We first threshold the alpha channel (we used 0.5 as thresh-
old, assuming normalized values) to get a binary alpha mask At .
Then we apply a border-following algorithm [S∗85] to At to ex-
tract all the contours separating opaque regions from transparent
ones. Each contour is represented as a collection of 2D point coor-
dinates.

Figure 2 shows the contours extracted from some exemplars.
Typical tree images include multiple contours; trees with sparse fo-
liage have multiple see-through parts (holes in At ) and even multi-
ple connected components (due e.g. to thin branches not appearing
in At ).

We classify the extracted contours as exterior (not inside any
other contour) and interior (inside another enclosing contour). We
take as the overall contour the longest exterior contour C (Figure 2).
Notice that C = {(xi,yi)} will have a variable number of points

Figure 2: Some RGBA images (left), all contours extracted from
their alpha channel (middle), and longest external contour (right).
Internal contours are shown in light gray, and external contours in
black.

depending on, among other factors, the fractal nature of the tree
silhouette. We guarantee that external contour vertices are given in
counter-clockwise order.

4.3. Crown/Trunk segmentation

The contour contains both the tree crown as well as the trunk. For
better results, we would like to have approximately the same num-
ber of contour points belonging to the trunk independently of how
big each trunk is. Therefore, we need to segment the crown from
the trunk.

Several image segmentation approaches exist. In the past few
years, Deep Learning approaches, in particular Convolutional Neu-
ral Networks, have been shown to offer remarkable results for im-
age classification tasks. Long et al. [LSD15] explain how classifi-
cation networks can be converted into fully convolutional networks
(FCNs) such that a per-pixel segmentation can be learned end-to-
end. They extend various networks into their respective fully con-
volutional form. We decided to use the network they refer to as
FCN-8s-atonce, which they obtain by extending into a FCN and
training the VGG16 classification net [SZ14] - which, in turn, had
been trained using the ImageNet database. The authors provide the
network implementation and weights for the Deep Learning frame-
work Caffe [JSD∗14]. We downloaded it, modified the output layer
to produce three classes - background, crown and trunk - and fine-
tuned it.

From our tree dataset, we segmented manually 55 exemplars
(Figure 9), trained the net for 200 epochs (21 s/epoch), and obtained
around 95% accuracy and 86% mean IoU (Intersection over Union)
on the same training set. Since our number of exemplars was lim-

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

124



Argudo et al. / Tree variations

ited, we did not split them into train and validation sets. Moreover,
we expect new exemplars to be very similar to those already pro-
vided, and obtaining a rough segmentation suffices for our needs as
we shall see in the next section. Figure 3 shows the segmentation
output of our net on new inputs not seen during the training phase.
Segmenting each of these 1024× 1024 images takes on average
15.5 s. Both training and segmentation times could be improved by
leveraging the batch input capabilities of the network, as shown
in [LSD15].

Figure 3: Trees segmented automatically using our FCN.

4.4. Pin point selection

The creation of new contours through linear combinations of exist-
ing contours requires the definition of a minimum set of matching
points across all contours, so that e.g. the first contour point always
refers to the point at the tree bottom.

For each exemplar, we select three pin points on the extracted
contour C: tree bottom (B), trunk top-left (L) and trunk top-right
(R), see Figure 4. The tree bottom is set to the index of the point
with minimum y. If multiple points share such a minimum, we set
B to the index of the median point. For the trunk L and R points,
we traverse the points in C, starting from B, in both forward and
backward directions. We stop the traversal as soon as the current
contour segment intersects the crown baseline, i.e. the lowest height
on the segmented crown. In the rare case that the segmented image
contains no trunk pixels, we set L=R=B.

4.5. Contour resampling

Extracted contours C are variable-length and thus not suitable for
generating variations through linear combinations of exemplars.
We thus resample the overall contour C of each exemplar to include
exactly N points. Our resampling strategy considers three different
segments on C: the crown segment (R to L), the left truck segment
(L to B) and the right trunk segment (B to R). Each segment is
assigned a fixed number of samples in the resampled contour Cr.
We used N =2,000 points, allocating 1,600, 200 and 200 points for
each of the three segments above. Resampling within each segment
is performed as in chord-length parameterization, i.e. attempting to
generate uniform chord lengths between samples. The output con-
tour Cr has thus N points, all of them uniformly distributed (in a
chord-length sense) within each segment. Figure 4 shows the re-
sampled contours (in cyan) for a few exemplars.

4.6. Contour simplification

The resampled contour Cr is detailed enough to be used for contour
synthesis, but too complex for the generation of Mean Value Coor-
dinates. We thus further resample Cr to M = 100 points to generate
a simpler contour Cs. We observed that the distortions on the color
image produced by the Mean Value Coordinates after warping the
contour are more acute for those pixels near the contour or outside
of it. Therefore, we actually generate Cs by first rendering the mask
of the interior of Cr, dilating this mask for some iterations (8 in our
tests) and resampling to M points the contour of this mask.

Figure 4 shows the simplified contours (in red) for a few exem-
plars.

Figure 4: Resampled contour Cr (in cyan), simplified contour Cs (in
red), crown baseline (in orange) and pin points (in black). Top row:
manually segmented trees, bottom row: automatically segmented
trees.

4.7. Preprocessing output

The output of the above processing steps is a collection of pro-
cessed exemplars along with their resampled Cr and simplified con-
tours Cs.

5. Tree Synthesis

We now discuss different strategies to generate new tree images
through random combinations of exemplars. We first define the
overall tree shape by synthesizing a new contour through linear
combinations of contours (Section 5.1). Then the contour is filled
by transferring RGBA color from the exemplars (Section 5.2).

5.1. Contour synthesis

Let uuu jjj be the vector ∈ R2N that results from flattening the (x,y)
coordinates of the resampled contour Cr from the j-th exemplar.

We can linearly interpolate two contours uuu′ = (1− t)uuu000 + tuuu111
with t ∈ [0,1] to produce a continuous morphing between them.
Figure 5 shows several snapshots of the interpolation between two
contours. The quality of the interpolated contours is highly depen-
dent on the matching contour points; the use of the B, L, R pin
points prevents excessive rotations during morphing.
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Figure 5: Morphing two contours through convex combinations.

We can extend this idea to incorporate additional contours
through convex combinations of existing contours, i.e., uuu′ =

∑wiuuuiii, with wi ≥ 0 and ∑wi = 1. We avoid negative weights to
prevent contours from being reflected (e.g. −uuuiii would result in an
upside-down contour).

The generated contour provides a preliminary version of the out-
put alpha channel (to be refined later, see next section). We do this
by simply drawing the contour onto a blank alpha channel (with
alpha set to 1.0 for all pixels), and then using a region fill algorithm
from any seed outside the contour to clear the alpha values of the
pixels outside the contour. This method is robust against potential
self-intersections of the combined contours.

5.2. Color transfer

In the previous subsections we generated new contours C′r and their
associated alpha masks. We now explain how to fill non-transparent
pixels of the output image E′ with color.

We address this problem by transferring color from one or more
exemplars (source images) to the image being synthesized (target).
We pose this color transfer problem as an image warping problem.
Let w×h be the resolution of the (processed) exemplar images, and
let Ω be their w×h rectangular domain. Given a source contour Cs
and a target contour C′s, both with vertices in Ω, we aim at defining a
smooth warp function f : Ω 7→Ω mapping each vertex (xi,yi) ∈Cs
to the corresponding vertex (x′i ,y

′
i) ∈ C′s. Such a warping function

can be used to deform any source image E defined on Ω to a target
image E′ by simply letting E′ = E ◦ f−1 [HF06].

We define the mapping above through barycentric coordinates
with respect to (a simplified version of) the source and target con-
tours. In particular, we use mean value coordinates [HF06], which
are well-defined for arbitrary planar polygons.

When transferring RGBA color from a single source exemplar E,
the algorithm proceeds as follows. For each non-transparent pixel
p′ = (x′,y′) of the target image E′, we first compute the mean value
coordinates λ

′
i of p′ with respect to the target contour C′s. We then

find the corresponding point on the source image, p = f−1(p′),
by simply using the resulting coordinates λ

′
i with the vertices {vi}

of the chosen source contour Cs, i.e. p = ∑λ
′
ivi. The final RGBA

color for pixel p′ is just E(p). As in [HF06], color sampling can be
improved through bilinear interpolation on the 2×2 grid of pixels
surrounding each source pixel.

The color transfer approach above can be extended to take colors

from multiple exemplars. Let (c j,a j) be the RGB and A compo-
nents of the color extracted (through mean value coordinates) from
j-th exemplar. We compute the output alpha value as a′ = maxa j,
i.e. the final pixel will take the highest opacity from the source pix-
els. We do this to avoid an excessive amount of transparent pixels to
be transferred to the target image. The color is computed as a ran-
dom convex combination of the colors, but considering only those
colors with non-null opacity values.

Figure 6 shows the morphing of two exemplars using the RGBA
color transfer to fill the interpolated contours.

Figure 6: Morphing two trees through RGBA color transfer.

5.3. Histogram transfer

As a result of the previous operations we have been able to gen-
erate new trees. We can add more variation by changing the color
histogram of the generated image. Since we want the result to be
plausible, we use a histogram transfer algorithm [GW07] so that the
image we have generated has the same color distribution as another
image provided as a reference.

In order to do this we compute the cumulative histograms for
both images (source image and template image). We then interpo-
late linearly to find the unique pixel values in the template image
that most closely match the quantiles of the unique pixel values in
the source image. This process is performed for each RGB color
channel separately and it always ignores transparent pixels.

Histogram matching is also useful both to improve the matching
between the combined images, since they can be taken in varying
lighting conditions, as well as to simulate the change of vegetation
coloration during different seasons.

Figure 7 shows an RGB transition using histogram matching.

Figure 7: Morphing two trees through RGBA color transfer; with
histogram transfer (top) and without (bottom).
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6. Results

6.1. Test dataset

We tested the preprocessing and synthesis steps using as tree library
a collection of 55 RGBA images from different sources, including
the VTP Plant Library. The corresponding normalized exemplars
are shown in Figure 8.

Figure 8: Tree images used as exemplars.

6.2. Segmentations

Figure 9 shows the result of segmenting crown and trunk pixels on
the test exemplars, using our fine-tuned FCN. Notice that the trunk
was correctly segmented from the crown in all images where the
trunk was visible. Only two images had no visible trunk. For these
images, pin points L and R were set to B.

Figure 9: Manual segmentations for the exemplars in Figure 8.

6.3. Extracted contours

Figure 10 shows the thresholded alpha channels from the input ex-
emplars, and Figure 11 shows all the contours detected by the bor-
der following algorithm. The number of contours varied from 1
(trees with dense foliage) up to 5,481 (very sparse tree). We use
only the longest external contour C. The resulting alpha masks are
shown in Figure 12. Notice that these alpha masks will be later re-
fined during RGBA transfer.

As expected, major differences between the initial alpha mask
and the one bounded by C correspond to see-through parts of the
tree due to sparse foliage or empty space between main branches.
Differences around the silhouette mostly depend on the alpha
threshold value. We also explored the application of a few itera-
tions of a morphological closing operation to the thresholded alpha

mask, before contour extraction. This obviously tends to minimize
the number of connected components in the mask, but at the ex-
pense of some loss of high-frequency details on the tree silhouette.
We thus applied no closing iterations to our examples.

Figure 10: Thresholded (0.5) alpha channels of the test exemplars.

Figure 11: All contours extracted from the alpha channel. External
contours are shown in black and internal contours are shown in
gray.

Figure 12: Alpha channels defined by the largest external contour.

6.4. Synthetic contours

Figure 13 shows some convex combinations of multiple contour
pairs. Due to space limitations, here we only show convex com-
binations with weights w1 = 1/3, w2 = 2/3 (upper triangle of the
table) and w1 = 2/3, w2 = 1/3 (lower triangular part). Despite try-
ing to combine radically-different tree species, most combinations
look plausible.
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Figure 13: Contour combination table. For each cell, the contour
has been obtained as a combination of the row and column exem-
plars contours, with corresponding weights 2/3 and 1/3.

6.5. Synthetic trees

Figure 14 shows some combinations of multiple tree pairs, distort-
ing the image of each row towards the shape of the image in each
column. Again, due to space limitations, here we only show convex
combinations with weights 1/3, 2/3.

Figure 16 shows more examples obtained by combining two ran-
domly selected exemplars, using a convex combination of the con-
tour w1 ∈ [0.3,0.7] and w2 = 1−w1, and setting the color as either
the convex combination with the same weights as the contour, or
sampling one of the two images directly. Generating each of these
new trees at 1024× 1024 resolution takes between 8 and 12 sec-
onds, mainly depending on the ratio of non-transparent pixels.

Although the synthetic tree images we create are not necessarily
plausible from a botanical point-of-view (specially when combin-
ing exemplars from radically different tree species), these images
are still suitable for mainstream applications such as video games,
where indeed artists often look for fictional trees.

Limitations The color transfer approach works best when the
two contours are not radically different. Otherwise, the source im-
age needs to be severely distorted to fit the target contour, as shown
in Figure 15.

7. Conclusions and future work

We have presented an algorithm for the automatic generation of tree
variations starting from a collection of example images. The set of
exemplars is first used to train a neural network for pixel classifi-
cation of tree images into canopy and trunk pixels. This allows us

Figure 14: Tree deformations table. For each cell, the tree image
has been distorted to match the shape of the combined contours of
Figure 13.

Figure 15: The thin, sparse tree on the left has been used to fill the
thick contour on the middle, obviously resulting in a large distor-
tion.

to extract pinpoints for the main sections of the tree contour, which
facilitates the synthesis of new ones from the exemplars. Synthesis
of new tree images is handled by first creating their overall exter-
nal contour as a random convex combination of existing contours,
and then transferring the color from other exemplars through mean
value coordinates. The tree variations we generate can be used to
author fictional tree images and hybrid speciments, as well as to
create variations to prevent tree copies from being discovered by
users.

Regarding contour sampling, the pin points we currently com-
pute may introduce some distortion in the results. It would be inter-
esting to research how to perform this sampling so that areas and
angles are preserved as well as possible. In addition, Mean Value
Coordinates allow multiple polygons as long as the source and tar-
get polygon-sets are topologically equivalent. Making use of this it
should be possible to extract multiple contours instead of a single
outer contour.
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Figure 16: Randomly generated tree variations from the test dataset.

Another important point is the fact that the provided exemplars
may be radically different. While the species are similar (e.g. simi-
lar temperate-climate trees) trees match and the distortions are tol-
erable. This leaves the user with the job of avoiding combinations
between completely incompatible trees. A clear improvement of
the proposed algorithm would be to compute which subset of trees
are sufficiently compatible for their combination, storing this in-
formation in a graph. The generation of variations could then be
guided by it. Finally, since there exist multiple barycentric coor-

dinates generalizations, we would be interested in analyzing the
effect of these on the color transfer step.
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