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Figure 1: We present a method for efficient transient rendering of participating media based on the time-resolved radiative transfer equation
and photon beams techniques. In the left image we can observe a classic steady-state render of a glass armadillo within a participating
media. On the right we show the frame sequence of the time-resolved response under a delta pulse of light. We leverage density estimation
properties of photon-based methods for mitigating aggravated variance of Monte Carlo sampling in the light temporal domain. Our method
allows to efficiently render complex media effects such as caustics and multiple scattering in transient state.

Abstract
Recent advances on transient imaging and their applications have opened the necessity of forward models that allow precise
generation and analysis of time-resolved light transport data. However, traditional steady-state rendering techniques are not
suitable for computing transient light transport due to the aggravation of the inherent Monte Carlo variance over time. These
issues are specially problematic in participating media, which demand high number of samples to achieve noise-free solu-
tions. We address this problem by presenting the first photon-based method for transient rendering of participating media that
performs density estimations on time-resolved precomputed photon maps. We first introduce the transient integral form of the
radiative transfer equation into the computer graphics community, including transient delays on the scattering events. Based on
this formulation we leverage the high density and parameterized continuity provided by photon beams algorithms to present a
new transient method that allows to significantly mitigate variance and efficiently render participating media effects in transient
state.

CCS Concepts
•Computer Graphics → Three-dimensional graphics and realism; Raytracing; Transient rendering;

1. Introduction

The recent technological advances on transient imaging have led
to the emergence of a wide number of techniques that leverage
information on the temporal domain of light transport for appli-
cations in computer graphics and vision [JMMG17]. As a conse-
quence, accurate time-resolved light transport information is key
to provide insights and analysis of transient imaging techniques. In
that sense, forward rendering models are a powerful tool to gen-
erate this kind of data under controlled synthetic setups. The re-
cent work by Jarabo and colleagues [JMMn∗14] formally intro-
duced a generalized transient path integral formulation for surfaces
and media. They demonstrated how traditional steady-state meth-

ods fail when rendering light in transient state, specially due to
radiance-aimed importance sampling techniques that create uneven
distributions of variance growing over time. They address these is-
sues by proposing new time-based importance sampling methods
and progressive approaches in a time-resolved bidirectional path
tracer. Still, their method remains very sensitive to variance due to
the underlying nature of path tracing methods. Other existing solu-
tions [SSD08, Jar12, ABW14, Bit16] have addressed transient light
transport, but they either are too narrowly scoped or generate sub-
optimal straightforward solutions.

Steady-state methods based in photon tracing have proved suc-
cessful in reducing variance of Monte Carlo solutions for partic-
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ipating media rendering. These methods trade variance for bias
by performing density estimations on stored light paths across the
scene. In particular, techniques based on photon beams [JNSJ11,
JNT∗11, KGH∗14] leverage the information of light tracing by
densely populating media with full photon trajectories, which sig-
nificantly increases efficiency during the rendering process. One of
the major drawbacks in transient rendering lies on the requirement
of much higher sampling rates to fill up the extended temporal do-
main, where usual steady-state samples are sparsely and unevenly
distributed along time. We make the key observation that continu-
ity of full photon trajectories allows to render media at arbitrary
temporal resolutions thanks to closed-form parametrized radiance
estimations between camera rays and photon beams. Along with in-
creased media sampling density provided by photon beams, these
features make this kind of algorithm very suitable for transient ren-
dering.

Based on these principles, in this paper we introduce a new
method for efficiently computing transient light transport in partic-
ipating media. While original radiative transfer theory [Cha60] ac-
counts for light time of flight, for practical issues its integral form
used in classic computer graphics is time-agnostic due to the as-
sumption of infinite speed of light. Therefore, in this paper we in-
troduce the time-dependent integral form of the radiative transfer
equation into the computer graphics community, including tempo-
ral delays in the scattering events not accounted in the original for-
mulation. This naturally allows modeling transient light transport
in participating media. We build upon this formulation to present a
new method based on photon beams [JNSJ11] for efficiently ren-
dering participating media in transient state. We finally demonstrate
how our method is capable of producing noise-free time-resolved
renders in a variety of scenarios, including indirect illumination,
multiple scattering and complex caustics.

2. Related Work

Transient rendering While light transport equations often used
in computer graphics [BW02, Cha60] are originally defined in a
time-resolved manner, steady-state rendering has usually assumed
infinite speed of light by dropping any time dependence on these
models. First introduction of light time of flight into the render-
ing equation [Kaj86] was presented by Smith et al. [SSD08]. Later
Jarabo and colleagues [JMMn∗14] presented a generalized time-
resolved formulation for light propagation based on the path in-
tegral [Vea97], which allowed them to synthesize videos of light
in motion including scattering and propagation delays on a bidi-
rectional path tracer. Other works have addressed time-resolved
light transport for more direct applications in transient imaging
[NML∗13,OHX∗14,ADY∗16], and as a forward model for inverse
problems [KOKP07,KK09,FH08,Fuc10,JPMP12,JPMP14,Hul14,
KPM∗16]. Closer to our work, Meister and colleagues [MNJK13]
addressed transient rendering also using photon-based techniques
[MNK13], but scoped to time-of-flight imaging problems for dif-
fuse surfaces propagation. Different to these works, we provide
a transient method for rendering participating media by using the
time-resolved form of the radiative transfer equation [Cha60].

Photon-based density estimation Classic steady-state rendering
has heavily benefited from photon-based techniques for variance

reduction of global illumination computation. Ever since the ap-
pearance of photon mapping [Jen01], subsequent works presented
extensions for dynamic scenes [CJ02], progressive approaches
[HOJ08, HJJ10, KZ11, KD13] or hybrid methods [GKDS12,
HPJ12]. Jarosz and colleagues significantly improved efficiency in
volumetric photon mapping by introducing the beam radiance es-
timate [JZJ08]. Generalization of beams to the tracing process by
storing full photon trajectories (photon beams) [JNSJ11] led to a
dramatic increase of density of photon maps at very little computa-
tional cost. Benefits provided by photon beams led to their counter-
part progressive and hybrid techniques [JNT∗11,HCJ13,KGH∗14].
All these works are, however, restricted to steady-state renders
where light is assumed to have infinite speed. In our work we intro-
duce light propagation time into the photon beams technique and
leverage beams continuity and spatial density estimations to miti-
gate variance in the temporal domain.

3. Transient Radiative Transfer

A beam of light reaching any region of the space different from vac-
uum will interact with matter that may alter its behavior in different
ways. In the so-called participating media, light transport occurs all
over the volume where both scattering and absorption effects play
a significant role. The radiative transfer equation [Cha60] models
the behavior of light traveling through a medium. While original
formulation is time-resolved, its integral form used in traditional
rendering drops this temporal dependence, and computes the radi-
ance reaching any point x from direction ~ω as

L(x,~ω)= Tr(x,xs)Ls(xs,~ω)+
∫ s

0
µs(xr)Tr(x,xr)Lo(xr,~ω)dr. (1)

where Ls is the radiance from the closest surface point xs at distance
s along the ray; µs is the scattering coefficient at a media point xr;
Tr indicates the transmittance between two points; the second sum-
mand integrates radiance across all media points xr from direction
~ω; and Lo(xr,~ω) models the in-scattered radiance at xt exiting to-
wards direction ~ω,

Lo(x,~ω) =
∫

Ω

ρ(x,~ωi,~ω)Li(x,~ωi)d~ωi, (2)

where ρ represents the phase function and in general is dependent
on the location x and the incoming and outgoing directions, ~ωi and
~ω respectively.

Equations 1 and 2 assume that the speed of light is infinite, which
is reasonable as long as we want to represent a scene as seen by a
standard camera. However, if we want to solve the RTE at time
scales comparable to the speed of light we need to include light
travel time into the equations, and therefore provide new numeri-
cal solutions for these equations. Recently, Jarabo and colleagues
[JMMn∗14] introduced a transient version of the path integral for-
mulation [Vea97] that inherently models transient light transport in
participating media. In the following we summarize the main prac-
tical considerations for accounting time into the integral form of the
RTE. We refer to the reader to the work by Jarabo and colleagues
for a generalized formulation of transient light transport for both
surfaces and media.

Light takes a certain amount of time to propagate through space,
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and therefore light transport from a point x0 towards a point x1 does
not occur immediately, having

L(x1,~ω, t) = L(x0,~ω, t−∆t), (3)

where ~ω is a direction outgoing from x0 towards x1, and ∆t is the
time it takes the light to go from x0 to x1. In turn, ∆t is defined by

∆t(x0↔ x1) =
∫ x1

x0

η(x)
c

dx, (4)

where η(x) is the index of refraction at a medium point x and c is
the speed of light in vacuum. In a medium with a constant index
of refraction η(x) = ηm, between x0 and x1, Equation 4 can be
expressed as

∆t(x0↔ x1) =
ηm

c
||x1−x0||. (5)

In order to reformulate the RTE (Equations 1 and 2) in transient
state we can introduce time dependence (Equation 3) as

L(x,~ω, t) = Tr(x,xs, t)Ls(xs,~ω, t−∆ts)

+
∫ s

0
Tr(x,xr, t)Lo(xr,~ω, t−∆tr)dr (6)

Lo(x,~ω, t)=
∫

Ω

∫ t

0
µs(xr, t−t′)ρ(x,~ωi,~ω, t−t′)Li(x,~ωi, t)dt′d~ωi (7)

Observe that media scattering µs and absorption (implicit in
transmittance Tr) can have variations at time scales comparable to
the speed of light. While we include time-dependent absorption and
scattering properties of the medium in this formulation, we assume
that variations in the medium density due to particle size and con-
centration occur at much smaller time scales than the ones used in
the remaining of this work. Consequently, since transmittance Tr is
a function of absorption and scattering, we also assume it as time-
independent.

The phase function ρ models angular light scattering at particle
level. When light interacts with a micrometric particle (e.g. water
droplets) it can follow paths within that particle before being redi-
rected outside, which would result in a significant time delay within
the phase function. For the sake of simplicity, in the remaining of
this work we assume time-independent phase functions where light
interactions within media particles occur instantaneously.

4. Transient Photon Beams

Equations 1 and 2, and their respective transient versions Equations
6 and 7 define recursive models which in general do not present an-
alytical solutions for arbitrary scenes, therefore needing numerical
computation to approximate them.

Photon beams Photon beams algorithm [JNSJ11] provides a nu-
merical solution for rendering participating media in steady state
by performing two passes. In the first pass, a series of paths are
traced from the light sources by Monte Carlo sampling Equations
1 and 2. These paths represent packages of light (photons) travel-
ing through the medium. Every interaction of a photon within the
medium is stored on a map as a beam with a direction ~ωb, posi-
tion xb and power Φb. In the second pass, rays are traced from the

camera against the photon beams map. Every photon beam is con-
sidered to have certain radius r, and radiance seen by a camera ray
is computed by performing a density estimation on every ray-beam
intersection (see Figure 2a). Depending on the dimensionality of
the density estimation, Jarosz and colleagues proposed three dif-
ferent estimators based on 3D, 2D and 1D kernels. For the sake of
brevity we present our extension to transient state based on the 2D
kernel within homogeneous media. Analogous concepts apply for
extending 3D and 1D kernels to transient state.

Given a camera ray defined by xr + sr ·~ωr and a photon beam
b defined by xb + sb ·~ωb with energy Φb, the 2D density estima-
tor for homogeneous media computes the radiance arriving at xr
analytically as

Lb(xr,ωc) =
µs

ΩR(r2)
ρ(θb)Φb

∫ s+r

s−r
Tr(sr)Tr(sb(sr))dsr (8)

=
e−µt (s

−
b +s−r )− e−µt (s

−
b +cos θb(s+r −s−r )+s+r )

µt cosθb
(9)

where [s−r ,s+r ] are the limits of the ray-beam intersection (Fig-
ure 2c), θb is the angle between ~ωb and ~ωr, and ΩR(r2) represents
the 2D kernel of a beam of radius r. Finally, the total radiance at xr
is computed as the sum of all beam radiances along the camera ray

L(xr,~ωr)≈ ∑
b∈Rb

Lb(xr,~ωr). (10)

Our algorithm However, since we aim to compute time-resolved
radiance, we have to account for photon timings along its way
from the light sources to the camera. Photon time-of-flight is di-
rectly related to its optical path. While photon points only provide
time information at discrete timings in the scene—which is a draw-
back when using small temporal resolutions—, a photon beam is
by definition continuous since its trajectory is parameterized by
xb + sb ·~ωb. In the following we show how to account for time
propagation in Equations 9 and 8, conveniently allowing us to span
every ray-beam radiance estimation to any desired temporal reso-
lution. This feature is very important since—as shown by Jarabo
and colleagues [JMMn∗14]—one of the main drawbacks in tran-
sient rendering is the increased sparsity and uneven distributions of
radiance samples when increasing temporal resolution.

A photon located at xb has taken a certain time to get there since
it started traveling from the light source. Photon timing tb0 at the
origin of the photon beam sb0 can be computed by Monte Carlo
sampling our proposed transient version (Equations 6 and 7), keep-
ing track of all the distances s j traveled by that photon up to the
beam starting point (see Figure 2a). The photon beam starting time
tb0 is therefore computed as

tb0 = ∑
s j∈Π

∆ t(s j) = ∑
s j∈Π

ηmj

c
s j (11)

where s j ∈ Π represents the photon optical path from the light
source to xb, and ηmj represents the index of refraction of the dif-
ferent media crossed by the photon b.

Observe Figure 2c. For a point within the ray-beam blur region
at distance sbi from the beam start xb (i.e. sb0 = 0, Figure 2c), the
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Figure 2: (a) A photon emitted from the light source will take a time tb0 =
ηm
c (s1 + s2 + s3) to get xb. (b) Radiance estimation in the medium

is done by intersecting every ray against the photon beam map, and performing density estimations at the ray-beam intersections (red). (c)
Ray-beam intersection for density estimation using a 2D kernel, where the photon energy at every beam point xb + sb ·~ωb affects a single
point within the ray xr +sr ·~ωr within a perpendicular 2D disk. Time delays within this spatial density estimation will depend on the ray-beam
orientation and the blur region intersections, the speed of light and the index of refraction of the media. (d) Time-resolved volume for the
rendered transient frames, showing the time interval of a ray-beam radiance at pixel i j.

photon takes

∆ t([sb0 = 0]↔ sbi) =
ηm

c
sbi (12)

time to get from sb0 to sbi (Equation 5). Finally, that photon will
take

∆ t(sri ↔ [src = 0]) =
ηm

c
sri (13)

to reach the camera xr from the corresponding point at sri within
the 2D blur region. Therefore, the total time a photon takes to get
from the light source to a position inside the ray-beam kernel at a
distance sbi and then to the camera xr can be computed as

t = tb0 +∆ t(sb0 ↔ sbi)+∆ t(sri ↔ src). (14)

However, original closed-form of the density estimation (Equa-
tion 9) discards all light travel times within the 2D blur region, and
directly computes the integrated radiance along the intervals de-
fined by [s−b ,s+b ] and [s−r ,s+r ]. While we could Monte Carlo sample
the integral in Equation 8 to obtain discrete time–radiance samples,
that would increase variance on our estimation, which is against one
of the desired benefits from density estimation techniques. Addi-
tionally, this would introduce an unaffordable computational over-
head since we would need to do this for every ray-beam intersec-
tion. Instead, we can evenly distribute the integrated ray-beam ra-
diance Lb across the time interval ∆ t(Lb) = [t−, t+] covered by the
2D blur region. In particular, this interval is defined by the light
travel times corresponding to [s−b ,s+b ] and [s−r ,s+r ], yielding

t− = t−r + t−b , t+ = t+r + t+b (15)

which can be computed from Equations 12 and 13.

Note that due to transmittance, the photon energy actually varies
as it travels across the blur region. Evenly distributing the integrated
radiance Lb across this interval introduces temporal bias, apart from
the inherent spatial bias introduced by density estimation. However
in our comparisons against path traced results (see Section 5) we
observed this even distribution provides a good tradeoff between
bias, variance, and computational overhead.

Implementation Unlike frame-to-frame steady-state rendering, to
distribute transient radiance of a beam on a pixel i j we need to keep

Cornell blocks Cornell spheres MirrorsArmadillo

Figure 3: Steady-state renders for the scenes Armadillo (Figure 1),
Cornell blocks (Figure 4), Cornell spheres (Figure 5) and Mirrors
(Figure 6).

in memory the full temporal span of that pixel (see Figure 2d) up to
some maximum time. During beam tracing, starting time tb0 of each
photon beam can be stored in the first pass of the algorithm along
with its position xb, direction~ωb and energy Φb in the photon map.
In the second pass, we can keep track of the time interval [t−, t+]
determined by every ray-beam radiance Lb, and evenly distribute
this radiance over the resulting pixels interval in the time domain.

5. Results

In the following we illustrate the results of our proposed technique.
All the results were taken on a desktop PC with Intel i7 and 4GB
RAM. Unless stated otherwise, all observed media in the rendered
scenes have index of refraction of vacuum (IOR = 1). We show re-
sults of our method in four scenes: Armadillo, Cornell blocks, Cor-
nell spheres and Mirrors. Figure 3 shows the corresponding steady-
state renders of these results. Please refer to the supplemental video
for the full videos shown throughout this section.

Figure 4 shows an equal-time comparison of subsequent frames
on the Cornell blocks scene rendered with a transient path tracer
(bottom), and our transient photon beams implementation (top),
both taking approximately 5 hours and 30 minutes. All surfaces
in this scene present Lambertian reflection, and the light on the top
emits a Dirac delta pulse of light. Indirect illumination through the
media seen as color bleeding near the red and green blocks. We
can observe the benefits of density estimation on variance reduc-
tion compared to the path traced solution, and how it holds over
time due the continuity of beams.

Camera unwarping [VWJ∗13] is an intuitive way of visualizing
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Figure 4: Frame sequence (from left to right) from the Cornell
blocks scene rendered with a transient path tracer (bottom) and
our proposed transient photon beams algorithm (top), on an equal-
time comparison. Continuity of photon beams allows to keep the
variance reduction provided by density estimation over time.

Figure 5: Comparison of Cornell spheres scene using (a) a
camera-unwarped solution where we do not take into account the
camera time, and (b) real propagation of light. In (b) the shape of
the wavefront is altered by the camera time, as if we were scan-
ning the scene from the viewpoint towards the furthest parts of the
scene. This can be seen in the shape of the wavefront in the side
walls. Camera unwarping (a) shows us more intuitively how light
propagates locally.

how light propagates locally on the scene without accounting for
the time light takes to reach the camera. In Figure 5 we compare
the effects of accounting or not for this camera time. The scene
consists of a diffuse Cornell box with a point light on the top, a glass
refractive sphere (top, IOR = 1.5) and a mirror sphere (bottom).
While Figure 5b shows the real propagation of light—including
camera time—, Figure 5a depicts more intuitively how light comes
out from the point light, travels through the refractive sphere, and
the generated caustic bounces on the mirror sphere. Note how in the
top sequence we can clearly see how light is slowed down through
the glass sphere due to the higher index of refraction. We can also
observe multiple scattered light (particularly noticeable in frames
t=4ns to t=6ns) as a secondary wavefront.

Figure 6 compares visualizations of light propagation within the
Mirrors scene under constant and Dirac delta light emission. The
scene is composed by two colored mirrors and a glass sphere with
IOR = 1.5, and was rendered using the previously mentioned cam-
era unwarping. We can observe how delta emission generates wave-
fronts that go through the ball and bounce in the mirrors, creating
wavefront holes where constant emission creates medium shadows.
In the last frame of the top row Delta emission clearly depicts the
slowed down caustic through the glass ball respect to the main
wavefront.

Figure 1 shows an orange glass armadillo inside a yellow media
and a point light emitting from the back. The light is emitted as a
delta pulse and the scene is rendered using camera unwarping. We
can see how light refracted through the glass comes out by the front
of the object showing propagation delays due to longer light paths
inside the object and the higher index of refraction of glass.

6. Conclusions

In this paper we presented a novel method for efficient simula-
tion of light transport participating media. We introduced the time-
dependent integral-form of the radiative transfer equation into the
computer graphics community, and imposed it to steady-state pho-
ton beams methods. As a result, we leveraged spatial density es-
timation techniques and high density of continuous photon trajec-
tories to significantly mitigate variance of transient light transport
simulation and render complex effects such as multiple scattering
and caustics. Our contributions are of great importance in transient
imaging, where continuously emerging techniques and hardware
advances demand reliable transient data under controlled setups.
For that purpose, our method can be used for efficiently obtaining
this kind of data which could be used to obtain valuable insights on
transient light transport.

As future work we regard a more thorough analysis of vari-
ance reduction and bias impact in transient state under varying
media characteristics, and how transient-state adaptations of dif-
ferent photon estimators and hybrid and progressive techniques
[JNT∗11, KGH∗14] could improve performance of time-resolved
light transport simulation in different media and geometry setups.
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