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Figure 1: A mannequin wearing a tank top. Thanks to our proposed damping model, the motion of the garment remains nicely damped even
under fast motion of the mannequin, yet the fabric retains rich folds and wrinkles.

Abstract
Damping is a critical phenomenon in determining the dynamic behavior of animated objects. For yarn-level cloth models,
setting the correct damping behavior is particularly complicated, because common damping models in computer graphics do
not account for the mixed Eulerian-Lagrangian discretization of efficient yarn-level models. In this paper, we show how to derive
a damping model for yarn-level cloth from dissipation potentials. We develop specific formulations for the deformation modes
present in yarn-level cloth, circumventing various numerical difficulties. We show that the proposed model enables independent
control of the damping behavior of each deformation mode, unlike other previous models.

CCS Concepts
•Computing methodologies → Physical simulation;

1. Introduction

In mechanics, damping is the dissipation of energy stored in os-
cillating systems. This dissipation is produced by complex inter-
actions, such as friction, and ultimately the resistance of matter to
change its current shape or structure. Popular materials in computer
graphics exhibit highly varying damping behaviors, from the invis-
cid behavior of water to the highly damped behavior of flesh. Accu-
rate modeling of dissipative properties is key for achieving realistic
dynamic simulation of real-world phenomena.

In computer graphics, the simulation of viscoelastic fluids has re-
ceived ample attention [GBO04, PICT15]. For solids, on the other
hand, damping has often been overlooked in contrast to elasticity.
Many solid simulation works simply rely on the numerical damping
produced by implicit integrators, or they implement linear damp-
ing models [OSG02, BJ05, CLMMO14, GSS∗15]. However, some
authors have paid attention to the design of good dissipation mod-

els for solids. Baraff and Witkin [BW98] defined damping forces
aligned with elastic forces, but proportional to time-derivatives of
position constraints. Their proposed model bears a strong con-
nection to dissipation potentials in classical mechanics [GPS14],
even though this connection went unnoticed to them. The design
of damping forces has also received attention under research on
variational integrators [KYT∗06,GSS∗15], or for simple control of
dissipation properties in animation [SSF13].

In this paper, we focus on the dissipative behavior of yarn-
level cloth models [KJM08, KJM10]. In particular, the efficient
yarn-level model by Cirio et al. [CLMMO14,CLMO15,CLMO17],
which represents cloth as a structure of flexible rods with slid-
ing persistent contacts. Yarn-level cloth models enable the simu-
lation of realistic small-scale fabric effects, such as snags, loose
yarn ends, or detailed fracture, and they also reproduce the macro-
scopic nonlinear mechanics of garments simply by aggregating
yarn-level structural effects. However, the model of Cirio et al.
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achieves high efficiency through a mixed Eulerian-Lagrangian dis-
cretization, which complicates the application of common dissipa-
tion models in computer graphics.

The contributions of our work are:

• Application of dissipation potentials to yarn-level cloth, includ-
ing the design of specific dissipation potentials to damp the en-
ergy stored on the various conservative potentials of yarn-level
cloth mechanics.

• Derivation of dissipative forces and their Jacobians for mixed
Eulerian-Lagrangian discretizations. A key aspect is the for-
mulation of dissipation potentials as quantities integrated along
yarns, which unveils the structure of Eulerian dissipative forces
and their Jacobians.

• Robust formulation of dissipative forces for angular potentials.
We have recognized that naïve bending and shear dissipative
forces suffer from indeterminacy at small angles. As a solution,
we propose a vector form of bending and shear strain for small
angles, which is free of indeterminacy, and whose dissipation
potential smoothly blends into the regular dissipation potential
based on scalar forms of strain.

• Discussion of the differences w.r.t. other damping models. We
analyze the application of full linear Rayleigh damping and
the damping approach of Baraff and Witkin [BW98] to mixed
Eulerian-Lagrangian discretizations, and we conclude that they
produce undesirable forces which do not correctly model dissi-
pation.

• Experimental analysis of practical damping properties. With our
formulation based on dissipation potentials it is possible to con-
trol independently the damping behavior of different deforma-
tion modes. We have validated this fact by analyzing the corre-
lation of the damping ratio for different deformation modes.

We continue the paper with a discussion of related work, fol-
lowed by a review of the derivation of the equations of motion
for yarn-level cloth mechanics. Then, we introduce a generic for-
mulation of dissipation potentials as integrated quantities, and we
derive the corresponding forces and Jacobians for mixed Eulerian-
Lagrangian discretizations. Next, we formulate specific dissipation
potentials for yarn-level cloth, and we describe our theoretical and
experimental analysis.

2. Related Work

Characterization of damping mechanisms in dynamics simulation
is an active area of research. It is fundamental for achieving realistic
behavior of real-world materials and to improve the stability of the
simulated systems. However, despite the large amount of research,
understanding of damping mechanisms remains primitive.

A major reason for this is that, in contrast with inertia and stiff-
ness forces, it is not clear which state variables are relevant to deter-
mine the damping forces. By far the most common approach is to
assume so-called ‘viscous damping’, where only the instantaneous
velocities are the relevant state variables that determine damping.

This idealization is widely discussed in the literature of La-
grangian mechanics [GPS14], where the appearance of such
forces is formalized through the so-called dissipative potentials

or velocity-dependent potentials, as well as Rayleigh’s dissipation
function.

Physical models usually distinguish three distinct types of damp-
ing, depending on their nature and purpose. (i) Damping that is de-
liberately formulated in order to simulate the nature of the given
material is often referred to as material-intrinsic damping [CK05].
(ii) Damping produced by implicit formulations of the system dy-
namics is referred to as artificial or numerical damping. (iii) Damp-
ing added to enhance stability is usually referred to as fictitious
damping [YKC00].

One of the first works that recognized the need of damping forces
in cloth simulation was developed by Terzopoulos et al. [TPBF87],
where the cloth was discretized as a rectangular mesh and energy
functions were derived using a continuum formulation. However,
they only implemented a simple viscous drag force, hence their
damping function dissipated all kinetic energy, regardless the type
of motion.

Following the treatment of deformable surfaces by Terzopoulos
et al., Carignan et al. [CYTT92] described a cloth simulation sys-
tem using a rectangular discretization. They recognized the need
for damping functions which do not penalize rigid-body motions of
the cloth (unlike simple viscous damping), hence they added a force
which damps cloth stretch and shear (but not bending). Neverthe-
less, their damping function—a linear function of velocity—does
not match the quartic energy functions of their continuum formula-
tion.

Baraff and Witkin [BW98] described a general treatment for
damping that was independent of the specific energy function being
damped. They defined elastic potentials based on soft constraints,
and then they modeled dissipative forces simply by replacing the
constraint values of elastic forces with constraint derivatives. Their
method avoids unnecessary dissipation of the system’s total kinetic
energy. Bender and Deu [BD13] also used this type of damping
for adaptive cloth simulation with corotational finite elements. Fol-
lowing up the work of Baraff and Witkin, Oh et al. [OAW06] pro-
posed an implicit integration technique that is able to reproduce
stable cloth without introducing excessive damping forces. Artifi-
cial internal damping forces are generated during the linearization
process of their semi-implicit integrator. Despite its generality, the
method of Baraff and Witkin is not directly applicable to the yarn-
level cloth model of Cirio et al. [CLMMO14,CLMO15,CLMO17],
due to the mixed Eulerian-Lagrangian discretization, which intro-
duces additional terms in elastic forces.

Volino and Magnenat-Thalmann [VMT00, VMT01] found that
damping forces can lead to systems in which wrinkles do not form
on the surface of the cloth, wrinkles resist disappearing, or the fab-
rics even resist falling under their own weight. Choi and Ko [CK05]
proposed a method that includes artificial damping and material
intrinsic damping, but does not include fictitious damping. They
avoid the need for fictitious damping through the use of a predicted
static post-buckling response as an effective way of handling the
instabilities associated with post-buckling situations.

Other cloth simulation works opted for the use of Rayleigh
damping [Ray96], which is a commonly used approach to model
dissipative forces in complex engineering. In essence, it is a vis-
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cous damping force proportional to a linear combination of the
mass and stiffness matrices. This model was used by Grispun et
al. [GHDS03] with a Newmark ODE integration scheme, and by
Cirio et al. [CLMMO14] with backward Euler implicit integra-
tion. However, stiffness-proportional damping includes undesirable
terms that lead to an underwhelming loss of kinetic energy.

3. Equations of Motion of Yarn-Level Cloth

As mentioned in the introduction, the yarn-level cloth model of
Cirio et al. [CLMMO14, CLMO17] uses a generalized-coordinate
representation that combines both Eulerian and Lagrangian coordi-
nates. The yarns are sampled at their permanent contacts, and each
contact is described by its 3D position x and the arc-length posi-
tions (u,v) within the two yarns in contact. The 3D position of the
contact can be regarded as the Lagrangian part of the discretiza-
tion, and the arc-length positions can be regarded as the Eulerian
part. In practice, the addition of arc-length coordinates as degrees
of freedom enables the simulation of persistent contacts with slid-
ing. Inter-yarn contact is handled implicitly, avoiding altogether the
computation of collision detection and collision response between
yarns that are permanently in contact.

The combined Lagrangian and Eulerian generalized coordinates
form a set of reduced coordinates q. The 6D configuration space of
two points in contact is constrained to 5D by removing the degree
of freedom normal to the two yarns. In this reduced-coordinate set-
ting, the equations of motion that describe the dynamic evolution
of a garment are derived from the Lagrangian, as Euler-Lagrange
equations [GPS14].

With a conservative potential V and kinetic energy T =
1
2 q̇T Mq̇, the Euler-Lagrange equations are:

Mq̈ =∇T −∇V − Ṁ q̇. (1)

The definition of the mass matrix M for yarn-level cloth is given
in [CLMMO14].

For a discrete element with strain ε and size Ω, a generic
quadratic elastic potential with stiffness ke can be expressed as

V =
1
2

Ωke ε
2. (2)

The specific conservative potentials for woven and knitted cloth are
defined, respectively, in [CLMMO14] and [CLMO17], but later in
Section 5 we review some of them for the definition of dissipation
potentials.

From (2), the conservative (elastic) force on the generalized co-
ordinates can be written as:

fe =−∇V =−Ωke ε∇ε− 1
2

ke ε
2∇Ω. (3)

The force proportional to ∇Ω is due to the presence of Eulerian
coordinates, and is not present under purely Lagrangian discretiza-
tions.

Baraff and Witkin [BW98] designed dissipative forces by pre-
serving the direction of elastic forces and substituting their magni-
tude with a term dependent on the strain rate ε̇. Under the mixed
Eulerian-Lagrangian discretization, the elastic force exhibits two

terms, as shown above. As it will become evident in Section 4.2,
only the term proportional to ∇ε should contribute to dissipation.
Moreover, Baraff and Witkin did not pay attention to the definition
of dimension-less strains. They built the element size Ω partly in
the stiffness constant and partly in the strain metric. With Eulerian
coordinates, where the sizes of elements change during the simula-
tion, this would lead to important errors.

Cirio et al. [CLMMO14] added damping to yarn-level cloth us-
ing the Rayleigh model. Specifically, they modeled a damping force

fd =−
(

αM−β
∂fe

∂q

)
q̇, (4)

with parameters α and β controlling, respectively, the dissipation of
absolute and relative velocities. When applied to a mixed Eulerian-
Lagrangian discretization, the Rayleigh damping force contributes
a term dependent on∇Ω from (3). Again, as it will become evident
in Section 4.2, only the term proportional to ∇ε should contribute
to dissipation.

4. Dissipation Potentials

We propose a model of dissipation based on the dissipation poten-
tials from classical mechanics [GPS14]. The corresponding dissi-
pative forces are obtained by adding velocity-based gradients of
these potentials to the Euler-Lagrange equations. We start this sec-
tion with a formulation of dissipation potentials from strain energy
densities, which after integration on discrete elements yield discrete
dissipation potentials. Through this formulation, the forces on Eu-
lerian and Lagrangian coordinates are derived in a sound way. We
conclude the section with a derivation of force Jacobians for im-
plicit integration.

4.1. Strain Energy Dissipation

For a generic potential dissipation rate V̇ , dissipative forces can
be added to the Euler-Lagrange equations as the negative gradient
of the potential dissipation rate w.r.t. velocities, i.e., fd = −∇q̇V̇ .
Then, we obtain the dissipative version of the Euler-Lagrange equa-
tions:

Mq̈ =∇T −∇V −∇q̇V̇ − Ṁ q̇. (5)

Let us consider a generic strain energy density 1
2 ke ε

2. By in-
tegrating this energy density on a discrete element of size Ω, we
obtain the discrete elastic energy V in (2). By substituting strain
with strain rate in the energy density, and applying the appropriate
damping coefficient kd , we can define a strain energy density dissi-
pation rate 1

2 kd ε̇
2. By integrating this energy dissipation rate on a

discrete element, we obtain the discrete dissipation potential:

V̇ =
1
2

Ωkd ε̇
2. (6)

For the subsequent derivations, it is convenient to identify the
velocity-based gradient of the strain rate ε̇. Applying the chain rule,
we get ε̇ =∇ε

T q̇. Then, by differentiating this expression, we ob-
tain

∇q̇ε̇ =∇ε. (7)
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4.2. Eulerian-Lagrangian Dissipative Forces and Jacobians

From the generic definition of the discrete dissipation potential (6)
and the velocity-based gradient of strain-rate (7), we obtain the dis-
sipative forces:

fd =−∇q̇V̇ =−Ωkd ε̇∇ε. (8)

For implicit integration, we derive the Jacobians of dissipative
forces w.r.t. generalized positions and velocities:

∂fd
∂q

=−Ωkd

(
ε̇I+∇ε q̇T

)
Hε− kd ε̇∇ε∇Ω

T . (9)

∂fd
∂q̇

=−Ωkd∇ε∇ε
T . (10)

The expression Hε denotes the Hessian of the strain w.r.t. the gen-
eralized coordinates.

For efficiency, we wish to solve the linear system resulting from
backward-Euler implicit integration using a fast CG solver. How-
ever, the CG solver requires a symmetric matrix for guaranteed
convergence, and the Jacobian of dissipative forces w.r.t. positions
(9) contains non-symmetric terms. As suggested by Baraff and
Witkin [BW98] we omit the non-symmetric terms altogether. In
practice, as demonstrated by our results, we have not suffered any
convergence problems. The approximate but symmetric Jacobian
is:

∂fd
∂q
≈−Ωkd ε̇Hε. (11)

5. Yarn-Level Dissipation

In this section, we describe the application to the yarn-level cloth
model [CLMMO14] of the dissipation potentials presented in the
previous section. In particular, we develop the formulation for
stretch, bending, and shear dissipation. In all cases, we build on
previously defined discrete elastic potentials according to (2), and
we explicitly identify strain ε and element size Ω in those formula-
tions to derive corresponding dissipation potentials based on strain
rate ε̇, according to (6). The derivation of dissipative forces and
Jacobians would follow immediately as described in Section 4.2.
For angular strains, such as bending or shear, we have recognized
that dissipative forces suffer from indeterminacy at small angles.
We propose a vector form of bending and shear strain for small
angles, which is free of indeterminacy, and whose dissipation po-
tential smoothly blends into the regular dissipation potential based
on scalar forms of strain.

In the rest of this section, we refer to the notation defined in
Fig. 2 for yarn segments. Fig. 2-left denotes two consecutive yarn
segments that bend with angle θ at node q0, and Fig. 2-right denotes
two crossing yarn segments that shear with angle φ at node q0. We
define as ∆xi = xi−x0 the Lagrangian position difference between
node q0 and an adjacent node, and we define as ∆ui = ui− u0 the
arc-length difference between node q0 and an adjacent node.

5.1. Stretch

A stretch potential models the opposition of a yarn segment to
change its length. For the yarn segment between q0 and q1, the

𝐪0 𝐪1
𝐪2

𝐪0

𝐪1

𝐪3

𝜃
𝜙

Figure 2: Notation employed in the derivation of strain and strain-
rate metrics for yarn-level cloth. Left: two consecutive yarn seg-
ments that bend with angle θ at node q0. Right: two crossing yarn
segments that shear with angle φ at node q0.

stretch potential is defined by the following strain and segment size:

ε = |w|−1, with w =
∆x1
∆u1

, (12)

Ω = ∆u1. (13)

Taking the time-derivative of the strain, we obtain the expression
of the strain rate as a function of generalized velocities:

ε̇ =
wT

|w|
˙∆x1−w ˙∆u1

∆u1
. (14)

5.2. Bending

Bending forces model the opposition of two consecutive yarn seg-
ments to bending deformation. We define a bending strain metric
based on the angle between such pair of consecutive segments, as
shown in Fig. 2-left:

ε =
θ

∆u1−∆u2
, with tanθ =

|∆x2×∆x1|
−∆xT

2 ∆x1
, (15)

Ω = ∆u1−∆u2. (16)

From this expression, the strain rate expressed as a function of
the generalized velocities is:

ε̇ =
θ̇− ε

( ˙∆u1− ˙∆u2
)

∆u1−∆u2
, (17)

with

θ̇ =−
cos2

θ

∆xT
2 ∆x1

((
∆xT

2
˙∆x1 +∆xT

1
˙∆x2

)
tan θ+

(∆x2×∆x1)
T

|∆x2×∆x1|
(
∆x2× ˙∆x1−∆x1× ˙∆x2

))
.

(18)

Unfortunately, under vanishing angles, the strain gradient is un-
defined. This is not a problem for elastic forces (3), because the
undefined gradient is multiplied by the vanishing strain. However,
for the dissipative force in (8), a non-zero strain rate at a zero-strain
configuration produces a force with undefined direction.

We handle vanishing angles differently, thanks to the small-angle
approximation of the tangent, i.e., limθ→0

tan θ

θ
= 1. In particular,

we define the following vector strain metric for small bending an-
gles:

ε =
v

∆u1−∆u2
, with v =

∆x2×∆x1

−∆xT
2 ∆x1

. (19)
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Figure 3: The plots demonstrate the ability of our model to control the damping behavior of each deformation mode independently, unlike
Rayleigh damping. For each deformation mode (i.e., stretch or bending), we tune the damping parameters of our model and Rayleigh damping
to produce the same damped behavior on a calibration scene, which is dominated by the mode under study. Then, using the same parameters,
we run a test scene, which is dominated by other modes. From left to right, plots of kinetic energy for the stretch calibration scene, stretch
test scene, bending calibration scene, and bending test scene, respectively. The two snapshots below each plot depict the configuration of the
corresponding scene. Gravity is turned off in the bending calibration scene. The behavior of our model is most similar to Rayleigh damping
on the calibration scenes, as expected, but it is most similar to the no-damping configuration on the tests scenes, demonstrating the ability to
control the behavior of each deformation mode independently.

The elastic potential V in (2) is defined based on the squared norm
of the strain vector. Then, from (19) and (15), we have V ∝ tan2

θ,
which for small angles yields V ∝ θ

2. We conclude that our regu-
lar and small-angle bending potentials are equivalent under small
angles. Note that the small-angle bending strain metric is not well
suited for large angles, as it tends to infinity.

In contrast to the regular bending strain (15), the small-angle
bending strain (19) has a well-defined gradient for vanishing an-
gles. Therefore, it enables robust computation of dissipative forces.
Taking the time-derivative of the strain vector in (19), we reach the
small-angle bending strain-rate:

ε̇ =
v̇− ε

( ˙∆u1− ˙∆u2
)

∆u1−∆u2
, (20)

with

v̇=−
1

∆xT
2 ∆x1

((
∆xT

2
˙∆x1 +∆xT

1
˙∆x2
)

v+∆x2 × ˙∆x1 −∆x1 × ˙∆x2
)
. (21)

In our implementation, we use the small-angle bending strain
metric for angles smaller than 5 degrees.

5.3. Shear

At yarn crossings, shear of crossing yarns, as shown in Fig. 2-right,
produces a deformation of the yarns due to contact. This effect was
modeled by Cirio et al. [CLMMO14] using a shear potential based
on the shear angle φ. This shear potential uses the following metrics
of strain and element size:

ε = φ− π

2
, (22)

Ω = L, (23)

where L is the rest-state distance between adjacent yarns.

For vanishing shear angles, the strain gradient is undefined, as
it suffers the same problem discussed above for the bending strain
gradient. We fix this problem by defining a vector strain metric for
small shear angles, analogous to the solution proposed for bending
strain.

6. Results

We have tested our damping model on the woven cloth simulation
approach of Cirio et al. [CLMMO14]. We integrate the equations
of motion numerically using an implicit backward Euler scheme
with a single Newton step, and we solve the resulting linear equa-
tion system using the implementation of the CG method provided
by Eigen [GJ∗10]. Our simulations are executed on the CPU for
testing purposes. Moreover, in order to validate our derivations, we
have compared implementations using both analytical and finite-
difference derivatives, reaching equivalent results.

We continue this section by discussing the experimental valida-
tion of the success of our damping model. First, we have validated
that our model enables independent tuning of the damping behav-
ior for the different deformation modes. Second, we have quantified
this independence by evaluating the damping ratio on animation se-
quences that excite different deformation modes. Finally, we have
analyzed the success of the model to produce realistic damping be-
havior on large-scale examples. The simulation parameters of all
our experiments are listed in Table 1. A time step of 1 ms and a
mass density of 130 kg/m3 were used in all cases.
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Figure 4: Square piece of cloth dropped on top of a sphere. In the
video we compare the damping behavior with different damping
models.

6.1. Control of Damping Behavior

We have designed small-scale experiments where we evaluate the
ability of our model to tune the damping behavior of each deforma-
tion mode independently. In addition, we have compared the per-
formance of Rayleigh damping on the same experiments. Specifi-
cally, we have tested stretch and bending dissipation. We omit the
shear deformation mode from these tests, due to the difficulty of
designing an experiment dominated by shear deformation.

For each deformation mode (i.e., stretch or bending), we design
a calibration scene and a test scene. The calibration scene is dom-
inated by motion along the deformation mode under study, while
the test scene is dominated by motion on other deformation modes.
The snapshots in Fig. 3 depict the calibration and test scenes for
stretch and bending deformation modes.

For the mode under study, we tune the damping coefficients of
our model (kd) and Rayleigh damping (β) to reach a similar damped
behavior on the calibration scene. We do not apply damping on the
other deformation modes. Then, we run the test scene using the
same parameters. A well-behaved damping model would produce
minimal damping on the test scene.

The plots in Fig. 3 compare the kinetic energy with our model,
Rayleigh damping, and no damping. From left to right, the plots re-
fer to the stretch calibration scene, the stretch test scene, the bend-
ing calibration scene, and the bending test scene. In the calibration
scenes, the behavior of our model and Rayleigh damping is similar,
as expected. In the test scenes, on the other hand, our model suc-
ceeds to exhibit a behavior similar to the no-damping configuration,
while Rayleigh damping produces undesired damped behavior.

6.2. Damping Ratio

We have also quantified the damping behavior on the scenes de-
scribed in the previous section. Specifically, we fit a characteris-
tic second-order oscillatory function to the kinetic energy plot, and
thus compute the damping ratio, a dimensionless metric that de-
scribes how oscillations in a system decay after a perturbation. The

Figure 5: Mannequin wearing a tank top. In the video we compare
the damping behavior under different parameters of our model.

characteristic function of an oscillatory second-order system is:

f (t) = 2e−ωn ζ t cos
(

ωn t
√

1−ζ2
)
, (24)

where ωn is the natural frequency and ζ is the damping ratio.

The plots in Fig. 6 evaluate the effect on the damping ratio in the
stretch calibration and test scenes as we vary the stretch damping
coefficient kd . For our model, the damping ratio of the calibration
scene grows with higher kd , as expected, but the damping ratio of
the test scene remains close to constant. For Rayleigh damping,
on the other hand, the damping ratio in both scenes grows with
higher kd . Again, the analysis of the damping ratio demonstrates
that our model clearly outperforms Rayleigh damping in its ability
to control the damping behavior of each deformation mode inde-
pendently.

Figure 6: The plots depict the damping ratio on the stretch cal-
ibration and test scenes, as we vary the stretch damping coeffi-
cient kd. For our model, the damping ratio of the calibration scene
grows with higher kd, as expected, but the damping ratio of the
test scene remains close to constant. For Rayleigh damping, on the
other hand, the damping ratio in both scenes grows with higher kd.
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Scenes Nodes Seg. length Yarn radius ke kd Rayleigh
Stretch Bending Stretch Bending β

Stretch test (Fig. 3) 400 1mm 0.25mm 5×102 10−5 3×10−7 0 4×10−3

Bending test (Fig. 3) 380 1mm 0.25mm 5×102 10−5 0 10−13 3×10−2

Sphere (Fig. 4) 40,000 0.57mm 0.16mm 104 10−3 10−5 10−12 5×10−2

Tank top underdamped (Fig. 5) 22,121 4mm 1.15mm 104 10−3 10−6 10−14 -
Tank top cr. damped (Fig. 5) 22,121 4mm 1.15mm 104 10−3 10−3 10−10 -
Tank top overdamped (Fig. 5) 22,121 4mm 1.15mm 104 10−3 10−1 10−6 -
Tank top kick (Fig. 1) 22,121 4mm 1.15mm 106 10−3 5×10−2 10−9 -

Table 1: Simulation parameters of all the scenes shown in the paper.

6.3. Large-Scale Examples

We have also evaluated the impact of the proposed damping model
on large-scale simulation examples. Please see the dynamics effects
on the accompanying video.

In Fig. 4 we show a piece of cloth that is dropped on a sphere.
The size of the cloth is 11.5× 11.5 cm, and it consists of 200×
200 nodes. In this scene, we compare the behavior of our model,
Rayleigh damping, and no damping.

Fig. 5 shows a male mannequin wearing a tank top with various
degrees of damping, all simulated using our model. It is possible
to obtain very diverse damping behaviors, ranging from clearly un-
derdamped to overly damped. Fig. 1 shows the same mannequin
wearing the same, but stiffer, tank top. The motion of the garment
remains nicely damped even under fast motion of the mannequin,
yet the fabric retains rich folds and wrinkles.

The simulation results have been rendered with the Unity game
engine. We use Catmull-Rom interpolation to smooth the curve de-
fined by the simulation nodes, and we then generate a tube-shaped
mesh per yarn for visualization.

7. Conclusion

In this paper, we have presented a formulation of dissipative forces
for yarn-level cloth simulation. Our method is general and can be
applied to all the elastic potentials that characterize cloth mechan-
ics, and we have shown its successful application to stretch, bend-
ing and shear. In the future, we would like to extend the model
to other elastic potentials, in particular those present in knitted
cloth [CLMO17]. It would also be interesting to explore the appli-
cation of dissipation potentials to other simulation models, beyond
yarn-level cloth. Our formulation of dissipation potentials offers
two major advantages in contrast to the dissipative forces of Baraff
and Witkin [BW98]: it supports arbitrary types of generalized coor-
dinates, and it enables resolution-independent parameterization of
the dissipative behavior, as it is derived from energy density princi-
ples.

We have demonstrated that our model enables independent con-
trol of the damping behavior of the various deformation modes. In
particular, we have demonstrated that the model outperforms the
classic Rayleigh damping model. We would like to evaluate the be-
havior on models of even higher resolution. To this end, the model

must be implemented on the GPU to increase its computational ef-
ficiency.

To conclude, we would like to explore the estimation of damping
coefficients from real-world measurements.
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