CEIG - Spanish Computer Graphics Conference (2016)
Alejandro Garcia-Alonso and Belen Masia (Editors)

Tools for Structural Analysis and Optimization of Procedural
Masonry Buildings

Josep Lluis Fita, Gonzalo Besuievsky and Gustavo Patow

VIRVIG, University of Girona, Spain

Abstract

We present a set of off-the-shelf tools that will enable structural simulations and optimization into procedural modeled masonry
buildings, as historical buildings like cathedrals or churches. For instance, with our tools we are capable of easily knowing
whether the roof of a given masonry structure is sound, if it falls down, and, in the later case, even which brick of this structure
has moved. For this we integrate a set of custom tools into the available Houdini platform [Sid12], together with the freely
available Bullet engine and a set of Python scripts to quickly and efficiently simulate masonry structures.

Categories and Subject Descriptors (according to ACM CCS): Procedural Modeling [Computer Graphics]: Virtual Historical

Buildings—Masonry Structures

1. Introduction

Modeling urban environments is becoming increasingly popular in
computer graphics research for applications like urban planning,
video-games or GPS-based navigation tools, to name just a few.
However, generating a convincing urban environment or building
requires considerable manual work, unless more advanced tech-
niques are used by designers such as geometric modeling and pro-
cedural modeling.

However, they lack one important feature for the description of
general buildings and masonry structures in particular: their lack of
any structural analysis. So, in recent years, some researchers have
found some ways to explore methodologies that combine visual
results with structural analysis, especially on masonry structures.
However, all of them rely on custom approaches, which require a
considerable coding effort as a structural analysis implementation
requires quite involved calculations.

For this reason we have focused our analysis on this kind of
methodologies, where the aim is to know how these techniques
influence in the creation of a realistic virtual environment. Thus,
this paper presents a methodology for using off-the-shelf tools for
the structural analysis of masonry buildings, like ancient masonry
structures and buildings, especially in those buildings built on the
Romanesque and Gothic period, such as churches or cathedrals. We
also present the algorithms and scripts needed to simulate such an
ancient structure. Specifically, our main contributions are

e the introduction of a pipeline for the structural analysis of ma-
sonry buildings, allowing any interested person to perform such
analysis without complex implementation efforts and without re-
quiring costly acquisitions.

(© 2016 The Author(s)
Eurographics Proceedings (©) 2016 The Eurographics Association.

DOI: 10.2312/ceig.20161322

e our pipeline is completely based on off-the-shelf, freely available
tools

e combined with an optimization algorithm, it allows to find valid
values for constructive parameters of a masonry building.

2. Previous Work

In this section, we describe those procedural modeling techniques
that are suitable for modeling ancient buildings of archaeological
value, mainly focusing on the structural masonry buildings. We also
review the most popular tools used for content creation.

For procedural modeling, Muller et al. [MWH*06] presented an
initial proposal intended for building generation based on the con-
cept of shape grammars. Starting from an initial axiom, these gram-
mars iteratively replaced labeled geometry parts by new parts re-
sulting after the execution of a rule specifying the basic operation
to be applied. This initial approach was later extended by many au-
thors [KK12, MWA*12], but in almost all cases only considering
the shape and not the building structure.

Whiting and co-authors [WODO09] introduced one of the first
works to describe a method based on masonry structures such as
cathedrals, stone bridges and churches for procedural modeling.
Their method allows the user or designer to create a set of rules
for the creation of an ancient building, through the introduction of
user-defined parameters. Once the user has created the set of rules,
the method automatically searches a stable configuration for the
building shape according to physical constraints with the resolution
of inverse static problems through quadratic equations of equilib-
rium. Later on, [WSW™12] presented an extension, introducing a
new set of methods that integrate the study of a building soundness

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org



http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/ceig.20161322

110 J.L.Fita & G. Besuievsky & G. Patow / Tools for Structural Analysis and Optimization of Procedural Masonry Buildings

through the integration of architecture design and structural analy-
sis. Once the geometry is loaded, the aim of the method is to create
a new stable structure through the analysis of the stability gradient,
according to constraints previously introduced by the user, such as
horizontal direction, vertical direction and block thickness.

Panozzo and co-workers [PBSH13], introduced an algorithm
that automatically generates a 3D masonry structure from an in-
put shape (e.g., a NURBS surface) in such a way that it is a self-
supporting structure without mortar, and its shape is as close as
possible to the one given as input, but constructive with masonry
blocks. More recently, Deuss and colleagues [DPW* 14], based on
the work by Panozzo et al., introduced a new algorithm that pro-
cesses all kind of generated masonry models. Their method is based
on the detection of structures called quasi-arches, which represent
subsets of the original input masonry structure that can be built
independently of any other part of the same roof. Once the roof
is partitioned in these subsets, the algorithm provides detailed in-
structions to build these through blocks, holding them with hooks
and chains. The final step is to fill the empty regions among the
quasi-arches with blocks.

Given the above mentioned arguments, we have decided to take
one masonry structure generated by [PBSH13], and tested it on a
virtual environment using an off-the-shelf numerical physics simu-
lator, with the aim of improving the knowledge about this type of
virtual shapes and the performance of our algorithm in their simu-
lation with standard and freely available tools.

3. The Algorithm

This section presents the tools we developed for the calculation of
the configuration of the masonry structures necessary for support-
ing the weight of a given vault. In Figure 1 we can see the schema
of our algorithm.

3.1. Modeling masonry buildings

As we can see on Figure 1, we start our procedure with the cre-
ation of a masonry building structure, like a cathedral or church. In
our case, we have modeled it with procedural modeling techniques,
specially the walls, and introduced configurable parameters to al-
low the optimization process described next. On the other hand, the
roof has been imported from the publicly available results provided
by Panozzo et al. [PBSH13], and added to our masonry structure.
See Figure 2.

3.2. Parameter variations

In our algorithm we distinguish between two kind of parameters:
intrinsic and constructive parameters. The first ones refer to all
parameters related to the simulation and the numerical method
used. These include the density for the bricks, 2691Kg/ m; fric-
tion, set to 0.7 corresponding to a non-polished granite surface;
mortar strength, called "glue" in our system and set to 10 which
represents a small value, as masonry buildings barely used any
mortar to hold the bricks together because of the precision used
to cut the stones; and rotational stiffness, which represents the re-
sistance of the bricks to rotate in place, and that was given a value

of 7000Nm/rad. In general, intrinsic parameters are set as con-
straints, being left outside the optimization process, but there is no
reason they could be included, if wanted, in the list of variables to
find a value for. The constructive parameters refer to any geomet-
ric parameter, like height or thickness of the walls, the brick sizes,
the size of the windows, and actually any parameter that could be
defined in the input geometric parameterized model (in our case,
created with procedural techniques) [WODO09].

Our algorithm starts by letting the user select a few construc-
tive parameters for some specified parts of the building (e.g., the
wall thickness or the number of buttresses), previously configur-
ing a maximum and minimum threshold for each one. In case of
boolean parameters (e.g., existence or absence of certain elements),
the system tries without these elements, and if a solution is not
found, then it tries again with the opposite situation. All numerical
parameters are then initialized to their maximum values. Then, in
an iterative brute-force procedure, the algorithm varies the selected
parameter determining at each step whether the structure falls down
during the simulation or not, see Section 3.3. In case the struc-
ture works correctly and stays in place, our algorithm decreases
the selected parameters, always checking they have not reached the
lower threshold limitation. After this optimization step, the algo-
rithm simply outputs the results and provides analytic of the per-
formance of the optimized resulting building. Please, refer to the
scheme in Figure 1. It is important to state that this brute-force op-
timization could be replaced by any suitable optimization method,
from gradient descent methods to stimulated annealing [PTVF07].

3.3. Structural Stability

At first, our algorithm takes the initial vertical position (the y-axis
in our implementation) of the bounding box of the entire vault, and
saves this initial value. At each iteration of the optimization pro-
cess already described, a physical simulation is performed using
the standard Bullet library. When this simulation has finished, the
algorithm takes again the vertical position (Y coordinate) of the
vault bounding box center, and analyses this with Equation 1.

(InitialRoo f Position — FinalRoo f Position) < T hreshold (€8]

If the result of the difference between InitialRoofPosition and Fi-
nalRoofPosition is greater than the threshold, our algorithm under-
stands that the vault is not supported by the walls. If it does, the
algorithm repeats the same operation, but this time repeating the
computation for each brick, which has a higher computational cost,
and verifies the movement of the bricks with Equation 2.

l[]\gqu (Initial BrickPosition; — FinalBrickPosition;) < Threshold ~ (2)
a TICKS

Where InitialRoofBrickPosition and FinalRoofBrickPosition are re-
spectively the vertical positions of the bounding box centers of the
initial and final position of a given brick. If they are greater than the
user-defined threshold, then the algorithm assumes that the brick
has moved along the vertical axis.

It is important to notice that, even if the vault (or the entire build-
ing) may hold its global position, there could be locality instabil-
ities, resulting in cracks in the structure, which in our system are
detected by the movement at the brick level. So, actually, our sys-

© 2016 The Author(s)
Eurographics Proceedings (© 2016 The Eurographics Association.



J.L.Fita & G. Besuievsky & G. Patow / Tools for Structural Analysis and Optimization of Procedural Masonry Buildings 111

Figure 1: Scheme of our pipeline.

Figure 2: The masonry structure with the roof taken
from [PBSH13].

tem is not only capable of detecting severe structural instabilities,
but also to detect small movements.

4. Application Example: Walls and buttress

As we said above, our system can easily accommodate a whole
range of stability analysis, from global one to a brick-level as-
sessment. This, of course, may include some external stresses that
might threaten the whole building stability. As we compute dis-
placements at the brick level, we traverse the walls or the roofs by
visiting all bricks in order to detect some cracks. In case that the de-

(© 2016 The Author(s)
Eurographics Proceedings (©) 2016 The Eurographics Association.

tection is positive, the algorithm automatically adds buttresses and
automatically calculates the most suitable number of buttresses for
each wall, in a similar way as done before.

The first thing that the algorithm does is to clean any additional
structure (e.g., buttresses) that might have been created previously.
Then, it starts by accommodating one buttress at each wall, and it-
eratively proceeds by increasing the number of buttresses. The cal-
culation of the buttresses positions follows the expression in Equa-
tion 3.

Initial Position = (SpaceAmongButtresses + WallPosition) 3)

Where SpaceAmongButtresses and WallPosition, are constants that
our algorithm calculates from the longitudes of the walls through
the expresion in Equation 4.

LongitudeRow = ((NumberO fPoints x SizeO fBrick) + Hal fBrick) (4)

Where the parameter NumberOfPoints refers to the number of
bricks in a wall row. The SizeOfBrick refers to the brick longitude,
taking into account that each row of bricks has, at the end, a Half-
Brick. The last parameter refers to the size of a half brick, which
usually is computed as SizeO fBrick/2, but can differ for aesthetic
reasons in a real building.

Once the algorithm has obtained the LongitudeRow parameter,
then it calculates the distance among buttresses through the follow-
ing equation:

LongitudeRow

DistanceAmongButtresses = )
(X NumberO fButtresses) + 1

Our algorithm finally repeats the procedure for computing the



112 J.L.Fita & G. Besuievsky & G. Patow / Tools for Structural Analysis and Optimization of Procedural Masonry Buildings

InitialPosition (See Equation 3) used for the first buttress, repeat-
ing it for each wall. It uses the user-defined constant DistanceA-
mongButtress in order to obtain the initial situation for the next
buttresses, in a way such that the set of buttresses are centered with
respect to the wall endings. To create the buttresses the algorithm
follows the same procedure as the one explained for the creation of
the walls, with the difference that it uses necessary parameters such
as Orientation are taken automatically (i.e., perpendicular) from
the respective wall. The algorithm keeps track of the overall con-
structive parameters for the stability of the building, taking default
values for the intrinsic parameters like the ones to setup the global
structural simulation, the stone density or the strength of the mortar
needed between the bricks.

Our algorithm iterates over the buttresses thickness the same way
as before, detecting failures and cracks in their structure. If the re-
sult is positive for each wall, it repeats automatically the steps de-
scribed above until the cracks have been eliminated. As a result
the outcome can be that some walls require a smaller number of
buttresses than others for their stabilization. See Figure 3.

Figure 3: The walls with their respective buttress.

4.1. Results

In this section we discuss about the results that we have obtained
with our prototype implementation. For our implementation, we
have chosen freely available commercial software Houdini from
SideFX [Sid12], the open source Bullet solver (incorporated by de-
fault in Houdini, along with other solvers) and Python scripts.

We have designed two kind of tests for our algorithm. For the
first one, we tested the structure with a small value of stiffness for
the building bricks (around 7000Nm /rad) and three different min-
imum thickness thresholds for the walls, Maximum (2m), Medium
(1m) and Minimum (0.5m). This resulted in the addition of 6 but-
tresses in all walls except for the back one, which required 7 but-
tresses. For the second, we tested the structure with the same fea-
tures but, in this case, with a larger value of the stiffness between
the bricks (this time we used the value of 70000Nm/rad). We ob-
served that the results depend heavily on the stiffness values and the
amount of mortar (i.e., glue) added between the bricks. For a small
value of the stiffness, the building is stable only for the thickest con-
figuration, but for a large value of the stiffness the configuration is
stable even for the thinnest wall, without requiring the introduction

of additional supporting structures like buttresses. The reason is
that, with the Minimum Friction value for the vault, the Rotational
Stiffness has to provide the stabilization setting for the structure. If
both parameters are set to low values (around 7000Nm/rad), the
structure is unstable unless buttresses are added. In this case the
maximum tolerable net force on the walls is smaller than the Max-
imum Friction value for the vault, resulting in an overall stability
setting. See figure 4.

Figure 4: User interface of our application.

With respect to timing, to perform a complete optimization our
unoptimized prototype needs around 10 minutes to find the optimal
values, even using our brute-force optimization method. Thus, it is
expected that, with a more appropriate optimization algorithm (e.g.,
conjugate gradients) and with an optimized implementations, this
time could be much reduced, in our experience up to the order of
a few seconds. This would make this simulation feasible for near-
interactive editing operations.

5. Conclusions

After an initial review of the state-of-the-art literature on techniques
involving soundness analysis, we found that only a handful of pa-
pers deal with this complex, but crucial aspect of modeling, all of
them relying on complex custom implementations. Given the im-
portance of this kind of analysis in architecture, and the increas-
ing use of procedural techniques, we decided to develop a pipeline
based on off-the-shelf tools for the structural analysis of masonry
buildings. As part of our ongoing experimental study, we have
tested the algorithm over masonry structures that combine the main
elements found in a typical ancient masonry building: walls, but-
tresses and a vault. To test our pipeline with different settings, we
created procedural walls and buttresses, but used a pre-computed
roof with proven structural stability [PBSH13], and played with its
constituent parameters. We have learned about the complex inter-
play of the different parameters affecting the simulation, in par-
ticular through the relationship among wall thickness, friction and
rotational stiffness among the bricks; and structural elements like
buttresses. This is important not only for entertainment purposes,
but also for art historians, curators, conservators and other special-
ists related to ancient masonry buildings. As future work we plan
to go a step forward and use our tools to simulate the complex con-
struction process of a masonry building like an ancient cathedral.

(© 2016 The Author(s)
Eurographics Proceedings (© 2016 The Eurographics Association.



J.L.Fita & G. Besuievsky & G. Patow / Tools for Structural Analysis and Optimization of Procedural Masonry Buildings

Acknowledgments

We would like to thank the anonymous reviewers for their useful
comments. This work was partially funded by the TIN2014-52211-
C2-2-R project from Ministerio de Economia y Competitividad,
Spain.

References

[DPW*14] DEUSS M., PAN0OzzO D., WHITING E., LIU Y., BLOCK
P., SORKINE-HORNUNG O., PAULY M.: Assembling self-supporting
structures. ACM Trans. Graph. 33, 6 (Nov. 2014), 214:1-
214:10. URL: http://doi.acm.org/10.1145/2661229.
2661266,doi:10.1145/2661229.2661266. 2

[KK12] KRECKLAU L., KOBBELT L.: Interactive modeling by procedu-
ral high-level primitives. Computers & Graphics, 0 (2012), —. 1

[MWA*12] MUSIALSKI P., WONKA P., ALIAGA D. G., WIM-
MER M., VAN GooOL L., PURGATHOFER W.: A survey of
urban reconstruction. In EUROGRAPHICS 2012 State of the
Art Reports (May 2012), EG STARs, Eurographics Association,
pp. 1-28. URL: http://www.cg.tuwien.ac.at/research/
publications/2012/musialski-2012-sur/. 1

[MWH*06] MULLER P., WONKA P., HAEGLER S., ULMER A.,
VAN GooL L.: Procedural modeling of buildings. ACM Trans. Graph.
25,3 (2006), 614-623. 1

[PBSH13] PAN0zzO D., BLOCK P., SORKINE-HORNUNG O.: Design-
ing unreinforced masonry models. ACM Trans. Graph. 32,4 (July 2013),
91:1-91:12. URL: http://doi.acm.org/10.1145/2461912.
2461958,d01:10.1145/2461912.2461958. 2,3,4

[PTVFO7] PRESS W. H., TEUKOLSKY S. A., VETTERLING W. T.,
FLANNERY B. P.: Numerical Recipes 3rd Edition: The Art of Scientific
Computing, 3 ed. Cambridge University Press, New York, NY, USA,
2007. 2

[Sid12] SIDEFX: Houdini 12, 2012. http://www.sidefx.com. 1, 4

[WOD09] WHITING E., OCHSENDORF J., DURAND F.: Procedural
modeling of structurally-sound masonry buildings. ACM Trans. Graph.
28 (December 2009), 112:1-112:9. 1,2

[WSW*12] WHITING E., SHIN H., WANG R., OCHSENDORF J., DU-
RAND F.: Structural optimization of 3d masonry buildings. ACM Trans.
Graph. 31, 6 (Nov. 2012), 159:1-159:11. 1

(© 2016 The Author(s)
Eurographics Proceedings (©) 2016 The Eurographics Association.

113


http://doi.acm.org/10.1145/2661229.2661266
http://doi.acm.org/10.1145/2661229.2661266
http://dx.doi.org/10.1145/2661229.2661266
http://www.cg.tuwien.ac.at/research/publications/2012/musialski-2012-sur/
http://www.cg.tuwien.ac.at/research/publications/2012/musialski-2012-sur/
http://doi.acm.org/10.1145/2461912.2461958
http://doi.acm.org/10.1145/2461912.2461958
http://dx.doi.org/10.1145/2461912.2461958

