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Figure 1: Industrial facility footprints (left) and procedurally modeled facility in CityEngine’s desert scene [ESR] (right).

Abstract

We present an end-to-end system for procedurally modeling an industrial facility. The system is a collection of
utilities that work together to assemble, lay out, and model a typical industrial facility (e.g. a wastewater treatment
plant). A plug-in to the CityEngine R© procedural modeling application was built in Java TM using an open-source
framework. The plug-in provides the interface to access the facility assembly and layout engines, the facility rule
file and Python script generators, and the OBJ footprint exporter. The system provides functionality for placing
the facility model into an existing 3D scene using an established facility location algorithm that maximizes the
minimum distance from existing structures in the scene.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 [Computer Graphics]: Graphics Systems—
Stand-alone systems I.3.8 [Computer Graphics]: Applications—Procedural modeling

1. Introduction

Generating 3D structures using procedural methods is rel-
atively straightforward for stand-alone buildings [MSK10,
MWH∗06] and structures with repetitive geometries
[EMP∗03,MM11] because unconnected geometric footprint
shapes (rectangles, circles, polygons, etc.) can be crafted
by hand or imported from existing databases like Open-
StreetMaps [HW08, Ope11].

In contrast, footprints (Figure 1 (left)) for industrial facil-
ity sites like wastewater treatment plants (WWTPs) may en-

tail complex inter-relationship dependencies between build-
ing structures that are generally simplified or non-existent
in current databases (Figure 2). To address these challenges
we developed a system to create facility models that use an
industrial facility footprint which is faithful to the industrial
process being modeled. We use the WWTP process flow dia-
gram which begins at pre-treatment and ends at disinfection
(chlorination, ultraviolet radiation, etc.) to assign adjacent
facility components as nodes in a connected graph.

One of the most challenging aspects in developing a 3D
modeling system for a specific type of industry is in acquir-
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(a) Aerial image of a WWTP. (b) Missing footprint of Fig. 2a.

(c) Aerial image of a WWTP. (d) Footprint for Fig. 2c.

Figure 2: Two aerial images [Goo15a] of WWTPs (Fig-
ures 2a and 2c) and their respective OpenStreetMap [Ope11]
footprints (Figures 2b and 2d).

ing the domain knowledge about the use of the connected
and unconnected components in the facility design. There-
fore, we rely on the data and methods described in Bishop
et al. [BFM14] for selecting facility components of WWTPs
using a graphical model and arranging facility components
using a physics based simulation and mathematical opti-
mization.

In this paper, we present topics beyond our previous work
[BFM14] that include:

• using geometric details about the modeled facility by
learning the size of certain components in the facility from
a hand labeled data set,

• using a force-directed layout algorithm to generate the ini-
tial configuration to the physics based layout engine, and

• creating a hybrid layout scheme that combines the output
of the linear program optimization with the physics based
layout.

Additionally, we describe the details for implementing an
Eclipse plug-in that we use to create a facility modeling tool
which runs inside CityEngine.

2. Related Work

A comprehensive survey of procedural modeling by Smelik
et al. [STBB14] provides useful insights and categories of
procedural methods used in virtual worlds. Another survey
by Musialski et al. [MWA∗13] provides a broad overview
of techniques related to urban 3D reconstruction includ-
ing computer vision techniques, facade modeling, and point

cloud methods of reconstruction. While both surveys pro-
vide an in-depth review of the current algorithms and sys-
tems for procedural modeling and 3D reconstruction, there
are relatively few procedural modeling papers that address
automatic footprint generation in a way similar to Merrell
et al. [MSK10] or the synthesis and creation of new content
similar to the ideas presented by Watson et al. [WMV∗08].

3. Approach

In this section, we describe additions to the data set used for
constructing the probabilistic model, improvements to the
layout methods in [BFM14], and the CityEngine rule file and
Python script generator.

3.1. Facility and Geometric Data

A keyhole markup language (KML) [Goo15b] file with geo-
referenced locations for GoogleEarth Pro was programmat-
ically constructed in Python with markers and links to ref-
erence information for the location of 445 WWTPs [Ent13]
in the communities of Valencia, Castellón, and Alicante. A
KML file is based on the XML format and can store place-
marks, annotations, positions, geometry, and other attributes.
KML files are convenient for accessing locations in Google’s
geographic information system applications, for traveling
quickly to aerial images of geographic areas of interest, and
for storing geometric surface features.

Using the KML locations we manually construct a rep-
resentative data set of geometric details from aerial images
(Figure 3). The data are used to impute the geometric de-
tails of all the facilities basic geometric shapes. We use
the method of Expectation Maximization given by Schafer
[Sch97] and as implemented in [HFH∗09]. The radius of cir-
cular and spherical objects, the length and width of rectan-
gular objects, and the site areas were measured.

Figure 3: Facility geometric data.

3.2. Footprint Generator

A footprint, or 2D geometric shape, for buildings and struc-
tures is used in procedural modeling as the initial shape for
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operations like extrusions, rotations, and other transforma-
tions. We synthesize industrial facility footprints by optimiz-
ing the arrangement of a set of inferred facility components
from a Bayesian network [BFM14].

We adapted and improved upon the two layout meth-
ods described in [BFM14]. The first improvement (Sec-
tion 3.2.1), or hybrid layout, involves running the physics
based simulation inside the cells output by the block plan
linear program optimization. The second improvement (Sec-
tion 3.2.2), adds the use of a force-directed layout algorithm
[FR91] to generate the set of initial coordinates for each
component in the facility prior to running the physics based
layout. This approach differs from the prior work which ran-
domly initializes the initial coordinates.

3.2.1. Hybrid Layout

We create a hybrid layout scheme by combining the random
and cellular optimization approaches from [BFM14]. The
footprint is created by placing similar components in an op-
timized block, or cell, and allowing the physics simulation
to run. A steady-state occurs when the movement of each
component is less than a threshold close to zero. The cells
are created by the linear program optimization [MV88]. The
components in the physics simulation are restricted to their
respective cells by rigid planes at the cells’ borders. See Fig-
ure 4.

3.2.2. Force Directed Layout

Rather than using random coordinates for the initial
placement of facility components we introduce the use
of the Fruchterman-Reingold force-directed graph lay-
out algorithm [FR91] to the facility layout problem. The
Fruchterman-Reingold layout algorithm repels all non-
neighboring nodes using a modified version of Hooke’s
law used for computing spring compression forces. The at-
tracting force is Fattr(x) = x2

k and the repelling force is

Frepel(x) =
−k2

x where x is the magnitude of the difference
vector between two object’s positions, k =

√ a
n , a is the area

of the site, and n is the number of facility components in the
graph [Tam07]. The output of the force-directed algorithm
is used as the input to the physics based simulation [Bul13].
The physics based simulation uses spring constraints, point
constraints, and initial velocities to spread out the connected
facility components in a site area which is represented as a
convex polygon.

3.3. Rule and Script Generators

We use CityEngine’s CGA shape grammar [MWH∗06] that
was derived from [WWSR03] for the procedural modeling
of various buildings in the WWTP. Rules are generated and
assigned programmatically using a Python script generated
and exported to the CityEngine project from the footprint

(a) Layout constrained by rigidbody planes.

(b) Example procedural model built with a footprint.

Figure 4: Hybrid footprint example.

generator. The script is run via a Jython instance and auto-
matically called when a user selects the Build Facility plug-
in menu item. Refer to Section 5.1 for details about the fa-
cility modeling plug-in.

4. 3D Scene Construction

We created a synthetic scene to test the placement of the
industrial facility models. The scene was constructed using
terrain, high-resolution aerial imagery as textures, 3D mod-
els, and the facility model built from the methods outlined in
this paper.

4.1. Facility Location

The placement of both desirable and undesirable facilities
in urban areas is well-studied [Her08, RT90] and both have
geometric solutions. In our work, we are concerned with
the obnoxious, or undesirable, facility location problem. The
obnoxious facility location problem is concerned with plac-
ing a facility (nuclear power plant, WWTP, etc.) a maximum
minimum distance away from a set of locations.
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4.1.1. Locating Facilities in Urban Areas

Once a layout and 3D model have been constructed, we are
interested in placing the facility model at a reasonable site in
the scene. We place a facility according to the obnoxious fa-
cility location problem that can be solved using a geometric
construction (Figure 5). Our system takes as input a custom
convex polygon in OBJ format. The footprint generator uses
the polygon boundaries for site-boundary constraints. The
polygon can be located either at a user’s discretion, or the
centroid of the polygon can be optimally placed using the
obnoxious facility location method described in this section.

Figure 5: Obnoxious facility location is the center x of the
largest empty circle (LEC) inside the convex hull of a set of
locations [Tou83].

We use a geometric algorithm by Toussaint [Tou83] for
computing the largest empty circle (LEC) for a set of given
locations. The center of the LEC contained in the convex
hull of all the locations of existing structures in the scene
is the location for the obnoxious facility. We use the CGAL
computational geometry library for computing the LEC. A
user can choose to use this location or place the facility at
any desired location in the 3D scene.

4.2. Facility Aesthetics

Once a layout has been generated we randomly place indus-
trial 3D model assets from Google’s 3D warehouse [Tri13]
throughout the scene to add to the realism.

4.2.1. 3D Models

Fifty-six high fidelity 3D models of buildings (Figure 6a)
were downloaded from [Tri13] and included in a CityEngine
scene of the University of California, Davis (UC Davis) cam-
pus (Figure 6b). The 3D models were inserted into the 3D
scene along with procedurally generated buildings and the
generated 3D facility model. Prior to their use in CityEngine,
the high fidelity models needed to be converted from Google

Sketchup (skp) to OBJ format, and transformed to the origin
in world space, uniformly scaled, and cleaned up in Maya.

(a)

(b)

Figure 6: Subset of the 3D Warehouse [Tri13] building mod-
els of UC Davis (top) and close-up of a water tower used in
constructing the synthetic scene (bottom).

In addition to the models, we created a CityEngine as-
set library for the WWTPs and cityscape scenes. The asset
library includes textures, digital elevation models (DEMs),
building rules, and 3D models. A rendered close-up of the
facility model, which uses a combination of existing models
and procedurally generated facility components, is shown in
Figure 7.

4.2.2. Terrain and Surface Textures

For the terrain, we used 7.5 minute 1-arc second (30 me-
ter) resolution DEMs for Yolo and Solano counties in North-
ern California, USA. Each county contains several individ-
ual DEM files (or tiles) that were downloaded from [Unia].
The tiles were loaded into an opensource GIS software sys-
tem [QGI09], stitched together and converted from the Uni-
versal Transverse Mercator (UTM) coordinate system in the
North American Datum (NAD 27) to WGS 84.

In addition to terrain, we used a set of high resolution
(.15 meter) orthorectified aerial imagery (ortho-imagery) ac-
quired by the USGS in March 2009 [Unib] as the ground
surface texture. The full-resolution for each texture is
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Figure 7: WWTP facility rendered with 3D models (vehicles, tanks, shipping containers, and clarifiers) from [Tri13].

5280x5280 and is approximately 108MB in size. The im-
ages were reduced to a resolution of 2000x2000 prior to us-
ing them in CityEngine. The ortho-imagery uses the North
American datum 83 (NAD 83) California Zone 2 coordinate
system readjusted by the national spatial reference system
2007 survey (NSRS 2007). Each image is converted to WGS
84 zone 10N prior to being used as a texture in CityEngine.

5. Implementation

We use the Eclipse Rich Client Platform (RCP) [Ecl] to gen-
erate a dynamically loaded Java [Ora15] plug-in that is self-
contained in a Java archive (jar) file to perform specific 3D
modeling tasks inside CityEngine.

We use the active instance of the ‘Java version of the
Python’ (Jython) [Cor15] interpreter to execute CityEngine
Python code in the CityEngine interface. The plug-in
can execute two external applications, a customized Weka
BayesNet Editor that can generate a list of facility compo-
nents and the OpenGL layout viewport and script generator.
Refer to the system schematic shown in Figure 8. To install
the facility modeling plug-in, the jar file is placed inside the
CityEngine/plugins directory.

5.1. CityEngine Java Plug-in

The Eclipse RCP is built using the OSGI component archi-
tecture specification [OSG] which provides the framework
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• Physics driven layout 
• C++, Bullet, MS Solver, CGAL 

Rule and Script File Generator 
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Rule 
Files 
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Figure 8: Schematic of the facility modeling plugin and the
Eclipse plugin architecture [IBM06].

for dynamically loading bundles of files, or plug-ins, in an
Eclipse RCP application. The essential files in an RCP plug-
in are a manifest.mf file, the Java source files, and a plu-
gin.xml file that maintains the plug-ins contributions via ex-
tension points into the Eclipse RCP application (commands,
menu items, etc.) [ML05].

The main features of the CityEngine plug-in are the fol-
lowing:
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Figure 9: Facility modeling Java plug-in menu (left) and
OpenGL layout generator and viewport (middle and right).

• An ‘Open Weka Bayes Editor’ menu (Figure 9 (left))
which allows a user to condition the Bayesian network,
for example, to set the population size or a facility’s flow
rate.

• An ‘OpenGL Layout Generator’ menu item that opens the
layout generator and OpenGL viewport (Figure 9 (right)).

• Lastly, a ‘Build Facility (run .py and cga)’ option that
opens a dialog box so users can point to the location of
the Python script created from the layout generator. The
python script executes a series of commands and rules
(written in CityEngine’s CGA shape grammar). The script
drives the construction of the WWTP facility model using
the exported OBJ footprint from the layout generator.

Using predefined rules, each footprint component is as-
signed a start rule that is evaluated in CityEngine when
the ‘Build Facility’ menu item is selected. The predefined
rules include steps for constructing certain components in
the WWTP (e.g. the administration building, biologic re-
actors, etc.) and for importing existing 3D models into the
scene.

6. Results

Once an industrial facility site has been generated we use
Autodesk’s Maya to test render synthetic 2D images. An an-
imated turntable of the site was created which mimics real-
world data collection techniques and, when rendered, gener-
ates synthetic 2D aerial imagery (Figure 10) that can be used
for other computational work.

7. Discussion

This paper discusses a method for improving the workflow
of procedurally modeling industrial facilities by integrating
a layout engine written in C++ into the CityEngine interface.
The benefit of this is that 3D modeling workflows which use
CityEngine can be customized using the Eclipse RCP frame-
work by custom plug-ins. We present our plug-in and discuss
the functionality associated with the menu items, including
the layout engine, BayesNet editor, and rule file and script
generator entries. In addition, we presented modifications to
the layout algorithms presented in [BFM14] and discussed
additions to data, and placement of industrial facilities in a
scene.

8. Future Work

We are working on adding synthetic roads to the facil-
ity footprint using the road styles discussed in [CEW∗08,
PM01]. We propose using a geometric construction to find
the medial axis between different sets of polygonal compo-
nents on the site. For example, all clarifiers and pretreatment
components are grouped into sets of the computed convex
hulls of each component. The medial axis between the poly-
gon groups can then be used as roads. We are also investi-
gating improvements to the linear program optimization ini-
tial conditions. Hand-tuning the set of cells as input is not
optimal and thus automatic cell arrangements based on a
topological segmentation [GP12] of the terrain are being re-
searched.
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