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Abstract
In this paper, we evaluate the HDAF (Hermite Distributed Approximating Functionals) family of interpolation and
derivative functions, with respect to their accuracy for reliable volume rendering, and compare them with other
interpolation and derivative estimation filters. We utilize several different evaluation methods, both analytical and
experimental. The former includes the order of decay of the global error, the local spatial error, and the behavior
of the filters in the frequency domain. In the experimental part, visualizations of both synthetic and medical data
are produced and studied. We show that the HDAFs exhibit superior behavior if the volumetric data are distorted
by high frequency noise, and perform well under noise free conditions. This due to their ability to adjust the range
of recovered frequencies.

Categories and Subject Descriptors (according to ACM CCS): G.1.0 [General]: Error analysis, G.1.1 [Interpola-
tion]: Interpolation formulas, G.1.2 [Approximation]: Special function approximations, I.3.7 [Three-Dimensional
Graphics and Realism]: Ray-casting, shading, and I.4.5 [Reconstruction]: Series expansion methods.

1. Introduction

Data have been represented visually throughout human his-
tory because this format lends itself to intuitive interpretation
and enables communication of information. Another task
pertaining to the visualization field is to seek understanding
and extract information from data. The evolution of medical
imaging modalities like CT and MRI has made it possible to
acquire three-dimensional data of various types for diagno-
sis purposes. The most common method of presenting this
information is to view the data slice by slice. Oftentimes,
better understanding can be attained if the data are visualized
all at once, through volume rendering. One commonly used
volume rendering method is ray-casting, and this method
will be used for the volume visualizations throughout this

† This work was supported in part by the National Science Foun-
dation Career Award CISE 9985482 and UH Texas Learning and
Computation Center.

paper. The ray-casting algorithm constructs images by cast-
ing rays through the volume data, one for each pixel in the
image, and retrieving values along the rays for classification
and determination of the pixel color. If the known data points
do not coincide with the needed sample points, interpolation
of the values is required. Additionally, to be able to interpret
the third dimension, which is lost after the projection onto
the two-dimensional image, we need to add shading. The
shading algorithm requires the derivative information, which
has to be estimated as well, through derivative interpolation.
The quality of the rendering depends on the interpolation
and derivative estimation methods used. The accuracy of the
latter has great importance as the shading of an object gives
indications for its shape and orientation.

In medical applications, the accuracy of volume visualiza-
tions is extremely crucial. Removal of important information
may result in false negative diagnosis, while addition of ar-
tifacts and distortions can make it difficult to extract useful
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information and draw correct conclusions. Furthermore, the
volumetric data might be corrupted by noise, which makes
the extraction of accurate information even harder. The in-
terpolation method should preferably discard the noise and
provide a faithful reconstruction of the original signal.

The goal of this paper is to evaluate the Hermite Dis-
tributed Approximating Functionals, with respect to their
accuracy for reliable volume rendering, and compare them
with other interpolation filters. The comparisons are per-
formed using different evaluation methods for the analysis
of various properties. In Section 2, the mathematical foun-
dations for interpolation and perfect reconstruction are pre-
sented. Section 3 surveys previous work in the field of visu-
alization and filter analysis. The filters studied in this paper
will be presented in Section 4 and analyzed in Section 5.
Section 6 contains the experimental results. Finally, in Sec-
tion 7, we summarize our findings.

2. Background

The interpolation operation can be written as a convolution
of the discrete samples fk with a continuous interpolation
filter w(x), or:

fr(x) =
∞

∑
k=−∞

fk ·w
( x

∆
− k

)

, (1)

where ∆ is the sampling distance. Similarly, convolution
with a continuous derivative filter, which can be created by
computing the derivative of the interpolation filter, under
certain additional hypotheses produces the derivative of the
function2.

The interpolation filters usually satisfy the interpolating
constraint, which requires that the interpolation operation
does not alter the known values at the sample points, or:

fr(k∆) = fk,∀k ∈ Z (2)

This translates into a filter that takes a unit value at the origin
and vanishes at multiples of the unit distance from it. One
problem with the interpolating constraint is that the same
level of accuracy is not achieved both on and off the sam-
ple points. This leads to poor accuracy in the derivative at
the sample points. Moreover, the acquired data are usually
contaminated by noise, so there is no need to preserve them
exactly. By regarding the interpolating constraint as a soft
constraint, all points can be treated the same, which has been
called the well-tempered property21.

According to the sampling theorem by Shannon11, any
bandlimited function can be recovered uniquely from its
samples if it was sampled at or above the Nyquist rate, which
is twice the highest frequency content of the function. The
ideal interpolation filter that produces the perfect reconstruc-
tion is the sinc function. However, the sinc function is never
used in practise since it has a very slow decay at infinity.
While truncation of the function will make it feasible to use,

it will also result in significant reconstruction errors2, 14. The
Fourier transform of a truncated sinc contains large lobes,
which causes aliasing and ringing effects. One solution is to
approximate the sinc, but minimize the artifacts and other
reconstruction errors.

3. Previous Work
Strang and Fix12 showed a number of equivalent ways to
retrieve the approximation order, which describes the decay
rate of the approximation error as the sampling step becomes
smaller. Thévenaz et al.14 presented the approximation or-
der of various interpolation filters. After performing several
experiments, they concluded that it was the most important
index of quality. Möller et al.8 studied the local spatial be-
havior of the error through the Taylor series expansion of the
reconstruction process and used it to classify different cubic
interpolation and derivative filters. The analysis was later ex-
panded to produce a spatial filter design scheme9. Theußl et
al.13 made use of the same analysis method in their study
of various windowing functions that can be used to bound
the sinc/cosc filters. Bentum2 compared the frequency re-
sponse of various interpolation and derivative methods in his
research, as deviations from the ideal filter lead to distortions
in the volume rendering. Marschner and Lobb7 proposed a
number of metrics to measure the quality of interpolation
filters from their frequency representation.

Experimental comparisons involve reconstructing func-
tions from sampled data3, enhancing the resolution of an
image2, 15, and performing volume rendering on analytical
or medical volumetric data1, 2, 7, 8, 9, 10, 13, 18. The inspection of
the rendered images is subjective and conclusions can be
drawn only if the differences are very evident, like in the
comparison performed by Neumann et al.10 between their
new gradient estimation method and the simple and poor
central difference. Their method, which is based on linear
regression, can also be used for smoothing purposes, and
therefore produces much better results. To make the com-
parison of visualizations more objective, Volpi18 used five
image level metrics in his evaluation. Kim et al.6 try to
overcome the limitations of image level comparisons with
a data level approach using intermediate rendering informa-
tion. Möller et al.9 computed and visualized the angular er-
ror in the reconstruction of an analytical function to compare
different filters and filter settings.

4. Interpolation Techniques

In this section, the interpolation filters that we analyzed and
used in the experiments are presented. The filters are all sep-
arable, which means that the three-dimensional interpola-
tion filters are constructed from three one-dimensional func-
tions as follows:

w(x,y,z) = w(x)w(y)w(z) (3)
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The partial derivatives of separable multidimensional filters
are constructed the same way, using two one-dimensional in-
terpolation filters and one one-dimensional derivative filter2.

4.1. HDAF Approximation

Hoffman and Kouri4, 5 introduced the Distributed Approxi-
mating Functionals (DAFs) as approximations of the Dirac
delta function in the time domain, for the purpose of approx-
imating continuously differentiable functions from discrete
samples that had possibly been corrupted by noise. Both in-
terpolative and non-interpolative variants of the DAF exist.
Hermite Distributed Approximating Functional (HDAF), the
first DAF developed, is not interpolative and will not pre-
serve the input data. Instead, it can achieve similar order of
accuracy both at and between sample points, also referred
to as the well-tempered property. This has been proven to
be useful in padding, periodic extension, and non-periodic
extrapolation20. The family of HDAFs δN(x), all having a
regularity of C∞, is given by21:

δN(x− x′|σ) =
e−z2

√
2πσ

N

∑
n=0

(

−1
4

)n 1
n!

H2n(z) (4)

and the Fourier transform is given by:19

δ̂N(ξ|σ) = e−
ξ2σ2

2

N

∑
n=0

(ξ2σ2)n

2nn!
, (5)

where z = (x− x′)/σ
√

2, Hn(x) is a Hermite polynomial of
degree n, and N and σ control the behavior of the HDAF. The
Gaussian factor e−z2

ensures that the function decays fast
enough in the spatial domain. This makes it possible to trun-
cate it at a point where the loss will not alter the approxima-
tion too much. Therefore, the σ controls the effective width
of the function. The HDAF approximation is given by:

f (x) ≈ fHDAF (x) = ∆∑
j

f (x j)δN(x− x j) (6)

f (l)(x) ≈ f (l)
HDAF (x) = ∆∑

j
f (x j)δ

(l)
N (x− x j), (7)

With a suitable choice of the parameters N and σ, it is possi-
ble to estimate the function and a finite set of derivatives to
a desired level of accuracy21.

The HDAFs chosen for this evaluation are the HDAF1,
HDAF4, and HDAF6 (see Figure 1), together with their
derivatives for the gradient estimation. The σ parameter is
initially assigned a value at which the HDAFs are close to
interpolative when ∆ = 1. These settings (σ = 0.598413420,
0.981772018, 1.169944988, respectively) will be changed
later to study the effects on the reconstruction when the
HDAFs are more approximating.

4.2. Piecewise Polynomial Interpolation

Traditionally, ray-casting implementations have used simple
interpolation methods, like linear interpolation and finite-
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Figure 1: (a) HDAF1 (σ = 0.598413420), (b) HDAF4 (σ =
0.981772018), and (c) HDAF6 (σ = 1.169944988) interpo-
lation filters and their Fourier transform (d-f).

difference gradient estimation, due to the computational ef-
fort required in volume rendering and the limitations in
computer speed. With special purpose hardware, interactive
speeds can be accomplished even when using larger filters,
like the Catmull-Rom filter and its derivative2. This piece-
wise cubic polynomial filter is given by9:

wC−R(x)











3
2 |x|

3 − 5
2 |x|

2 +1, 0 ≤ |x| < 1
− 1

2 |x|
3 + 5

2 |x|
2 −4|x|+2, 1 ≤ |x| < 2

0, 2 ≤ |x|.
(8)

It belongs to the class of C1 functions and has a support of
[-2, 2].

Thévenaz et al.14 found that the Moms functions (Maxi-
mal Order and Minimal Support) gave the best combination
of quality and speed. Two of the presented Moms functions
have been chosen for this comparison: the cardinal cubic B-
spline and the cardinal cubic o-Moms. The filters are inter-
polative and have infinite support, but the same results can
be achieved by prefiltering the data and applying the non-
interpolative cubic B-spline and cubic o-Moms with com-
pact support. The prefiltering converts the samples to the cor-
rect coefficients and can be implemented efficiently through
recursion17, 16. The cubic B-spline is given by9:

β3(x)











1
2 |x|

3 −|x|2 + 2
3 , 0 ≤ |x| < 1

− 1
6 |x|

3 + |x|2 −2|x|+ 4
3 , 1 ≤ |x| < 2

0, 2 ≤ |x|
(9)

and the cubic o-Moms can be constructed using a cubic B-
spline and its second derivative as follows14:

o-Moms3(x) = β3(x)+
1

42
d2

dx2 β3(x) (10)
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5. Analysis

Three analytical comparison methods were utilized in the
analysis of the filters: the approximation order, the local spa-
tial error, and the frequency response of the filters.

5.1. Approximation Order

The rate at which the reconstructed function converges to the
true function as the sampling distance decreases determines
how good the interpolation operator is. When the sampling
step becomes sufficiently small, the behavior of the error can
be described by two variables, the approximation order L and
the approximation constant C, as shown below14:

ε(∆) = || f − f∆||L2 = C∆L|| f (L)||L2 , as ∆ → 0. (11)

The approximation order estimates the global decay of the
error, where a higher value of L gives a faster decay, and
offers a first classification of the interpolation filters in the
form of a single value. It can be retrieved from one of the
Strang-Fix conditions12, as follows:

{

Φ(0) = 1
Φ(n)(2πk) = 0, k ∈ Z and n ∈ [0,L−1],

(12)

where Φ(ξ) is the interpolation function in the frequency do-
main (see Table 1). Similar computations can be made for
the derivative filters using the following condition:

{

Φ(1)(0) = 1
Φ(n)(2πk) = 0, k ∈ Z and n ∈ [0,L]

(13)

The approximation order for the interpolation and derivative
filters under study are given in Table 2.

Table 1: Interpolation filters in the frequency domain.

Name Φ(ξ)

Catmull-Rom [3sinc( ξ
2π )−2cos( ξ

2 )][sinc( ξ
2π )]3

Cardinal cubic B-spline
[sinc( ξ

2π )]4

2
3 + 2

6 cos(ξ)

Cardinal cubic o-Moms
(1− 1

42 ξ2)[sinc( ξ
2π )]4

13
21 + 8

21 cos(ξ)

HDAFN e−
ξ2σ2

2 ∑N
n=0

(ξ2σ2)n

2nn!

† Neither the Fourier transform of the HDAF (or its derivative) nor
any derivatives of the Fourier transform is zero at multiples of 2π.
However, the condition can be met arbitrarily close by changing the
σ parameter.

Table 2: Approximation order of the interpolation and
derivative filters.

Name Lint Lderiv

Catmull-Rom 3 2
Cardinal cubic B-spline 4 3
Cardinal cubic o-Moms 4 3
HDAFN 2N+2† 2N+2†

5.2. Local Spatial Error Analysis

Möller et al.8 presented a method for classification and eval-
uation of interpolation and derivative filters. The method
studies local spatial behavior of the approximation error, and
the analysis is based on the Taylor series expansion of the re-
construction process. By substituting the series for the sam-
ple points into Equation 1, we can write the reconstructed
function fr(x) as a weighted sum of the original function it-
self f (0)(x) and its derivatives f (n)(x), n > 0, as follows8:

fr(x) =
N

∑
n=0

an(τ) f (n)(x)+ rN,i(τ)

an(τ) =
∆n

n!

∞

∑
k=−∞

(k− τ)nw(τ− k) (14)

rN,i(τ) =
∆(N+1)

(N +1)!

∞

∑
k=−∞

f (N+1)(ξk,i)(k− τ)(N+1)w(τ− k)

where an are called approximation coefficients, rN,i is the
error term, with ξk,i ∈ [x,(k + i)∆], and τ is the offset from
the sample points, with 0 ≤ τ < 1. The approximation coeffi-
cients only depend on the interpolation filter, and can there-
fore be used to classify it. If N in Equation 14 is the largest
number for which the following is true:

an(τ)

{

1 n = 0
0 1 ≤ n ≤ N

(15)

then, the interpolation filter is classified as having an approx-
imation order of N + 1. Similar observations can be made
for the derivative interpolators. If N is the largest number for
which the corresponding approximation coefficients can be
written as:

an(τ)











0 n = 0
1 n = 1
0 2 ≤ n ≤ N

(16)

then, the derivative filter has an approximation order of N.
When the sampling step is small, the second non-zero co-
efficient has superior control over the behavior of the error.
By looking at its placement and how it varies with τ, we can
analyze the local spatial approximation error of the filters.

In our analysis the sampling distance was set to ∆ = 1 and
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Figure 2: Coefficients of the interpolation filters.

the extent of the cardinal cubic B-spline, the cardinal cubic
o-Moms, and the HDAFs was set to [-20, 20], as a larger ex-
tent did not produce any significant change. From the graph
in Figure 2(a), we observe that the Catmull-Rom filter has an
approximation order equal to 4 at τ = 0.5. This is important
information if we are interested in interpolating in the middle
of two sample points only. The largest error for the Catmull-
Rom filter is found at τ = 0.25 and τ = 0.75. Figures 2(c-f)
depict the approximation coefficients for the HDAF interpo-
lation filters. Here we observe how the HDAF1 converges
to the approximation order given in Table 2. From Fig-
ure 2(c), it is clear that the HDAF1, with σ = 0.598413420,
is not appropriate even to reconstruct constant functions, al-
though the approximation order for HDAF1 was stated to
be 4. After increasing the σ parameter by 30% to the value
0.777937446, better results are obtained. The side-effect of
the increase can be seen in Figure 2(f) where the error term
has become larger. For higher values of N, the frequency re-
sponse of the HDAF has a faster decay, which is why the
approximation coefficients for HDAF4 and HDAF6 are bet-
ter.

The local spatial error can also be analyzed for the deriva-
tive filters. The Catmull-Rom derivative filter exhibits the
opposite behavior to the interpolation filter (see Figure 3(a)).
Where the latter had a higher approximation order, the for-
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Figure 3: Coefficients of the derivative filters.

mer exhibits larger errors, and vice versa. This complies with
the idea that better estimations of the function value will
lead to worse estimations of the derivative. Figures 3(c-f) are
the graphs of the approximation coefficients for the HDAF
derivative filters. The problem with the HDAF1, where σ =
0.598413420, can be observed in this set of plots too. The
approximation order does converge to 4, as stated in Sec-
tion 5.1, but only as σ increases. For higher values of N,
the frequency response of the HDAF approximates the fre-
quency response of the ideal filter and therefore its values
are closer to zero at multiples of 2π other than the origin.
This explains the better behavior of the approximation coef-
ficients for HDAF4 and HDAF6.

5.3. Behavior of the Frequency Response

The reconstruction process can be studied in the frequency
domain as well. This extraction is carried out by applying
a lowpass filter. The goal is to approximate the ideal low-
pass filter (i.e., the box filter) without its disadvantages. To
observe how well the interpolation filters in this study ap-
proximate the ideal filter, we can compare their frequency
response with the box filter (see Figure 4). The overlap per-
centage is found in Table 4 and the area outside of the
box filter in Table 3. The Catmull-Rom and HDAF1 with
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Figure 4: Frequency response of the interpolation filters.

Table 3: Area of the interpolators outside the box filter.

Name Area: π - 2π 2π - 3π 3π - 4π
Catmull-Rom 0.3987 0.0088 0.0122
Cardinal cubic B-spline 0.2515 0.0078 0.0044
Cardinal cubic o-Moms 0.2312 0.0082 0.0078

HDAF1, σ = 0.598413420 0.4467 0.0031 0.0000
HDAF1, σ = 0.777937446 0.1112 0.0000 0.0000
HDAF4, σ = 0.981772018 0.2766 0.0000 0.0000
HDAF6, σ = 1.169944988 0.2316 0.0000 0.0000

σ = 0.598413420 form a group with similar frequency re-
sponses. They exhibit the same behavior close to the origin,
but the former has a faster decay and vanishes to zero at 2π,
where the frequency response of the latter is about 0.0069.
This will lead to introduction of more aliasing artifacts for
the HDAF1. The result of increasing the σ parameter is bet-
ter behavior outside the box filter, but also a smoothing ef-
fect, while it covers less of the box area. The rest of the filters
form a second group, where the cardinal cubic o-Moms ex-
hibits the best behavior in Figure 4, followed by the HDAF6,
the cardinal cubic B-spline, and HDAF4. Better coverage of
the box filter area is accomplished with these filters, and the
transition is sharper, which results in less aliasing.

Similar analysis can be performed for the derivative re-

Table 4: Overlap percentage of (a) the box filter area for
the interpolation filters, and (b) the ramp filter area for the
derivative filters.

Name Overlap: box filter ramp filter
Catmull-Rom 86.5% 79.2%
Cardinal cubic B-spline 91.0% 85.5%
Cardinal cubic o-Moms 93.7% 89.6%
HDAF1, σ = 0.598413420 85.2% 77.2%
HDAF1, σ = 0.777937446 72.9% 58.7%
HDAF4, σ = 0.981772018 90.7% 84.8%
HDAF6, σ = 1.169944988 92.1% 87.0%
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Figure 5: Frequency response of the derivative filters.

Table 5: Area of the derivative filters outside the ramp filter.

Name Area: π - 2π 2π - 3π 3π - 4π
Catmull-Rom 1.5061 0.0713 0.1258
Cardinal cubic B-spline 0.9013 0.0679 0.0443
Cardinal cubic o-Moms 0.8157 0.0727 0.0781
HDAF1, σ = 0.598413420 1.7528 0.0209 0.0000
HDAF1, σ = 0.777937446 0.4058 0.0001 0.0000
HDAF4, σ = 0.981772018 1.0031 0.0000 0.0000
HDAF6, σ = 1.169944988 0.8221 0.0000 0.0000

construction filters. The ideal derivative filter in the fre-
quency domain is the ramp filter. It is depicted together with
the frequency response of the derivative filters in Figure 5.
The coverage of the ramp filter is listed in Table 4 and their
area outside the ramp can be found in Table 5. From the
graph and the tables we observe that the HDAF1 with σ =
0.777937446 does not approximate the ideal filter very well.
The Catmull-Rom and the HDAF1 with σ = 0.598413420
offer better coverage, but also extend further outside the
ramp − especially the latter. The HDAF1 filter has a value
of about 0.043 at 2π, which will lead to more aliasing. The
derivative of the cardinal cubic o-Moms gives the best ap-
proximation in Figure 5, followed by the HDAF6, the cardi-
nal cubic B-spline, and HDAF4.

6. Experimental Results

The previous section concentrated on analytical studies of
the filters and provided theoretical results for the filter prop-
erties. For our volume rendering experiments we used two
data sets: an MRI (Magnetic Resonance Imaging) data set
and a synthetic data set, constructed by sampling an analytic
function. In the first subsection, the volume rendering of the
MRI data for visual comparisons is addressed. The second
subsection presents the reconstruction of the synthetic data,
along with the reconstruction errors. The sampling distance
∆ was assumed to be 1 for all data sets to simplify the com-
putations and avoid the need for normalization. This tran-
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scribes into a highest allowable frequency content of ξl = π
in the function. The recursive prefiltering step for the cardi-
nal cubic B-spline and the cardinal cubic o-Moms uses mir-
roring of the data at the boundaries15, 17. Mirroring of the
data was the solution to the boundary condition in the inter-
polation step as well.

The HDAFs have infinite support and have to be truncated
at some point. The extent for the HDAF interpolation and
derivative filters can be found in Table 6. A larger support
did not produce any significant change in the volume ren-
dering results. Because the extent has the greatest impact on
the computational cost of a filter14, the figures in Table 6
indicate that the HDAFs require more computational effort
than the other filters. Even when look-up tables with pre-
computed filter values are used, the cost of the interpolation
operation in volumes is O(W 3), where W is the filter ex-
tent. The cost of evaluating the piecewise polynomial or the
HDAFs on request is O(Wn), where n is the polynomial de-
gree of the filter. The disadvantage with the HDAFs are is
larger size and higher polynomial degree.

Table 6: Extents for the HDAF interpolation and derivative
filters.

Name σ Extent: δN(x|σ) δ(1)
N (x|σ)

HDAF1 0.598413420 [-3, 3] [-4, 4]
HDAF1 0.777937446 [-4, 4] [-4, 4]
HDAF1 0.897620130 [-5, 5] [-5, 5]
HDAF4 0.981772018 [-4, 4] [-5, 5]
HDAF4 1.472658027 [-6, 6] [-7, 7]
HDAF6 1.169944988 [-5, 5] [-6, 6]
HDAF6 1.754917482 [-7, 7] [-8, 8]

6.1. MRI Data

The MRI data set is the Volume Rendering Test Dataset Vol-
ume II from the University of North Carolina, also used by
Bentum2 and Möller et al.8, 9. It depicts a head with the top
part of the skull removed so that the surface of the brain is
visible. The images of the MRI data were generated using
the ray-casting algorithm, with the step size along the rays
set to 0.05 times the voxel length. At each step the value
was interpolated using the filters from Section 4, and an iso-
surface classification function was used to produce a surface
with 600 as the isovalue. The rays were terminated after this
single threshold and the normal was computed with the cor-
responding derivative filters for the shading.

Figure 6 contains the visualization results using the dif-
ferent filters. The HDAFs produce smooth results in Fig-
ures 6(g-i), while the rest of the images contain more details
(or noise). The HDAFs clearly offer a wide range of possi-
bilities, from close to interpolative reconstructions to coarse
scale approximations.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: Volume visualization of the MRI data set using (a)
Catmull-Rom, (b) cardinal cubic B-spline, (c) cardinal cubic
o-Moms, (d) HDAF1 (σ = 0.598413420), (e) HDAF4 (σ =
0.981772018), (f) HDAF6 (σ = 1.169944988), (g) HDAF1
(σ = 0.897620130), (h) HDAF4 (σ = 1.472658027), and (i)
HDAF6 (σ = 1.754917482).

6.2. Volume Rendering of Synthetic Data

The synthetic data set was constructed by sampling an ana-
lytic function, introduced by Marschner and Lobb7, with a
sampling rate of 20 samples per unit distance over the range
−1 ≤ x,y,z ≤ 1, and scale the values by 255. This produces
a 41x41x41 volume data set. In the reconstruction, how-
ever, the sampling distance ∆ is assumed to be 1 to simplify
the computations, as mentioned before. This is equivalent to
dilating the function and increasing the sampling range by
1:20. The Marschner-Lobb function is given by:

f (x,y,z) =
1
2
− 2

5
sin

(π
2

z
)

+
1

10
cos

(

12πcos
(π

2

√

x2 + y2
))

Marschner and Lobb claimed that this function is bandlim-
ited and that the sampling rate given above is just above the
Nyquist rate. This produces a very interesting function to re-
construct, while the periodic repetitions of the Fourier trans-
form of the function are only just separated and a consider-
able amount of frequency content lies at the border between
the repetitions.

An isosurface was produced using the ray-casting algo-
rithm, with half of the maximum function value as the iso-
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value. The step size along the rays was set to 0.005 times
the voxel length. In Figure 7(a) the goal surface to be repro-
duced is depicted, and Figure 7(b) gives a close up view of
its central part. Since it sometimes can be hard to assess the
performance of the filters from the volume rendering results,
the reconstruction errors have been computed and visualized
as well. The first error is the interpolation error, computed
as the absolute difference between the interpolated value and
the true function value. The second error is the angular er-
ror, given by the angular difference between the interpolated
surface normal and the true normal. In the error plots, black
represents perfect reconstruction, while white depicts an in-
terpolation error greater or equal to 4 or an angular error of
at least 15 degrees, respectively. Values in between produce
a grey level proportional to the error.

(a) (b)

Figure 7: Isosurface rendering of the Marschner-Lobb func-
tion. (a) Overview and (b) central part.

6.2.1. Without Noise

Figures 8(a-c) depict the results of the volume renderings
of the synthetic data using the different filters, along with
the plots of the interpolation error and angular error. Statis-
tical information about the errors can be found in Table 7.
The HDAF1 with σ = 0.598413420 introduces a number of
aliasing artifacts and gives the poorest reconstruction. With
σ = 0.777937446, the HDAF1 smooths out the function and
clearly produces the largest interpolation error. The shape of
the reconstructed surface can still be recognized, but it does
not have as strong an upward and downward inclination or
height and depth as the goal surface, which leads to the an-
gular errors in Figure 8(c). The cardinal cubic B-spline, the
cardinal cubic o-Moms, HDAF4, and HDAF6 all seem to
have similar reconstruction results.

Overall, the interpolation error images depict a zebra pat-
tern with areas containing good estimations alternating with
patches of large errors. The darker areas lie along the slices
of sample points, as the interpolating constraint forces the
reconstruction to be close to the real function there. In be-
tween the slices the error is larger, and thereof the zebra pat-
tern. Stripe patterns are seen in the angular error images too.

6.2.2. With Noise

While most interpolation filters were designed to give high-
est accuracy under the constraint of preserving the sample
points, the HDAFs are used under the assumption that the
data set might be corrupted by noise. The requirement of
preserving the sample points is then no longer justified. If
the noise satisfies two conditions given below, it can be fil-
tered by adjusting the width of the frequency response of the
HDAFs. The first condition is that the noise be random. It
will then contain mostly high frequency components, while
the real objects are smooth and contain mostly lower fre-
quencies. The second is that the noise be additive and conse-
quently totally independent of the real data. The width of the
frequency response is adjusted by changing the value of σ,
where a higher value leads to attenuation of high frequencies
and thereby removes the noise.

For this reason, random noise with a gaussian probability
distribution (mean set to 0 and standard deviation equal to
2) was added to the sample points. Since the sampling rate
used before was just above the Nyquist rate, the frequency
content of the function and the noise would blend. To get
a better separation of their frequency content, the sampling
rate was increased by 50% to 30 samples per unit distance,
resulting in a 61x61x61 volume data set. The σ parameter
for the HDAFs was also increased by 50% from the original
settings, to filter away the noise but still reconstruct the func-
tion. Making the same changes to the width of the frequency
response of the other filters would lead to aliasing artifacts,
due to the side lobes found in their frequency response1.

Figure 8(d) depicts the performance of the different fil-
ters in the recovery of the function, while the interpolation
error and angular error plots can be found in Figure 8(e)
and Figure 8(f), respectively. The Catmull-Rom, cardinal cu-
bic B-spline and cardinal cubic o-Moms are all interpola-
tive and are forced to preserve the noisy data points exactly.
The errors for these filters are therefore concentrated in a
spotty pattern. The HDAFs, on the other hand, suppress the
high frequency noise due to the increase of the σ parame-
ter. Since there are no special points anymore, the errors are
more evenly distributed.

7. Conclusions

Both the analytical and the experimental analyses suggest
that the approximation order of a filter provides a reasonable
first indication of the accuracy of the reconstruction. For fur-
ther analysis and comparison, the behavior of the local spa-
tial error and the frequency response must be studied. For
example, deeper analysis was vital for the selection of the σ
parameter for the HDAFs1.

The Catmull-Rom filter provides an acceptable tradeoff
between the quality of the volume renderings and the com-
putational effort. It has small support, which makes the vi-
sualization process fast. However, better results can be ac-
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complished with the cubic B-spline and the cubic o-Moms,
where the only additional computational cost comes from
a simple prefiltering step. Other interpolation methods (e.g.
windowed sinc/cosc) should be included in future studies to
get a more comprehensive comparison.

The HDAF family of functions offers a set of parameter-
ized interpolation and derivative filters, with high control
over the reconstruction process and the type of functions
that can be recovered. In noise-free conditions, they can pro-
duce results with the same quality as the cardinal cubic B-
Spline and cardinal cubic o-Moms. Although the extent is
larger, implying greater computational effort and time, their
excellent noise suppression qualities makes them the supe-
rior choice when additive noise is present. In the future, we
plan to explore how the HDAFs perform when the data is
corrupted by multiplicative noise, compared to other exist-
ing noise filtering methods.
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cardinal cardinal HDAF1 HDAF4 HDAF6 HDAF1

Catmull-Rom cubic B-spline cubic o-Moms σ = 0.777937446 σ = 0.981772018 σ = 1.169944988 σ = 0.598413420

(a)

(b)

(c)
σ = 0.897620130 σ = 1.472658027 σ = 1.754917482

(d)

(e)

(f)

Figure 8: Volume rendering of reconstructed function, interpolation error, and angular error using noise free Marschner-Lobb
data (a, b, and c, respectively) and corrupted data (e, d, and f, respectively).

Table 7: Average interpolation and angular error (in degrees) in the reconstruction, along with the standard deviation.

Name Without noise With noise
Interpolation error Angular error Interpolation error Angular error
Mean Std dev. Mean Std dev. Mean Std dev. Mean Std dev.

Catmull-Rom 2.9483 3.1530 12.7876 18.1015 1.6317 1.1630 8.0124 8.8786
Cardinal cubic B-spline 2.0188 2.1189 5.9674 11.8388 1.6432 0.8880 6.5657 6.3843
Cardinal cubic o-Moms 1.5604 1.6928 4.6545 9.8680 1.5444 0.8958 7.0196 6.6821
HDAF1 4.7078 4.0845 8.2500 9.2905 3.2231 2.3672 3.9731 3.9458
HDAF4 1.6710 2.2278 6.8339 12.3800 1.9119 1.5868 3.2057 3.8532
HDAF6 1.3588 1.8725 4.9280 10.4299 1.9073 1.3816 3.1245 3.8905
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