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Abstract
Traditional visualization techniques for multidimensional data sets, such as parallel coordinates, glyphs, and
scatterplot matrices, do not scale well to high numbers of dimensions. A common approach to solving this prob-
lem is dimensionality reduction. Existing dimensionality reduction techniques usually generate lower dimensional
spaces that have little intuitive meaning to users and allow little user interaction. In this paper we propose a
new approach to handling high dimensional data, named Visual Hierarchical Dimension Reduction (VHDR), that
addresses these drawbacks. VHDR not only generates lower dimensional spaces that are meaningful to users, but
also allows user interactions in most steps of the process. In VHDR, dimensions are grouped into a hierarchy,
and lower dimensional spaces are constructed using clusters of the hierarchy. We have implemented the VHDR
approach into XmdvTool, and extended several traditional multidimensional visualization methods to convey di-
mension cluster characteristics when visualizing the data set in lower dimensional spaces. Our case study of
applying VHDR to a real data set supports our belief that this approach is effective in supporting the exploration
of high dimensional data sets.

Categories and Subject Descriptors (according to ACM CCS): H.5.3 [Information Interfaces and Presentation]:
Group and Organization Interfaces I.3.6 [Computer Graphics]: Methodology and Techniques

1. Introduction

High dimensional data sets are becoming commonplace in
an increasing number of applications, including digital li-
braries, simulations, and surveys. It is no longer unusual to
have data sets with hundreds or even thousands of dimen-
sions. However, traditional visualization techniques for mul-
tidimensional data sets, such as glyph techniques 1, 19, 4, 18,
parallel coordinates 12, 21, scatterplot matrices 5, and pixel-
level visualization 15, do not scale well to high dimensional
data sets. For example, Figure 1 shows the Iris data set,
which has 4 dimensions and 150 data items, displayed us-
ing parallel coordinates. Individual data items and clusters
can be seen clearly from the display. Figure 2 shows a sub-
set of a Census Income data set 10, which has 42 dimensions
and 200 data items. While the number of data items in this

† This work is supported under NSF grants IIS-9732897, EIA-
9729878, and IIS-0119276.

display is comparable to Figure 1, individual data items can
no longer be seen clearly from this display, since the num-
ber of dimensions has greatly increased. A large number of
axes now crowd the figure, preventing users from detecting
any patterns or details. Even with low numbers of data items,
high dimensionality presents a serious challenge for current
display techniques.

To overcome the clutter problem, one promising approach
frequently described in the literature is dimensionality re-
duction 9. The idea is to first reduce the dimensionality of
the data while preserving the major information it carries,
and then visualize the data set in the reduced dimensional
space. There are several popular dimensionality reduction
techniques used in data visualization, including Principal
Component Analysis (PCA) 13, Multidimensional Scaling
(MDS) 17, and Kohonen’s Self Organizing Maps (SOM) 16, 6.
These approaches have a major drawback in that the gen-
erated low dimensional subspace has no intuitive meaning
to users. In addition, little user interaction is generally al-
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Figure 1: Iris data set (4 dimensions, 150 data items) in Par-
allel Coordinates. Individual data items can be seen clearly.

Figure 2: A subset of a Census Income data set (42 dimen-
sions, 200 data items) in Parallel Coordinates. Individual
data items cannot be seen clearly.

lowed in those highly automatic processes, thus users have
difficulty applying their domain knowledge to improve the
quality of the dimensionality reduction process.

The clutter problem not only exists in visualizing data sets
with high dimensionality, but also when visualizing data sets
with a large number of data items. Our previous work has ad-
dressed the clutter problem in the latter situation using an In-
teractive Hierarchical Display (IHD) framework 7, 8, 25. The
underlying principle of this framework is to develop a multi-
resolution view of the data via hierarchical clustering, and
to design extensions of traditional multivariate visualization

techniques to convey aggregation information about the re-
sulting clusters. Users can then explore their desired focus
regions at different levels of detail, using our suite of navi-
gation and filtering tools 7, 8.

Inspired by the IHD framework, we now propose a new
methodology for dimensionality reduction that combines au-
tomation and user interaction for the generation of mean-
ingful subspaces, called the Visual Hierarchical Dimension
Reduction (VHDR) framework. First, VHDR groups all di-
mensions of a data set into a dimension hierarchy. This hi-
erarchy is then visualized using a radial space-filling hier-
archy visualization tool, named InterRing 26. Users can in-
teractively explore and modify the dimension hierarchy, and
select interesting dimension clusters at different levels of de-
tail for the data display. A representative dimension for each
selected dimension cluster is then determined automatically
by the system or interactively by the users. Finally, VHDR
maps the high-dimensional data set into the subspace com-
posed of these representative dimensions and displays the
projected subspace using traditional multidimensional dis-
plays. We have implemented a fully functional prototype of
the above approach, as well as several extensions to tradi-
tional multidimensional visualization methods that convey
dimension cluster characteristics when visualizing the data
set in lower dimensional spaces. We have applied VHDR
to several real data sets using our prototype and found that
this approach is helpful in exploring high dimensional data
sets. The prototypes have been integrated into XmdvTool, a
public-domain visualization package developed at WPI 20.

VHDR employs the process of dimension clustering,
which is orthogonal to data clustering approaches. Thus it
has no conflicts with data clustering intended to cope with
large-scale data sets. We have combined the VHDR ap-
proach with our previous hierarchical data visualizations
easily and did not encounter any fundamental problems.

The remainder of this paper is organized as follows: Sec-
tion 2 provides an overview of the VHDR approach, while
Sections 3 through 7 describe details of each stage of the
VHDR pipeline. Section 8 presents a case study that uses
VHDR to explore a high dimensional data set. Section 9
presents related work, and Section 10 summarizes our work
and presents open issues for future investigation.

2. Overview of Visual Hierarchical Dimension
Reduction

Figure 3 shows the system structure of the VHDR frame-
work. The methodology can be divided into five steps:

• Step 1: Dimension Hierarchy Generation
First, all the original dimensions of a multidimensional
data set are organized into a hierarchical dimension clus-
ter tree according to similarities among the dimensions.
Each original dimension is mapped to a leaf node in this
tree. Similar dimensions are placed together and form
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Figure 3: System structure of VHDR.

a cluster, and similar clusters in turn compose higher-
level clusters. Users have the option of using the system-
provided automatic clustering approach, using their cus-
tomized clustering approaches, or specifying a hierarchi-
cal dimension cluster tree manually.

• Step 2: Dimension Hierarchy Navigation and Modifica-
tion
Next, users can navigate through the hierarchical dimen-
sion cluster tree in order to gain a better understanding of
it. Users can also interactively modify the hierarchy struc-
ture and supply meaningful names to the clusters. The hi-
erarchical dimension cluster tree is visualized in a radial
space-filling display named InterRing, which contains a
suite of navigation and modification tools.

• Step 3: Dimension Cluster Selection
Next, users interactively select interesting dimension clus-

ters from the hierarchy in order to construct a lower di-
mensional subspace. Several selection mechanisms are
provided in InterRing to facilitate dimension cluster se-
lection. Selected clusters are highlighted.

• Step 4: Representative Dimension Generation
In this step, a representative dimension (RD) is assigned
or created for each selected dimension cluster. The se-
lected dimension clusters construct the lower dimensional
space through these RDs. RDs are selected to best reflect
the aggregate characteristics of their associated clusters.
For example, an RD can be the average of all the original
dimensions in the cluster, or can be an original dimension
located in the center of the cluster. Users have the option
to select one of the system-provided RD generation meth-
ods or use a customized one.

• Step 5: Data Projection and Visualization
Finally, the data set is projected from the original high di-
mensional space to a lower dimensional space (LD space)
composed of the RDs of the selected clusters. We call
its projection in the LD space the mapped data set. The
mapped data set can be viewed as an ordinary data set in
the LD space and can be readily visualized using exist-
ing multidimensional visualization techniques. This is an
advantage of VHDR; it is so flexible that it can be ap-
plied to any existing multidimensional data visualization
technique. In order to provide further dimension cluster
characteristics in the LD space, such as the dissimilarity
information between dimensions within a cluster, we at-
tach the dimension cluster characteristics information to
the mapped data set and provide the option to display it
using extensions to the data visualization techniques.

Users can return to any of the previous steps at any time
to refine the process iteratively. For example, after the LD
space has been generated, users can still modify the dimen-
sion hierarchy, redo the selection, and generate a different
LD space.

One significant advantage of the VHDR approach is that
the generated lower dimensional space is meaningful to
users, in that:

• As long as users understand the similarity measure used
in dimension clustering, the meaning of the dimension hi-
erarchy is straightforward.

• Through dimension hierarchy visualization and naviga-
tion, if users find that a cluster contains some dimensions
that have no semantic relationship with other dimensions
in the cluster according to their knowledge of the data do-
main, they can manually remove them from this cluster.
Similarly, they can merge two clusters that are semanti-
cally related. Thus each cluster can have a clear domain-
specific meaning guided by a domain expert.

• Users can label the dimension clusters with “meaningful"
names, thus helping the interpretation of the dimension
clusters during later data exploration.

• Users interactively select the dimension clusters to be vi-
sualized in the LD space according to their knowledge of
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the data domain. As a result, the structure of the LD space
is meaningful to them.

• Users can select the RD generation approach or even ex-
plicitly select the RDs, hence they know how the RDs are
generated and how to interpret them.

Another advantage of the VHDR approach is that it in-
tegrates automatic and interactive techniques. As a tool de-
signed to assist people in visualizing high dimensional data
sets, the VHDR approach avoids trivial and boring manual
work during the majority of the process. At the same time, an
interactive visualization approach has been introduced into
the dimension reduction process to allow users to apply their
domain knowledge. This combination of automatic and in-
teractive methods is reflected in that:

• VHDR provides an automatic dimension clustering ap-
proach. Users can adjust the automatic approach by re-
placing the similarity measure calculation methods by
their own similarity measures or changing other algorith-
mic parameters in the system. They can also use their own
dimension clustering approach by customizing the sys-
tem, or even provide a dimension hierarchy directly by
creating a dimension hierarchy file in the appropriate for-
mat.

• VHDR provides a tool suite for interactively navigating
and modifying the dimension hierarchy. Both automatic
and manual selection operations exist. Reconfiguration of
the hierarchy is currently done manually, though we are
investigating semi-automatic methods as well.

• VHDR provides automatic and manual brushing mecha-
nisms in the dimension hierarchy visualization. Users can
interactively select interesting dimension clusters using a
combination of the different brushing approaches.

• VHDR provides several alternative RD generation ap-
proaches. Users can interactively select one of them.
Users can also customize the prototype to add more RD
generation approaches.

• VHDR provides several options to visualize the dissim-
ilarity information of the dimension clusters in the RD
space. Users can interactively select one of them or turn
this information on/off.

In the following sections, we will describe the details of
each of the above five steps of VHDR.

3. Dimension Hierarchy Generation

Many possible dimension clustering algorithms, such as fac-
tor analysis or algorithms adapted from multidimensional
data clustering techniques, could be employed to form a di-
mension hierarchy. We have implemented a bottom-up ag-
glomerative dimension clustering algorithm in our proto-
type. The following is a description of this algorithm:

• Similarity Measure: To avoid complex calculations in
coping with large scale data sets, we judge if the simi-
larity between a pair of dimensions is below a similarity

threshold using a simple counting approach rather than
calculating its absolute value. More precisely, we count
the number of data items in the data set whose normal-
ized values of these two dimensions have differences less
than the similarity threshold. If this number exceeds a cer-
tain percentage of the total data points in the data set, we
regard the similarity of these two dimensions as being be-
low the similarity threshold. For a dimension cluster, we
use the average of all its decedent dimensions as its value
for the difference calculation.

• Data Clusters: To cope with large scale data sets, we make
use of partial results of a bottom-up data clustering algo-
rithm applied on the data set. The idea is that if several
data items form a dense cluster, we can use the cluster
center in the similarity measure as long as we use the
number of data items included in the cluster in the count-
ing mentioned above. In practice, we select all the data
clusters with extents smaller than a specified threshold.
These clusters contain all the data items in the data set
exactly once. Then we use these data clusters instead of
the original data items to measure similarities between di-
mensions. Since the precondition of this approach is that
there exists a data hierarchy, which is common in our tool
but may not be available in other tools, we provide this
approach as an option to the users.

• Iterative Clustering: To form the hierarchical tree struc-
ture, we define a series of decreasing similarity thresh-
olds corresponding to bottom-up clustering iterations. In
each iteration, dimensions that have not formed any clus-
ters and clusters formed from the previous iteration are
considered. If any pair of them has a similarity below the
similarity threshold, the pair is recorded as a similar pair.
Then the dimension or cluster that forms the largest num-
ber of similar pairs is extracted as a new cluster center. All
the other dimensions and clusters that form similar pairs
with it are put into the new cluster and their similar pairs
are deleted. Repeating the above approach will form more
new clusters. The current iteration ends when there are no
similar pairs left. The whole clustering process terminates
when all the dimensions have been included into a root
cluster.

Our dimension clustering algorithm is a simplistic pro-
cess. However, it satisfies our need in that it is computation-
ally inexpensive even when handling large-scale data sets
with high dimensionality and large numbers of records, and
generates dimension hierarchies that appear reasonable for
the real data sets we tested.

4. Dimension Hierarchy Navigation and Modification

4.1. Dimension Hierarchy Navigation

It is important for users to be able to navigate the dimen-
sion hierarchy to get a better understanding of it. Navigation
tools are also useful in dimension cluster selection by mak-
ing the selection process easier. In VHDR we use a radial
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space-filling hierarchy visualization tool named InterRing 26

to navigate the dimension cluster tree (See Figure 4).

Figure 4: InterRing. Display of a 42 dimension hierarchy.

In InterRing, we use the color of the nodes to redundantly
convey the hierarchical structure of the dimension cluster
tree. We have designed and implemented a color assignment
approach according to the following principles:

• either system build-in or user customized color scales
could be implemented;

• nodes belonging to the same cluster should have similar
colors;

• a parent node’s color should be related to the colors of its
children; and

• a larger child (a cluster with a higher population) con-
tributes more to its parent’s color than its smaller siblings.

To give users focus + context interactivity, we provide a
multi-focus distortion operation in InterRing. In this distor-
tion, a focal area enlarges to occupy some of the space of its
siblings. Several foci can coexist and a focus can be a de-
scendant of another focus. The distortion operation involves
a simple “drag and drop" action. No extra space or windows
are used in this distortion technique.

There are many other useful navigation and filtering tools
in InterRing, including rotation, drilling-down/rolling-up,
and zooming/panning. The rotation operation allows users
to rotate the InterRing display around its center in both di-
rections to allow dimension labels to be more readily dis-
cerned. Drilling-down/rolling-up allows users to hide/show
all the descendants of a cluster. Zooming in/zooming out and
panning operations allow users to enlarge the InterRing and
move around to examine details. Details of InterRing can be
found in 26.

4.2. Dimension Hierarchy Modification

In interactive hierarchy modification, users can change the
dimension cluster tree by removing a sub-cluster from a
cluster and dropping it into another cluster. We provide this
modification function to users for two reasons:

• Although users can adjust the dimension clustering pro-
cess by setting different parameters and changing similar-
ity calculation methods, it is still an automatic process.
This does not enable users to interactively take part in this
process.

• Users are often experts on the data sets being visualized.
They usually know that some relationships exist in the
data sets based on their experience and knowledge in their
fields. These relationships may be undetected by the au-
tomatic dimension clustering approach. Hence allowing
users to interactively adjust the generated dimension clus-
ter tree benefits the whole process (See Figure 5).

Figure 5: 3 of the green terminal nodes on the left of the tree
in Figure 4 has been moved to the root.

5. Dimension Cluster Selection

In order to construct a lower dimensional subspace, users
need to select some interesting dimension clusters from the
dimension hierarchy. In our implementation, we provide
both an automatic and a manual brushing mechanism. The
automatic method is called “structure-based brushing”. It al-
lows users to select/unselect multiple clusters with similar
sizes or dissimilarities. The manual method is called “simple
brushing”. It involves simple clicking to select or unselect
one node each time. The combination of these two different
mechanisms makes the selection flexible.

Selected dimension clusters are highlighted using the
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XmdvTool system highlighting color in the middle area of
the nodes. Their cluster names are explicitly shown, while
the names of the unselected clusters are shown only when
the cursor passes over them (See Figure 5).

6. Representative Dimension Generation

The selected dimension clusters form a low dimensional
(LD) space. However, the question arises as to how we can
visualize a dimension cluster in the LD space. We generate a
representative dimension (RD) for each selected cluster and
visualize it in the LD space as a reasonable representation of
the dimension cluster.

RDs can be either assigned or created. We have devel-
oped several different approaches to assigning or creating
RDs. Assignment approaches include selecting a dimension
located in the center of a cluster, user-selected RDs, or ran-
domly selecting one dimension from a cluster. A display
of the dimensions within a cluster and their dissimilarities
can be presented for the interactive RD selection. The user
can select one dimension as the RD with the aid of his/her
domain knowledge. Creation approaches include using the
weighted average of all the dimensions in a cluster as its
RD, and applying Principal Component Analysis (PCA) to
all the dimensions in a cluster and using the first principal
component as its RD. Analyzing these approaches we find
that:

• The RDs generated by the assignment approaches have
clear meaning to the user, but for outliers that change
greatly within the dimension cluster, the variance is hid-
den from the user. The drawback can be overcome by vi-
sualizing the dissimilarity information of the cluster in the
data display (see Section 7.2), or checking the dimension
cluster in detail by constructing an LD space composed of
the leaf nodes of this cluster.

• The RDs generated by the creation approaches reflect the
overall structure of the cluster better than the assignment
approaches, but their meaning is not as explicit as those
generated by the assignment approaches. However, it is
much better than applying PCA to the whole data set,
since the number of dimensions in the whole data set is
generally much larger than in a dimension cluster, and
some dimensions of the whole data set could have no
meaningful interrelationships.

7. Data Mapping and Visualization

Having selected a set of dimension clusters and generated
RDs for them, we construct a lower dimensional space us-
ing these RDs with/without dissimilarity information of the
selected clusters. The original data set is projected into this
lower dimensional space.

To better convey dimension cluster characteristics, we
provide extensions to glyph 1, 19, 4, 18, parallel coordinates

12, 21, and scatterplot matrices 5 to allow RDs to convey clus-
ter dissimilarity information in the LD space.

7.1. Data Projection

In VHDR, the system maintains a selected cluster list (SC
list) and the current RD generation approach. A new LD
space is constructed when the SC list is updated or the RD
generation approach is changed. Hence we meet the prob-
lem of when and how to project the data set from the original
high dimensional space to the LD space. We have explored
two options:

• Option 1: Every time the SC list is updated or the RD gen-
eration approach is changed, project all the data items of
the data set from the original high dimensional space to
the new LD space, one by one, and store their projected
values into a data structure in memory. When redraw-
ing the multi-dimensional displays, directly read from this
data structure as input for the multi-dimensional displays.
We call this approach pre-mapping;

• Option 2: In every display redrawing event, for every data
item, we read it from the original data set, map it to the
lower dimensional space according to the SC list, and then
draw the mapping result. We call this approach online-
mapping.

The pre-mapping approach does the mapping once for ev-
ery SC list or RD update, no matter how many times we
redraw the displays. However, it requires memory to store
the mapping results. Memory is a critical resource when dis-
playing large data sets, since the original data set already
occupies a large amount of memory. Moreover, when users
update the SC list often (which can happen when users are
in search of the most interesting lower dimensional spaces),
this method’s advantage in time savings will be diminished.

The online-mapping approach needs no extra memory.
But at a first glance, it wastes time to recalculate the map-
ping result. However, compared to the time used to draw a
data item on the screen, the time needed to calculate a map-
ping of that data item is negligible; we have observed no
significant difference between the response times of the two
mapping approaches. For this reason we adopted the online-
mapping approach in our system.

7.2. Dissimilarity Visualization

Users are often concerned about the extent to which the di-
mensions in a dimension cluster are correlated to each other,
since an RD is useful only when the dimensions within its
cluster are reasonably correlated. We have extended glyph,
parallel coordinates, and scatterplot matrix displays so they
graphically provide the dissimilarity information of selected
dimension clusters to users in the LD space. We call this
dissimilarity visualization. We can perform dissimilarity vi-
sualization from two different viewpoints: from that of the
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individual data items, or from that of the whole data set. We
name the former the “local degree of dissimilarity (LDOD)"
and the latter the “global degree of dissimilarity (GDOD)".
They are defined as follows:

• LDOD - the degree of dissimilarity for a single data item
in a dimension cluster. We use a mean, a maximum, and
a minimum value to describe it. The mean is the mapped
image of the data item on the representative dimension.
The minimum and the maximun are the minimum and
maximum values among the values of the data item on all
the original dimensions belonging to the dimension clus-
ter. Note that all the dimensions have been normalized so
values lie between 0 and 1.

• GDOD - the degree of dissimilarity for the entire data
set in a dimension cluster. It is a scalar value and can be
calculated according to the similarity measures between
each pair of the dimensions in the cluster. We use a sim-
plified approach, namely, we use directly the radius of a
dimension cluster as its GDOD. A dimension cluster ra-
dius is initially assigned as the similarity threshold of the
iteration in which the dimension cluster is formed in the
VHDR automatic dimension cluster approach (Section 3).
It can be affected by interactive modification to the hier-
archy.

LDOD and GDOD information are useful to users. By
studying the LDOD, users can discover outliers that have
large LDODs while most data items have small LDODs in a
dimension cluster, and can learn the overall dimension clus-
ter correlation information by aggregating LDOD informa-
tion of all the data items. By examining the GDOD, the over-
all dimension cluster correlation information will be imme-
diately known, thus users can avoid using clusters with large
dissimilarities to form the lower dimensional space. We pro-
vide LDOD and GDOD information to users visually so that
they can gain a qualitative understanding of cluster charac-
teristics.

One approach we have developed to visualize GDOD is
named the Axis Width Method. In multidimensional visual-
izations that contain axes, we make the width of the repre-
sentative dimensions proportional to the GDOD of the di-
mension clusters they represent. A wider axis represents a
dimension cluster with a larger GDOD. Currently, we have
applied this method to parallel coordinates, scatterplot ma-
trices, and star glyphs. In scatterplot matrices, GDOD is
mapped to the width of the frames of the plots. Figure 6
shows the Axis Width Method in parallel coordinates.

We have explored several different approaches to visual-
izing the LDOD:

• Approach 1: The Three-Axes Method for Representing
LDOD. The basic idea of this method is to use two ex-
tra axes around a representative dimension to indicate the
minimum and maximum of the corresponding dimension
cluster for every data point. The three-axes method can be

Figure 6: An LD space of the Census Dataset constructed
of 4 dimension clusters. These clusters are composed of 3, 4,
2, and 1 original dimensions respectively from left to right
of the displays. The GDODs are shown using the Axis Width
Method.

applied to parallel coordinates and star glyphs. For paral-
lel coordinates, good correlation within a cluster would
manifest itself as nearly horizontal lines through the 3
axes, while lines with steep slope indicate areas of poor
correlation (see Figure 7).

Figure 7: LDOD display using the Three-Axes Method. The
green axis represents the minimum within the dimension
cluster and the blue axis corresponds to the maximum.
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• Approach 2: The Mean-Band Method for Representing
LDOD, which is borrowed from hierarchical parallel co-
ordinates 7. A band is added to each data point ranging
in width from the minimum to the maximum for each
representative dimension. Narrow bands indicate a good
correlation, while wide bands indicate a bad correlation.
This method can be applied to parallel coordinates, scat-
terplot matrices, and star glyphs. However, it suffers from
the overlaps introduced by the bands.

• Approach 3: Diagonal Plots for Representing LDOD in
Scatterplot Matrices. Having observed the fact that the
diagonal plots (mapping a dimension against itself) in
the scatterplot matrix convey little useful information, we
map the minimum and maximum of the dimension clus-
ter to the x and y coordinates of the diagonal plot of its
representative dimension. Thus in the diagonal plots, if a
point has an equal maximum and minimum, it will be rep-
resented as a point on the diagonal. On the contrary, if a
point has a large LDOD, which means there is a large dif-
ference between maximum and minimum and thus a large
difference between its x and y coordinates, it will lie a sig-
nificant distance from the diagonal. Thus a plot along the
diagonal of the matrix with points spread out in the plot
away from the diagonal indicates low correlation within
that dimension cluster (see Figure 8).

Figure 8: LDOD using the Diagonal Plot Method. The sec-
ond and fourth dimensions represent clusters with the second
dimension being better correlated.

8. Case Study

In the above sections, we have presented the VHDR ap-
proach as a sequence of steps. In practical use, VHDR is
not so rigid. Users can go back to a previous step at any time

and begin a new loop to form different LD spaces from dif-
ferent points of view based on their own strategy. For exam-
ple, a user could explore the overall structure of a data set by
forming an LD space using large dimension clusters. Then
he could check the detail of some clusters by constructing
another LD space using their leaf nodes.

In our case study, we use a 42 dimensional, 20,000 ele-
ment data set derived from part of the unweighted PUMS
census data from the Los Angeles and Long Beach areas for
the years 1970, 1980, and 1990 10. We will refer to it as the
Census dataset.

Figure 9: The lower dimensional subspaces generated by
VHDR.

Figure 10: The lower dimensional subspaces generated by
VHDR.

Figure 4 shows the automatically generated dimension
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hierarchy of the Census dataset. We explored the overall
structure of the hierarchy, and found some clusters with
large dissimilarities between each other through structure-
based brushing and dissimilarity displays. We assigned a leaf
node in each cluster as its RD. These RDs are “education”,
“age”, “sex”, “weeks_worked_in_year”, and “income” re-
spectively. We hoped that they could form a lower dimen-
sional space that could reveal the main trend in this data set.
In fact, we found many interesting data clusters from this
space. For example, Figure 9 shows a group of high-income
males who have high education and work most of the year.

Then, we examined the details of a cluster we were inter-
ested in (see Figure 4). It seemed odd to us that some dimen-
sions, such as “region_of_previous_residence” were put to-
gether with dimensions such as “income”. According to our
domain knowledge, we felt that they were not related. Hence
we remove the unrelated dimensions from that cluster. Then
we checked the lower dimensional space composed of all
the leaf nodes of that cluster and found out that most, but
not all, people of low income have low wage per hour and
low capital gain. Several smaller clusters appear as distinct
configurations of value ranges for each dimension (Figure
10).

9. Related Work

There are three major approaches to dimensionality reduc-
tion. Principal Component Analysis (PCA) 13 attempts to
project data down to a few dimensions that account for
most of the variance within the data. Multidimensional Scal-
ing (MDS) 17 is an iterative non-linear optimization algo-
rithm for projecting multidimensional data down to a re-
duced number of dimensions. Kohonen’s Self Organizing
Maps (SOM) 16, 6 is an unsupervised learning method for re-
ducing multidimensional data to 2D feature maps.

There are many visualization systems that make use of ex-
isting dimensionality reduction techniques 23, 3, 11. Galaxies
and ThemeScape 23 project high dimensional document vec-
tors and their cluster centroids down into a two dimensional
space, and then use scatterplots and landscapes to visualize
them 22. Bead 3 uses MDS to lay out high dimensional data
in a two or three dimensional space and uses imageability
features to visualize the data.

Recently, many new dimensionality reduction techniques
have been proposed to process large data sets with rela-
tively high dimensionality. For example, Random Mapping
14 projects the high dimensional data to a lower dimensional
space using a random transformation matrix. Kaski 14 pre-
sented a case study of a dimension reduction from a 5781-
dimensional space to a 90-dimensional space using Random
Mapping. Wong and Bergeron 24 present a graph configura-
tion algorithm based on metric scaling that they use for po-
sitioning data glyphs. The Anchored Least Stress method 22

combines PCA and MDS and makes use of the result of data

clustering in the high dimensional space so that it can handle
very large data sets. This work inspired us to make use of the
data hierarchy in the dimension clustering process.

All the above approaches have the common drawback that
their generated display spaces typically have no clear mean-
ing for the users. In the VHDR approach, we reduce the
dimensionality in an interactive manner so as to generate a
meaningful low dimensional subspace.

Ankerst et al. 2 use similarity measures between dimen-
sions to order and arrange dimensions in a multidimensional
display. They arrange the dimensions so that dimensions
showing similar behavior are positioned next to each other.
Their work inspired us to use similarity among the dimen-
sions to group them.

10. Conclusion and Future Work

In this paper, we present the VHDR framework, a visual in-
teractive approach for dimension reduction. The main con-
tribution of the VHDR approach is that it can generate lower
dimensional spaces that are meaningful to users by allow-
ing them to interactively take part in the dimension reduc-
tion process. Other contributions include the mechanisms for
conveying cluster dissimilarity. We have implemented the
VHDR framework and incorporated it into the XmdvTool
software package (http://davis.wpi.edu/~xmdv),
which will be released to the public domain as XmdvTool
Version 6.0. We have applied it to several real data sets and
found that it is effective in coping with high dimensional
data sets.

In our future work, we will improve this approach in the
following aspects:

• implementing and comparing different dimension cluster-
ing approaches;

• exploring a dissimilarity display method that could be ap-
plied to most, if not all, data visualization techniques in a
consistent fashion;

• exploring automated techniques for generating or select-
ing interesting views of subsets of the hierarchy;

• improving the navigation and modification methods for
user interactions. For example, supplement the InterRing
display with a textual hierarchical dimension tree for bet-
ter user comprehension.

• evaluating the VHDR approach with user studies and ex-
periments and improving the VHDR approach according
to the results and feedback from users.
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Figure 1: InterRing. Display of a 42 dimension hierarchy.

Figure 2: 3 of the green terminal nodes on the left of the tree
in Figure 1 has been moved to the root.

Figure 3: An LD space of the Census Dataset constructed
of 4 dimension clusters. These clusters are composed of 3, 4,
2, and 1 original dimensions respectively from left to right
of the displays. The GDODs are shown using the Axis Width
Method.

Figure 4: LDOD display using the Three-Axes Method. The
green axis represents the minimum within the dimension
cluster and the blue axis corresponds to the maximum.
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