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Abstract. In visualizations of large-scale transportation and communications
networks, node coordinates are usually fixed to preserve the underlying geog-
raphy, while links are represented as geodesics for simplicity. This often leads
to severe readability problems due to poor angular resolution, i.e. small angles
formed by lines converging in a node.
We present a new method using automatically routed cubic curves that both pre-
serves node coordinates and eliminates the resolution problem. The approach is
applied to representations in the plane and on the sphere, showing European train
connections and Internet traffic, respectively.

1 Introduction

Since nodes in large-scale transportation networks, such as airline flight plans, train
connection maps, or extracts of the Internet, have a given geographic location, we call
these networksgeographic networks. Typical visualizations use given node coordinates
either directly, or only apply an appropriate projection (e.g., from the surface of a sphere
to a plane) to retain the viewers familiarity with the underlying geometry [3]. In general,
the exact routing of connections is not important, so that links are often represented as
geodesics (straight-lines or great circles). While computationally and visually simple,
this approach does not take into account the perceptual organization of the resulting
visualization.

Prior work on improving the visual quality has focused on moderate re-positioning
of close or overlapping nodes [17, 10], and re-routing of edges cutting through nodes or
other features [1, 8]. Since we address a different criterion of layout quality, our work
can be potentially used in conjunction with these approaches.

Severe readability problems in visualizations of geographic networks stem from
small angles formed by lines converging in a common node. Small angles cause viewers
to perceive filled-in areas between the lines , causing “blob”-effects and making
it difficult to tell lines apart.
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We present a new method that modifies a given visualization so that all angles
formed by incident lines are of sufficient size. This is achieved by replacing straight-line
and great-circle connections with cubic curves. While visually still simple, cubic curves
allow to prescribe angles between incident curves at will. A computationally fast and
simple method is introduced and demonstrated working on two real-world data sets.

The remainder of this paper is organized as follows. In Sect. 2, we provide some
terminology and background on properties of angles in network visualizations. Our ap-
proach is described in Sect. 3 and some extensions are presented in Sect. 4. Finally, it
is applied to visualizations in the plane and on the sphere in Sect. 5, using data from
European train and ferry schedules, and the multicast backbone of the Internet, respec-
tively.

2 Background on Angular Resolution

Networks are conveniently described as graphsG = (V;E), wherev is a set ofvertices
(nodes), andE is a set ofedges(links). Without loss of generality we consider only
undirected graphs without loops and multiple edges, so that every edge is an unordered
pair of vertices.

A network visualization is a drawing of the graph, i.e. a mapping of vertices to
points in the plane or in space together with a mapping of edges to curves connecting the
points of their respective vertices. We confine ourselves to drawings that map vertices
into the plane or the surface of a sphere.

Assume, we are given a drawing of a graph in the plane, such that every edge is
represented as a straight line. Thelocal angular resolutionat vertexv 2 V is the
minimum angle between a pair of edges incident tov. The minimum angle between
any pair of edges incident to anyv 2 V is called theangular resolutionof the drawing
and introduced in [9].

A trivial upper bound on the local angular resolution at vertexv 2 V is 2�
dG(v)

, where
dG(v) is thedegreeof v, defined as the number of edges incident tov. It is shown in [9]
that every simple graph has a straight-line drawing with angular resolution
( 1

�(G)
),

where�(G) is the maximum degree of any vertex inG. For planar graphs, i.e. graphs
that can be drawn in the plane without crossing edges, it is shown how to construct
drawings with asymptotically optimal angular resolution. However, these drawings are
in general not planar.

Every planar graph has a planar straight-line drawing with angular resolution
( 1

��(G) )

for some constant� > 1 [18], but there are planar graphs for which the angular res-

olution in any planar straight-line drawing is bounded byO(
q

log�(G)

�(G)3
) [12]. Note

that maximizing the angular resolution over all planar straight-line drawings of a planar
graph isNP-hard [11].

It is shown in [16] how to obtain planar drawings with asymptotically optimal angu-
lar resolution when edges may be represented as sequences of straight lines. This result
is improved in [13] and [14], where it is shown that only two bends per edge are needed,
so that edges can be drawn as cubic curves.

Our setting differs from the above in that the mapping of vertices to points is already
fixed. We do not know of other work on this particular problem.



To alter the angular resolution, we clearly must use polyline or curved edges as well.
We currently use cubic B´ezier curves [4], partially for the pragmatic reason that they
are built into PostScript and LEDA’s [19] graph editor. They are defined by a sequence
of four control points, b0; : : : ; b3 (and thus threecontrol segmentsb0b1, b1b2, andb2b3),
and have several advantages over other types of curves [5]. In particular, the tangents
at b0 andb3 are collinear with the first and third control segment. The definitions of
local and global angular resolution are hence easily generalized to drawings with cubic
Bézier curves.

To replace a straight-line edge with a cubic B´ezier curve, we only have to place the
inner control pointsb2 andb3, sinceb0 andb3 must be assigned to the positions given
for the incident vertices. The placement is then divided into

1. determining directions for the first and third control segment, and
2. determining the lengths of the first and third control segment.

Since the resulting angular resolution is fully determined by the first step, we do not
consider the second step in the remainder of this paper. As a simple heuristic the length
of the first and third control segment is chosen proportional to the length of the straight-
line edge. Future work should guarantee further desirable properties [15] of, potentially
higher-order, curves (e.g., to retain planarity of a drawing). Figure 1 shows the principal
combinations of directions of the first and third control segment and resulting cubic
Bézier curves. Note that all of them are easy to trace for the human eye. Moreover, we
will see later that our approach avoids the four high-curvature cases on the right hand
side whenever possible.

Fig. 1. Principal non-degenerate combinations of control segment orientations

3 Fixed Angular Resolution and Interesting Rotations

In this section, we show how to improve the angular resolution of a given straight-line
drawing in the plane by choosing directions for the first and third control segment of
Bézier curves replacing the straight lines.

On the one hand, these directions should yield good angular resolution. On the other
hand, we also want them to resemble the straight-line directions as close as possible to
avoid the high-curvature cases of Fig. 1, which also serves to keep the drawing sim-
ple. Note that we can treat control segments incident to one vertex independently from



control segments incident to other vertices. Therefore, lete0; : : : ; edG(v)�1, be a coun-
terclockwise ordering of the edges around somev 2 V in the given drawing (with ties
broken arbitrarily), and denote by�i, i = 0; : : : ; dG(v) � 1, the angle betweenei and
its counterclockwise neighbor.

Accordingly, we definec0; : : : ; cdG(v)�1 to be the corresponding ordering of control
segments incident tov. The angles between neighboring control segments are fixed to
be 2�

dG(v)
, thus ensuring optimal local, and hence global, angular resolution. Because of

the simplicity requirement, we want to penalize the deviation of control segments from
straight-line edges. Denote byxi the angle betweenei andci, i = 0; : : : ; dG(v) � 1,
wherexi > 0, if ei comes before, andxi < 0, if ei comes afterci in the counterclock-
wise order aroundv. We call these quantities theangular differences. See Fig. 2 for an
illustration and note thatx3 < 0.
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Fig. 2. Angles�i between straight-line edges, and angular differencesxi

Any set of control segments satisfying the angle constraints is called arotationatv.
There are several ways to define desirable rotations. Since the angles between control
segments are fixed. all angular differences of a vertex are dependent. It is easily seen
thatx1 = x0 + 2�

dG(v)
� �0, and more generalxi = x0 + i � 2�

dG(v)
�
Pi�1

j=0
�j for

i = 0; : : : ; dG(v) � 1. We frequently useyi = i � 2�
dG(v)

�
Pi�1

j=0
�j to denote the

angular offsetcaused by choosingx0 as the independent variable. A straightforward
objective is to minimize the largest absolute angular difference,

max
i=0;:::;dG(v)�1

jxij: (1)

We call this aminimumrotation.

Theorem 1. The minimum rotation is unique, and linear-time computable.

Proof. Sincexi = x0 + yi, i = 0; : : : ; dG(v) � 1, the maximum absolute angular
difference is the maximum ofjx0+mini yij andjx0+maxi yij. This maximum becomes
minimum for

x0 = �
mini yi +maxi yi

2
;



since both absolute values become equal and every otherx0 increases either one.

We next observe that, if the distribution of angles between straight-line edges in a
given drawing is well-behaved, the maximum absolute angular difference will be small.

Corollary 1. In a minimum rotation of a vertexv with degree at least two, the maximum

angular difference ismax
i
jxij = max

r<s

1

2
�

���(s� r) 2�
dG(v)

�
Ps�1

j=r �j

��� < �:

Proof. The proof of Theorem 1 showed thatmaxi jxij = jx0+mini yij =
1

2
�jminiyi �maxi yij =

1

2
� jmaxiyi �mini yij. It follows that there arer; s 2 f0; : : : ; dG(v) � 1g such that

maxi jxij =
1

2
jys�yrj andr < s, and there is no pair with a larger absolute difference.

Sinceys�yr = (s�r) 2�
dG(v)

�
Ps�1

j=r �j , the equality holds. Clearly,0 < (s�r) 2�
d
<

2� and0 �
Ps�1

j=r �j � 2� for all pairsr < s 2 f0; : : : ; dG(v)� 1g.

Essentially, the corollary states that the angular differences are half as bad as the
given distortion in the straight-line edges. Recall that angular differences less than or
equal to�

2
exclude the high-curvature cases of Fig. 1.

The corollary also indicates that the minimum rotation may be dominated by one
pair of straight-line edges. An alternative objective is therefore to minimize the sum of
squared angular differences,

dG(v)�1X
i=0

(xi)
2
; (2)

weighing contributions more evenly. Such rotations are calledbalanced.

Theorem 2. The balanced rotation is unique, and linear-time computable.

Proof. Substituting forxi reduces objective function (2) to a positive function inx0.
Thus, anyx0 satisfying @

@x0

PdG(v)�1

i=0
(x0 + yi)

2
=
PdG(v)�1

i=0
2�(x0 + yi) = 0 yields

a minimum. Clearly, there is exactly one suchx0, and it is obtained by averaging over
all offsets, i.e.

x0 =
�
PdG(v)�1

i=0
yi

dG(v)
=

1

dG(v)

dG(v)�1X
i=0

0
@

i�1X
j=0

�j � i �
2�

dG(v)

1
A :

An immediate consequence of the proof explains the name of this rotation.

Corollary 2. In a balanced rotation,
dG(v)�1P

i=0

xi = 0.

See Fig. 3 for a comparison of minimum and balanced rotation. For completeness
we note that the seemingly less interestingabsoluterotation, suggested by this corollary,
minimizing

PdG(v)�1

i=0
jxij is also unique, and that all angular differences for vertices

with already optimal local angular resolution equal zero in any of these rotations.
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Fig. 3. Comparison of minimum and balanced rotation

4 Extensions

The following are some of several possible extensions that may be useful when a par-
ticular application yields additional requirements on the quality of a drawing.

Arbitrary angle constraints.From Corollary 1 we see that angular differences can grow
quite big, when the given straight-line drawing has large angles, which typically results
in edges with high curvature. In such situations it may be advantageous not to optimize
local angular resolution exactly, but only up to a constant. For example, if there is an
angle of at least�, all angles between control segments can be set to�

dG(v)�1
, except for

one which is fixed to�. Note that we can impose any constraint on the angles between
control segments, provided they add up to2�, without affecting Theorems 1 and 2.
Figure 4 shows some potentially useful templates for angles between control segments.
The middle one is applied to vertices on the convex hull in Fig. 5.

Fig. 4.Example templates for constraints on control segment angles

Weighted angular differences.In an application with different types of edges, angular
differences of some edges may be more important than those of others. If this impor-
tance can be quantified, the objective functions for rotations can be modified to accom-
modate weights, and analog theorems hold. Weights may be particularly useful when
the straight-line edges incident to a vertex are of significantly different length.

Cyclic ordering.The order of control segments of a vertex need not the same as for the
straight-line edges. Figure 6 depicts a situation in which a different ordering would be
better. Allowing negative angles�i, control segments can be put in any order.



(a)

(b)

(c)

Fig. 5. A straight-line triangulation (a) and curved edges in a balanced rotation (b). Using the
half-sided templates of Fig. 4 for vertices on the convex hull significantly improves the drawing
(c)

Crossings.While there is no control over whether curved edges cross each other when
a rotation is determined, crossings already existing in the straight-line drawing can be
maintained by replacing them with a dummy vertex. Since angle constraints are arbi-
trary, we can thus constrain curves to cross, e.g., at a right angle or at the same angle as
in the given drawing.

5 Application Examples

5.1 Train Connections

To analyze time table data of a number of European public transport systems (mostly
trains), a graph is constructed in the following way [6]: Each station is represented by a
vertex, and there is an edge between two vertices if there is at least one non-stop service
between them at any time. This graph is analyzed, e.g., with respect to completeness,
consistency, or changes between schedules, serving, e.g., quality control, international
coordination, and pricing.

Each vertex has a geographic location, thus providing geographical context for vi-
sual data exploration. Part of the analysis is an automatic classification intominimaland
transitiveedges, corresponding to tracks and high-speed connections passing by minor
stations, respectively. By their very nature, many edges run almost in parallel when
drawn as straight-lines. In particular, transitive edges overlap each other, and minimal
edges (see Fig. 6(a)). Figure 6(b) shows a balanced rotation with the special half-sided
template for vertices with an angle of at least�. The unnecessary detour of one mini-
mal edge is due to the unfortunate ordering of straight-line edges. The system we are
building will order edges based on their length and classification.

An elaborate algorithm for application-specific curved layout of transitive edges is
presented in [6]. Users are very satisfied with the output, but running times are painful
(7–45 minutes for the networks compared in Tab. 1). Using the approach described
in this paper, we can easily afford to compute a new layout every time a network is
displayed and thus support interactive querying. In fact, optimal rotations are computed
faster than the editor (LEDA’s [19] GraphWin class) renders the network. See also the
larger example in Fig. 7.



instance nodesedgesminimum balanced
switzerland 2218 3203 0.36 sec 0.36 sec
italy 2386 4370 0.51 sec 0.51 sec
france 4551 7793 0.81 sec 0.80 sec
germany 7083 9713 1.19 sec 1.18 sec

Table 1.Computation times for rotations (Sun UltraSparc, 440 Mhz, 256 MBytes)

Allensbach

Konstanz

Radolfzell

(a) straight lines

Alle

Allensbach

Konstanz

Radolfzell

(b) balanced rotation

Alle

Fig. 6. Small network in southern Germany with one undesirable edge ordering

5.2 Internet Multicast Backbone

Internet connections represent another example of an organically grown, and grow-
ing, geographic network. To support their analysis, which is crucial for maintenance
and development, advanced systems such as [7, 20] provide effective interactive visu-
alizations of network topologies. The environment of [20] is publicly available,1 and
generates a geometric scene description that can be explored in an interactive browser
such as Geomview [2]. We replaced the generation of geometric output to demonstrate
how to improve the angular resolution, and thus the perceptual quality, of the resulting
visualizations.

The original system visualizes the topology of the MBone, the Internet’s multicast
backbone, by representing it as a geographic network on the globe, where connections
(MBone tunnels) are shown as great circle segments elevated into space (Fig. 8(a)). The
angles between great circles correspond to the angles between their projections into
the plane tangent to their intersection. Our approach of orienting control segments is
therefore easily generalized to deal with great circles on a sphere rather than lines in
the plane. Once the inner control points of a curved edge are placed on the sphere, the
actual curve is determined as follows. Assume the globe is represented as a sphere with
unit radius, andB(t) : [0; 1] ! IR3 is a cubic Bézier curve in space connecting points
b0 andb3. The curve is projected onto the sphere and elevated into space according to

B(t)

kB(t)k
� (1 + c � arccos(b0 � b3) � sin(t�)):

1 http://oceana.nlanr.net/PlanetMulticast/



wherec is an elevation constant. The resulting curves have essentially the same height
as those in [7]. See Fig. 8(b).

6 Conclusions

We presented a simple and extremely fast approach to improve the perceptual quality
of visualizations of networks with underlying geography. The approach is novel in that
it focuses on angular resolution rather than vertex positioning, and we expect many
potential applications other than the two described.

There are, however, several interesting topics that need further research. First of
all, our current formulation does not allow to control the introduction of new edge
crossings. It would be nice to guarantee that an improved drawing has the same number
of crossings as the input drawing, especially if the latter has no crossings at all. The
small time table data example already showed that our approach is sensitive to the
ordering of edges around a vertex. Is there a generally applicable rule to determine an
ordering other than the one in the straight-line drawing? Since rotations are determined
independently for each vertex, an optimal rotation may introduce unnecessarily many
S-shaped curves, whereas a different rotation may be more pleasing. Can we introduce
some form of dependency to make angular differences at both ends of an edge similar?
Finally, we would like to improve the heuristic used to determine the length of a control
segment. It may be advantageous to have control segments of similar length at a vertex,
or at both ends of an edge.
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(a) straight lines (b) balanced rotation

Fig. 7.Medium size time table graph: surroundings of Venice

(a) elevated great circles (b) balanced rotation

Fig. 8.Part of the Internet’s multicast backbone: Korea/Japan


