
Eurographics/ IEEE-VGTC Symposium on Visualization (2006)
Thomas Ertl, Ken Joy, and Beatriz Santos (Editors)

GPU-Based Hyperstreamlines for Diffusion Tensor Imaging

G. Reina1† and K. Bidmon1† and F. Enders2‡ and P. Hastreiter2‡ and T. Ertl1†

1Visualization and Interactive Systems Group (VIS), University of Stuttgart, Germany
2Neurocenter, Dept. of Neurosurgery and Computer Graphics Group, University of Erlangen-Nuremberg, Germany

Abstract
We propose a new approach for the visualization of hyperstreamlines, which offers potential for better scalability
than the conventional polygon-based approach. Our method circumvents the bandwidth bottleneck between the
CPU and GPU by transmitting a small set of parameters for each tube segment and generates the surface directly
on the GPU using the classical sphere tracing approach. This reduces the load on the CPU that would otherwise
need to provide a suitable level-of-detail representation of the scene, while offering even higher quality in the
resulting surfaces since every fragment is traced individually. We demonstrate the effectiveness of this approach
by comparing it to the performance and output of conventional visualization tools in the application area of
diffusion tensor imaging of human brain MR scans.
The method presented here can also be utilized to generate other types of surfaces on the GPU that are too complex
to handle with direct ray casting and can therefore be adapted for other applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism J.3 [Computer
Graphics]: Life and Medical Sciences

1. Introduction

Diffusion tensor imaging (DTI) is a magnetic resonance
imaging (MRI) technique with increasing popularity espe-
cially in neurosurgery. Instead of information about quantity
and linkage of hydrogen, it provides information about the
diffusion properties of molecules in tissue. This is of special
interest since the underlying cell structure influences these
properties in a way such that strongly aligned cells restrict
the diffusion to an anisotropic behavior. As important neu-
ronal pathways feature these cell characteristics, one can in-
fer about the occurrence of such major white matter tracts
based on DTI data. From the medical point of view, this
is particularly interesting since the protection of such ma-
jor white matter tracts is of utmost importance during in-
tervention. Therefore, visualization of the tracts is getting
increasingly relevant to diagnosis and planning. However,
many visualization methods are not capable of representing
all tensor information in a comprehensive manner. This is

† e-mail: {reina | bidmon | ertl}@vis.uni-stuttgart.de
‡ e-mail: {enders | hastreiter}@informatik.uni-erlangen.de

disadvantageous since diagnosis is improved by the avail-
ability of additional information.

Our approach uses the diffusion tensor eigenvectors to
generate oriented ellipses at the sampled points, which are
then linearly interpolated to form tubes connecting the sam-
pling points. Together the tube sections form hyperstream-
lines as shown in [DH93]. Instead of creating a mesh from
these tubes on the CPU, we just upload the orientation and
size parameters of each tubelet to the graphics card and use
sphere tracing [Har96] to generate the surface on the GPU.
Since hyperstreamlines in medical visualization are most
useful when displayed in the context of a volume represen-
tation of the surrounding tissue, we want to minimize data
transfer as much as possible. That way, the system bus band-
width can be used to upload volume data in case of time-
dependent or bricked datasets. Since our approach does not
access textures at all, the volume visualization can use all of
the available bandwidth on the graphics card to keep perfor-
mance as high as possible. On the other hand, our approach
to the rendering of hyperstreamlines relies on the computa-
tional power that is available on current GPUs but is not sub-
ject to heavy load from direct volume rendering approaches.
This paper is structured as follows: in Section 2 we summa-

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org

G. Reina & K. Bidmon & F. Enders & P. Hastreiter & T. Ertl / GPU-Based Hyperstreamlines

rize related work, Section 3 describes the MR data we use as
a base for our visualization. Section 4 details the graphical
representation of the tube parts as well as the mathematical
background, and Section 5 shows how the surface rendering
works on the GPU. In Sections 6 and 7 we give some results
and discuss the performance of our approach. Section 8 con-
cludes this work.

2. Related Work

Several strategies have been applied to the field of DTI vi-
sualization. Mapping tensors to scalar values and display-
ing them in a separate slice is a well-known method for di-
agnosis purposes [ERMB00, PAB02]. For a more compre-
hensive visualization of DTI data, volume rendering was
proposed by Kindlmann et al. [KW99, KWH00] who uti-
lized textures and transfer functions to represent the ten-
sor properties. To investigate the features of the tensor
per voxel directly, glyph-based approaches have been em-
ployed [WMM∗02, Kin04]. They represent each tensor in-
dependently by shape, size, color, and other attributes of a
glyph placed at the corresponding voxel position. These di-
rect visualization techniques are useful for a detailed inspec-
tion of the DTI dataset. However, their weakness is the miss-
ing connectivity of the data which prevents the analysis of
complete pathways.

To overcome this problem, streamline tracking techniques
were adapted to DTI processing [BPP∗00, LAS∗02]. Ad-
ditional improvements have been achieved by the use of
streamtubes [ZDL03] and hyperstreamlines [DH93, WL01]
since streamline techniques are limited to vector fields which
can be partly compensated by the use of three-dimensional
objects. Finally, neuronal pathways can be extracted and vi-
sualized as surfaces which support an intuitive understand-
ing of the data [ESM∗05].

Generating parametric surfaces on the GPU has been in-
vestigated in several publications, be it for explicitly gen-
erating geometry in vertex buffers [MP03, LH04], be it for
ray casting the surfaces directly on the GPU, as has been
done for ellipsoids [KE04, Gum03] and application-specific
glyphs [RE05], to mention just a few. Sphere tracing [Har96]
has been recently reproposed for displacement mapping on
graphics hardware [Don05].

An approach very closely related to our own was pro-
posed by Stoll et al. [SGS05], however the tubes generated
by their method are limited to circular cross-sections as op-
posed to our elliptical cross-sections. This trade-off allows
for the rendering of the resulting tubes using splatting tech-
niques that yield much higher frame rates than our approach
at the cost of a lower information density.

3. Data

For the computation of diffusion tensor data, six diffusion-
weighted images with different gradient directions were

measured in combination with a reference image, mea-
sured without any gradient. Based on this set of images,
the real-valued symmetric second-order tensor can be de-
termined [WMM∗02]. This tensor represents the diffusion
characteristics of hydrogen averaged over the volume of the
corresponding voxel. The eigensystem of this tensor can be
evaluated, resulting in three real eigenvalues and the corre-
sponding orthogonal eigenvectors.

The first step towards hyperstreamlines is the tracking
of the related streamlines. Integration schemes known from
flow visualization, such as Euler or Runge-Kutta are ap-
plied to determine streamlines through a vector field. The
required input vector field is derived by a simple reduction
of the tensor to its principal eigenvector. The loss of infor-
mation is partly compensated by introducing a threshold for
tracking. A possible parameter is fractional anisotropy (FA)
which is a measurement for anisotropy [BMP∗01]. It serves
as stop criterion to terminate tracking when running into ar-
eas of reduced anisotropy with low probability for neuronal
pathways. In our approach all voxels above the specified FA
threshold were used as seed regions. As soon as the tracking
enters a voxel with an FA value below the threshold it stops.
A resulting whole-brain tracking can be seen in Figure 1.
Afterwards, subsets of fibers were selected using manually
defined regions of interest (ROI).

Figure 1: Hyperstreamline visualization of a whole-brain
tracking. The viewpoint is positioned left, posterior above
the brain. Green segments indicate tracking in reliable re-
gions with high anisotropy. Yellow tube sections suggest
fiber crossings. The absence of red segments in the cen-
tral parts of the hyperstreamlines documents the correctness
of the fiber tracking algorithm. Dataset as used for perfor-
mance measurements in Table 1.

The drawback of streamlines in the context of DTI is cer-
tainly the restriction to a vector field. Features of the ten-
sor field like torsion or the minor eigenvalues cannot be
displayed with this method. To overcome this problem, hy-
perstreamlines are applied which are capable of visualizing

c© The Eurographics Association 2006.

G. Reina & K. Bidmon & F. Enders & P. Hastreiter & T. Ertl / GPU-Based Hyperstreamlines

such attributes. The eigenvalues and eigenvectors of the ten-
sor at each base point of the streamline serve as basis for the
twist and the semi-major axes of the segments of the hyper-
streamline.

4. Tubelets

To visualize the tensor field, the data is mapped to a spe-
cial kind of tubelet shaped by ellipses within a slice plane
at each end. These ellipses are defined by their semi-major
and semi-minor axis and its rotation around the x axis. The
shape along the tubelet is determined by linear interpolation
as further described in Section 4.2. Taking into account the
special needs of our given data, a local coordinate system is
introduced in Section 4.1, and some more complicated cus-
tomizations on distance measuring and rotation interpolation
are required as described in Section 4.3.

4.1. Definition of the Local Coordinate System

For each tubelet a local coordinate system is defined, de-
pending on the two ellipses that define the tubelet’s shape.
The ellipses are defined by an eigensystem each, where the
normalized eigenvectors~ei are sorted by their corresponding
eigenvalues vi in descending order: v1 > v2 > v3. As ~e1 is
the hyperstreamline’s direction, the two minor eigenvalues
define the length of the ellipse’s semi axes and the corre-
sponding eigenvectors define the corresponding direction of
each semi axis. The signs of the eigenvectors are chosen in a
way such that the eigensystem is a right-handed orthonormal
basis (as mentioned in Section 3) that can be used directly to
define the tubelet’s local coordinate system.

The local x-axis is given by the tubelet’s axis ~xt , con-
necting the midpoints ~pl and ~pr of the two ellipses (~xt =
(~pr −~pl)/‖~pr − ~pl‖), and the other two axes are derived
from the left end ellipse as follows: The ellipse’s first eigen-
vector~e1 is to point in the same direction as the tubelet axis.
This is done by rotating the eigensystem around ~e1 ×~xt by
an angle of arccos(~e1 ·~xt). Then the rotated eigenvectors ~e2
and ~e3 define the tubelet’s local y-axis ~yt and z-axis ~zt re-
spectively.

4.2. Geometrical Definition of the Tubelets’ Shape

Geometrically defining the shape of a tubelet first requires
some considerations about ellipses in the yz-plane: Assum-
ing r1 and r2 to be the two semi axes, ellipses are usually
described by the Cartesian equation

y2

r12 +
z2

r22 = 1 . (1)

Our ellipses are defined within the yz plane and may be ro-
tated around the x axis. Therefore a representation of the el-
lipse corresponding to the polar coordinates of a circle is
easier to handle. Additionally, we need the surface normal

later for correct lighting, which is also easier to calculate in
polar coordinates.

y

~x(x,ϕ)

ϕ

r1

r2

z

r(ϕ)

Figure 2: Ellipse in polar coordinates.

Let ϕ be the angle to the y axis, then the ellipse can be
given in polar coordinates by

~x(x,ϕ) =

 x
r(ϕ) cosϕ

r(ϕ) sinϕ

 (2)

with r(ϕ) determined by plugging these coordinates into the
Cartesian equation (1)

r(ϕ) =
r1 r2√

r1 sin2
ϕ + r2 cos2 ϕ

. (3)

Within a plane of constant x, rotating the whole ellipse
around the x axis by an angle ρ changes (2) to

~x(x,ϕ) =

x
y
z

 =

 x
r(ϕ) cos(ρ +ϕ)
r(ϕ) sin(ρ +ϕ)

 . (4)

The tubelets are defined by an ellipse at each end and
are centered along the x axis of their own local coordinate
system. These ellipses may vary in the length of their semi
axes and in the rotation along x, and they are located at
(−l/2,0,0) and (l/2,0,0) respectively, where l is the length
of the tubelet as depicted in Figure 3.

x(0,0,0)

ErEl

l
l/2

yz plane

Figure 3: Definition of a tubelet along x.

For each x value along the tubelet the semi axes and the
rotation angle ρ of the ellipse are calculated by linear inter-
polation from the properties of the ones at the tubelet’s ends.

The tubelets are connected to each other to get longer
tubes, so the cutting planes El and Er at the ends of each
tubelet have to be specified. In order to approximate curved
tubes, these planes may be rotated arbitrarily as illustrated

c© The Eurographics Association 2006.

G. Reina & K. Bidmon & F. Enders & P. Hastreiter & T. Ertl / GPU-Based Hyperstreamlines

in Figure 3. We will go into more detail about this in the
following section, taking into account special needs arising
with these properties.

4.3. Geometrical Background for Ray Casting

In order to ray cast each tubelet’s surface we need the inter-
section point of the eye ray with the tubelet. As this intersec-
tion calculation leads to an equation of degree 4 which are
very hard to calculate analytically and would require numer-
ical solving methods, too expensive and time-consuming for
graphics hardware. Therefore we decided to adopt the sphere
tracing algorithm presented in [Har96]. Starting at the eye’s
position we step along the eye ray, determine the current dis-
tance to the tubelet’s surface, and take this distance as the
next step size to close in onto the tubelet. This procedure is
repeated until the distance falls below a specified threshold
ω . In most cases this works fine but some rays require addi-
tional adjustments which will be explained in Section 5.

z

y

dtmp
dcorr

~p

~x(x,ϕ)

r2(x)

r1(x)

α

ϕ
ρ(x)

r(x,ϕ)

Figure 4: Distance measurement from the current position
~p to the rotated ellipse~x(x,ϕ) within a plane of constant x.

From the current position, the shortest distance to the
tubelet has to be calculated to get the new step size. Due
to the rotation of the tubelet along x, the correct shortest
distance dcorr to the tubelet’s surface—which is measured
along the surface normal ~N—cannot be easily calculated as
it would also lead to an iterative and time consuming way to
find the solution. To avoid that, we decided to substitute the
shortest distance by a close solution: we assume the x value
to be the same as the one of our current position and calculate
the distance dtmp to the ellipse in this common plane normal
to the x axis and through the current position as depicted in
Figure 4:

dtmp =
√

~py
2 + ~pz

2− r(x,ϕ) (5)

where ~py is the y-component of ~p and ~pz the z-component re-
spectively, and with r satisfying (3) within the current plane
of constant x value. In the next step we take the point dtmp
units further along the ray as our new current position. In

case dtmp < 0 we already intersected the surface and have to
step backwards, which is equivalent to walking along the ray
in negative direction and needs no special considerations.

In order to get a longer tube which is more flexible than
a single tubelet we connect neighboring tubelets at their cut-
ting planes El and Er. To approximate a curved tube the
planes are not necessarily normal to the local x axis, as
mentioned before. These sloped tubelet ends cause further
considerations about the tubelet’s properties: merging the
tubelets to form larger tubes also raises the problem of ro-
tation consistency at the interconnections. Consistent prop-
erties of the ellipses are only guaranteed in slices perpendic-
ular to xt that do not contain parts of a neighboring tubelet,
because otherwise there are two inconsistent interpolation
parameters belonging to the two tubelets respectively. So we
have to restrict the interpolation up to the point ~q as exem-
plified in Figure 5 for the tubelet’s left end.

~Nl

El

∆ll

rtmp

β ~xt

~yt

β

~q

Figure 5: Correction of distance and interpolation range.
El is the left cutting plane, ~Nl the corresponding normal vec-
tor.

To restrict the interpolation to the correct range of x values
we need to calculate the distance ∆l = rtmp · tanβ with β

being the angle between the tubelet’s local z-axis zt and the
intersection line of the cutting plane and the plane normal
to the local x-axis xt , which is β = 0 for the left end and
β = ρr for the right end—due to the definition of the local
coordinate system as described in 4.1—and rtmp satisfying
(3) with ϕ = β −ρ(x) leading to

rtmp =

{
r1 lr2 l/

√
r2 l (left end)

r1rr2r/
√

r1r sin2
ρr + r2r(cos2 ρr) (right end).

Taking this fact into account for the computation of the
tubelet’s total length we get

ltotal = l +∆ll +∆lr (6)

with ∆ll ,∆lr ≥ 0.

To enhance the impression of the tubelet’s surface shape
the correct surface normals are needed for correct lighting.
Using the derivatives of (4) we get the surface normal ~N ′ by
evaluating

~N ′ =
∂~x
∂ϕ

× ∂~x
∂x

. (7)

c© The Eurographics Association 2006.

G. Reina & K. Bidmon & F. Enders & P. Hastreiter & T. Ertl / GPU-Based Hyperstreamlines

We will go into more detail about lighting in the following
section.

5. Sphere Tracing on the GPU

To generate tubelets on the GPU, we reduce the needed sur-
face to its parameters as described in Section 4. The vertex
program calculates a bounding cuboid to scale the rendering
primitive (a point) accordingly. Most of the values that are
constant for a whole tubelet are computed from the parame-
ters as well. This additional data is then passed to a fragment
program along with the parameters so it can find the proper
surface intersection with one ray cast per pixel, add phong
shading and correct the depth value to fit the geometry.

For the GPU-based part of the algorithm we need the posi-
tion, two colors, orientation (as a quaternion), the four radii,
the right end rotation angle, the total length and the normals
of the two bounding planes. We can fit this data into five float
quadruples (Olocal and l, q, r1l ,r2l ,r1r,r2r, ~Nl , ~Nr and ρr, as
ρl is always 0 due to the definition of the local coordinate
system) plus two byte quadruples (color), so we only need
to upload 644 bytes per tubelet, which is less than what is
needed for 10 triangles with normals and constant color. For
each tubelet we upload a single point (with the attributes as
texture coordinates) to the graphics card, since a point is the
smallest type of billboard in terms of data size, and as bonus
we do not even need to adjust the orientation to face the eye
position ~pe.

The vertex program computes two orientation matrices.
The first one (Mc) is obtained after combining the tubelet ori-
entation quaternion with the camera orientation quaternion.
It is used for orbiting the eye point around the tubelet, to
obtain the local coordinate system described in Section 4.1.
The second matrix (Mo) is obtained from only the tubelet
orientation and used to calculate a bounding cuboid from
the worst-case dimensions of the tube, i.e. a cylinder with
length ltotal and radius max(r1l ,r2l ,r1r,r2r). This cuboid is
projected onto the view plane to obtain the point’s extents
and center. Since the light position is also constant for all
pixels of one tubelet, we rotate the light vector of our single
light source with Mc in order to always have a headlight-like
illumination.

The parameters we have to pass to the fragment program
are the following: the eye position ~pe relative to the tubelet
centered at (0,0,0), the rotation matrix from the combined
quaternions Mc, the transformed light vector, the two bound-
ing planes and the radii and length. Furthermore we only
need to calculate ∆ll ,∆lr once for each tubelet so they are
computed in the vertex program and passed to the fragment
shader. Together with the re-oriented z vector ~o′ we use up
all available varying parameters shared between vertex and
fragment program.

The fragment program first has to find the vector~s which
connects the eye to the current pixel starting from the x and y

component of the fragment’s window position WPOS. To ac-
count for the fact that the origin is at the tubelet and the eye
point orbits around it, Mc has to be applied to the resulting
normalized ray direction~s as well. To speed up the iteration
process, we use an approximation of the intersection point as
our starting point: The tubelet’s surface is enclosed between
two conical frustums, interpolating between the major axes
of both ellipses in the bigger frustum and interpolating be-
tween the two minor axes in the other one. We calculate the
intersection of our ray with the two cones and use the middle
point between both intersection points as the start point for
ray casting.

We then walk along the ray with a step size computed
from the approximated distance as in (5) until either the dis-
tance is below a threshold ω or a maximum number of steps
has been walked (see below). If the distance left after the
last step is beyond this threshold or we are outside the two
clipping planes El ,Er, the fragment is discarded. This leads
to holes in the surface if the ray is approximately parallel to
the tubelet’s axis as the step size is almost constant and often
very small, but it might still be far from the intersection point
with the surface. To enhance the results in that case, we use
an adaptive step size: if the angle between~xt and~s is small,
we scale the step size according to the angle between the
surface normal and the ray direction by (1− cos(~N ·~s))+ 1
which avoids these holes and thus leads to much better re-
sults with less iteration steps.

~o

z′

~o ′

T = (3,0,−3)W

Mc ·~peW

= ~pT

~peW

Figure 6: Local tubelet coordinates (green) in relation to
world coordinates (black).

In case the fragment is not discarded, the correct depth
is calculated to ensure that tubelets intersect correctly with
each other and the volume as well. Since the eye point is
displaced from (0,0,0)T and the view direction is no longer
~o = (0,0,−1)T , the depth z′ is the distance to a plane nor-
mal to the orientation transformed by ~o ′ = MT

c ~o (see Figure
6), so we can use the Hessian normal form to get the dis-
tance and then fit the result to the exponential OpenGL depth
range:

z′ =~o ′ · (~p− ~pe)

zogl =− zF + zN

2(zN − zF)
+

1
2

+
zF zN

(zN − zF)z
(8)

c© The Eurographics Association 2006.

G. Reina & K. Bidmon & F. Enders & P. Hastreiter & T. Ertl / GPU-Based Hyperstreamlines

The normal is calculated as defined in (7) and used for Phong
shading of the surface.

A drawback of this technique is that one cannot look in-
side the tubelets, since for rendering the back face we would
have to start iterating on the other side of the local x axis
and thus require two times the performance we need now.
However there is no need to render the back face since users
are usually not looking down the length of a tubelet because
the relevant information (how the rotation and radii change
over a certain distance) is visualized along the length of the
tubelet and has to be interpreted in the context of the local x
coordinate.

6. Results

The advantage of DTI is its capability to provide the in-
trinsic diffusion properties of water within tissue. Due to
the anatomical structure of neuronal pathways this diffusion
is anisotropic in areas of major white matter tracts. Thus,
DTI can reveal coherences in-vivo which are not visible in
MRIT 1 or MRIT 2 datasets. An accepted method to access
this information is to apply fiber tracking. However, since
streamlines cannot convey tensor information their extension
to hyperstreamlines is of certain value for detailed data anal-
ysis.

Figure 7 (left) shows a line-rendering in comparison to
hyperstreamlines (right) of a pyramidal tract combined with
direct volume rendering of a MRIT 1 dataset.

Figure 7: These two figures show the same pyramidal tract
rendered with standard streamline (left) and with our method
(right) in combination with direct volume rendering of a T1-
weighted MRI dataset. For coloring the principal eigenvec-
tors are mapped into RGB-color space.

Using hyperstreamlines instead of simple lines enables
the analysis of the whole tensor data. Areas with large eigen-
values will result in larger diameters of the hyperstreamline.

This allows users to make conclusions about the underlying
tissue. For a hyperstreamline showing a higher diameter it
is very likely that it is not aligned with a neuronal pathway
since white matter restricts the diffusion perpendicular to the
cell orientation. Therefore, such expansions are an indication
for an uncertainty in the fiber tracking.

The analysis regarding uncertainties can be further im-
proved by the application of special color schemes. Instead
of utilizing the standard RGB-scheme, where the principal
eigenvector is used as color vector, the color can be selected
by a scheme based on an approach presented by Westin et
al. [WMK∗99]. Thereby, areas with high anisotropy are de-
picted green while areas with planar diffusion are colored
yellow and isotropic areas appear red. Accordingly, red tube
segments do have a higher uncertainty. Figure 1 shows a
whole brain tracking. It can be seen that especially in the end
segments the color changes from green to red. This is plau-
sible since the fiber tracking algorithm stops when reaching
a voxel with a sufficiently low anisotropy which is depicted
red.

Segments which appear yellow correspond to regions of
planar diffusion. This occurrence is generally considered to
be a potential fiber crossing which cannot be treated ad-
equately with current fiber tracking algorithms. Therefore,
such segments are of special interest and supportive render-
ing is desired. For the actual analysis of such regions hyper-
streamlines are superior to common streamlines and -tubes.
They provide information about the spatial orientation of the
diffusion (Figure 8 left). However, hyperstreamlines suffer
from the same problem of restricted data accuracy as stan-
dard streamlines. Since DTI data does not provide better res-
olution than the current 2mm voxel spacing, all tracked lines
can only be considered averaged models for the underlying
tissue structure.

Figure 8: The left figure shows a bundle of hyperstreamlines
traversing a region of planar diffusion which leads to yel-
low coloring and a flattening of the tube. On the right side,
some segments showing extreme torsion are depicted. The
displayed extreme torsions are added manually as a proof of
concept by switching off angle correction, thus allowing ro-
tations larger than 90 degrees between consecutive ellipses.

Another feature which is depicted by hyperstreamlines is
torsion (Figure 8 right). While strong torsion is not necessar-
ily required for DTI visualization it is extremely useful for
other data, namely technical simulation data.

c© The Eurographics Association 2006.

G. Reina & K. Bidmon & F. Enders & P. Hastreiter & T. Ertl / GPU-Based Hyperstreamlines

7. Performance

Our approach has been integrated into a framework for DTI
visualization used at the Neurocenter for easy access to MRI
data preprocessing and rendering of correct context infor-
mation as well as the possibility to compare our method
with existing streamline/streamtube implementations. Our
method uses GLSL high-level shaders in two variants: the
first avoids Shader Model 3 functionality and walks a fixed
number of steps before testing for a hit, while the second
uses a dynamic loop that stops if either ω can be satis-
fied or a certain number of steps is exceeded. For current
hardware the second approach cannot improve performance,
since fragments in a certain neighborhood are required to
have the same execution time, so a ‘slow’ fragment defeats
any time-saving neighbors. This variant can however be used
for investigating the relation between surface curvature and
number of steps needed to intersect the surface reliably (see
Figure 9). For practical purposes, a fixed iteration bound of
8 works sufficiently well and yields a performance of about
33 MPixels/s according to NVShaderPerf.

Figure 9: Iteration count to satisfy threshold shown as hue
where red means higher iteration count.

To sensibly compare performance between our method
and an existing polygon-based approach, some peculiarities
have to be considered. The polygon tubes are subdivided into
16 segments per profile in order for the surface to have com-
parable shading quality. We use the same number of tube
segments in both approaches, however the existing algo-
rithms linearly interpolate between the profiles, which yields
connections that are not really correct (see Figure 10). To
obtain a high-quality surface like our method, the segments
would have to be subdivided in relation to the spanned rota-
tion angle, which would yield at least three times the number
of primitives that are used currently and thus reduce render-
ing performance drastically.

Figure 10: Interpolated vertex positions (left) with erro-
neous self-intersection vs. interpolated ellipse orientation
(right).

As can be seen in Table 1, our approach cannot offer the
performance of the much simpler polygon-based approach
for small and medium-sized datasets. With the whole-brain
tracking, however, we are coming close to the break-even

point, because the high load of the geometric primitives
on the CPU and the graphics bus has about nullified the
advantage of cheap fragment processing, so our approach
is about twice as fast with a medium-sized viewport on
a GeForce 7800 GTX. However, our approach is limited
by fragment processing power, which means that using a
nearly full-screen-sized viewport reduces our frame rate to
half the frame rate achieved by the polygon-based approach.
This can be solved by several means though, since frag-
ment processing power can be much more easily increased
than throughput or geometry processing: we could either use
two SLI-coupled graphics cards for about twice the perfor-
mance or resort to distributed parallel rendering as often em-
ployed in DVR. Taking into account the recent development
of graphics cards, we can also rely on the fact that the frag-
ment units of the next generation of graphics cards will at
least about double our performance through higher paral-
lelism and other optimizations.

It is also evident in Table 1 that standard direct volume
rendering does not significantly impact the performance of
our approach. Nevertheless, using the instrumented driver
we also found that there still must be a bottleneck in our
implementation since the fragment shader load is maxed out
at 74% while other raycasting algorithms [RE05] reach up
to 91%. We are currently investigating this effect.

Optic Tract Pyramidal Brain
#segments 18,681 34,778 226,032
fps 434×673 10 10 6
fps 434×673

10 10 5.5with volume
fps 1560×1051 2.5 2.3 1.5
fps 1560×1051

2.4 2.3 1.5with volume
fps polygons > 100 > 100 4
fps polygons

15 15 3.3with volume

Table 1: Performance measured on a GeForce 7800 GTX
with instrumented developer driver v79.70. Viewport sizes
are as indicated, with the tubes zoomed to fit. A contex-
tual volume rendering is included where mentioned. For
polygon-based visualization the viewport size is always
1560×1051, with the volume approximately filling it. Each
polygonal segment consists of a triangle strip of 21 elements.

8. Conclusion

We have demonstrated an alternative method to visualize hy-
perstreamlines relying on GPU-based iterative ray casting.
This method allows us to calculate intersections with sur-
faces that cannot be implicitly ray cast. The main advantage
of this approach is its suitability for large datasets and its in-
herent scalability with the evolution of graphics processors

c© The Eurographics Association 2006.

G. Reina & K. Bidmon & F. Enders & P. Hastreiter & T. Ertl / GPU-Based Hyperstreamlines

and its suitability for parallel rendering methods as SLI or
graphics clusters.

Our method can be applied to the visualization of other
kinds of unpleasant surfaces and therefore it is of more gen-
eral interest than the specific application demonstrated here.
In the context of medical visualization the enhanced geom-
etry allows the user to benefit from both the connectivity in-
formation (usually available from streamlines) and the ori-
entation information (usually available at discrete points by
using glyphs) which is visualized as the semi axes of our el-
lipse tube section. As future work we plan to investigate the
possibility to upload the fiber tracking results directly to the
GPU and extract our parameters on the fly.

Acknowledgments

This work was partially supported by the Deutsche
Forschungsgemeinschaft in the context of SFB 603, Project
C9 and partially supported by the DLR in the context of
Project 688. We would like to thank Dorit Merhof and
Markus Sonntag for various contributions to the visual-
ization framework. Brain dataset courtesy of Christopher
Nimsky, MD at the Dept. of Neurosurgery, University of
Erlangen-Nuremberg, Germany.

References

[BMP∗01] BIHAN D. L., MANGIN J.-F., POUPON C., CLARK

C. A., PAPPATA S., MOLKO N., CHABRIAT H.: Diffusion ten-
sor imaging: Concepts and applications. Journal of Magnetic
Resonance Imaging 13 (2001), 534–546.

[BPP∗00] BASSER P. J., PAJEVIC S., PIERPAOLI C., DUDA J.,
ALDROUBI A.: In vivo fiber tractography using dt-mri data.
Magnetic Resonance in Medicine 44 (2000), 625–632.

[DH93] DELMARCELLE T., HESSELINK L.: Visualizing second-
order tensor fields with hyperstreamlines. IEEE Comput. Graph.
Appl. 13, 4 (1993), 25–33.

[Don05] DONNELLY W.: GPU Gems 2. Addison-Wesley, 2005,
ch. Per-Pixel Displacement Mapping with Distance Functions.

[ERMB00] ELIAS R. MELHEMA RYUTA ITOHA L. J., BARK-
ERA P. B.: Diffusion tensor mr imaging of the brain: Effect
of diffusion weighting on trace and anisotropy measurements.
American Journal of Neuroradiology 21 (2000), 1813–1820.

[ESM∗05] ENDERS F., SAUBER N., MERHOF D., HASTREITER

P., NIMSKY C., STAMMINGER M.: Visualization of white mat-
ter tracts with wrapped streamlines. In Proceedings of IEEE Vi-
sualization 2005 (2005), IEEE, pp. 51–58.

[Gum03] GUMHOLD S.: Splatting illuminated ellipsoids with
depth correction. In VMV (2003), pp. 245–252.

[Har96] HART J. C.: Sphere tracing: A geometric method for the
antialiased ray tracing of implicit surfaces. The Visual Computer
12, 10 (December 1996), 527–545.

[KE04] KLEIN T., ERTL T.: Illustrating Magnetic Field Lines us-
ing a Discrete Particle Model. In Workshop on Vision, Modelling,
and Visualization VMV ’04 (2004).

[Kin04] KINDLMANN G.: Superquadric tensor glyphs. In Proc.
Eurographics - IEEE TCVG Symposium on Visualization (2004),
pp. 147–154.

[KW99] KINDLMANN G., WEINSTEIN D.: Hue-balls and lit-
tensors for direct volume rendering of diffusion tensor fields.
In VIS ’99: Proceedings of the conference on Visualization ’99
(Los Alamitos, CA, USA, 1999), IEEE Computer Society Press,
pp. 183–189.

[KWH00] KINDLMANN G., WEINSTEIN D., HART D.: Strate-
gies for direct volume rendering of diffusion tensor fields. IEEE
Transactions on Visualization and Computer Graphics 6, 2
(2000), 124–138.

[LAS∗02] LORI N., AKBUDAK E., SHIMONY J., CULL T., SNY-
DER A., GUILLORY R., CONTURO T.: Diffusion tensor fiber
tracking of human brain connectivity: aquisition methods, relia-
bility analysis and biological results. NMR in Biomedicine 15,
7-8 (2002), 494–515.

[LH04] LACZ P., HART J. C.: Procedural Geometric Synthesis
on the GPU. In Proceedings of the GP2 Workshop (2004).

[MP03] MĚCH R., PRUSINKIEWICZ P.: Generating subdivision
curves with L-systems on a GPU. In GRAPH ’03: Proceedings
of the SIGGRAPH 2003 conference on Sketches & applications
(2003), ACM Press, pp. 1–1.

[PAB02] PAJEVIC S., ALDROUBI A., BASSER P.: A continuous
tensor field approximation of discrete dt-mri data for extracting
microstructural and architectural features of tissue. Journal of
Magnetic Resonance 154, 1 (2002), 85–100.

[RE05] REINA G., ERTL T.: Hardware-Accelerated Glyphs for
Mono- and Dipoles in Molecular Dynamics Visualization. In
Procceedings of EUROGRAPHICS - IEEE VGTC Symposium on
Visualization 2005 (2005).

[SGS05] STOLL C., GUMHOLD S., SEIDEL H.: Visualization
with stylized line primitives. In Proceedings of IEEE Visualiza-
tion ’05 (2005), IEEE.

[WL01] WUENSCHE B., LOBB R.: The visualization of diffusion
tensor fields in the brain. In Proc. of the International Conference
on Mathematics and Engineering Techniques in Medicine and
Biological Science, METMBS (2001), pp. 498–504.

[WMK∗99] WESTIN C.-F., MAIER S. E., KHIDHIR B., EV-
ERETT P., JOLESZ F. A., KIKINIS R.: Image processing for
diffusion tensor magnetic resonance imaging. In Medical Image
Computing and Computer-Assisted Intervention (September 19–
22 1999), Lecture Notes in Computer Science, pp. 441–452.

[WMM∗02] WESTIN C.-F., MAIER S. E., MAMATA H.,
NABAVI A., JOLESZ F. A., KIKINIS R.: Processing and visu-
alization of diffusion tensor MRI. Medical Image Analysis 6, 2
(2002), 93–108.

[ZDL03] ZHANG S., DEMIRALP C., LAIDLAW D. H.: Visualiz-
ing diffusion tensor mr images using streamtubes and streamsur-
faces. IEEE Transactions on Visualization and Computer Graph-
ics 9, 4 (2003), 454–462.

c© The Eurographics Association 2006.

