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Abstract
In this paper we present an approach to the analysis of the contribution of a small subregion in a dataset to the
global flow. To this purpose, we subtract the potential flow that is induced by the boundary of the sub-domain from
the original flow. Since the potential flow is free of both divergence and rotation, the localized flow field retains
the original features. In contrast to similar approaches, by making explicit use of the boundary flow of the subre-
gion, we manage to isolate the region-specific flow that contains exactly the local contribution of the considered
subdomain to the global flow. In the remainder of the paper, we describe an implementation on unstructured grids
in both two and three dimensions. We discuss the application of several widely used feature extraction methods on
the localized flow, with an emphasis on topological schemes.

Categories and Subject Descriptors (according to ACM CCS): I.6.6 [Simulation And Modeling]: Simulation Output
Analysis J.2 [Physical Sciences and Engineering]: Engineering.

1. Introduction

In the usual analysis and visualization of CFD flows, topo-
logical methods have an established role and are in wide use
for typical flow analysis tasks (e.g. [BTPS04]). Under cer-
tain conditions, however, this class of methods fails to pro-
vide an accurate structural picture of non-trivial flows. The
notion of topology of a vector field is built on the occurrence
of critical points, i.e. zeros of the field. If, for example, the
flow is dominated by a large near-constant component, as is
common in the flow past a stationary object, critical points
do often not occur at all. Moreover, the definition of vector
field zeros implies that they are not invariant with respect to
a moving frame of reference. Due to practical reasons, the
actual frame of reference of a given flow vector field does
not necessarily match the one of interest. This is especially
true for physical measurements that are impossible to ob-
tain for certain geometries (e.g. a moving helicopter rotor),
but also for CFD computations where practical reasons man-
date that moving objects are simulated on a fixed grid. While
topology is a prime example of a flow visualization method
that is dependent on the underlying frame of reference, other
schemes suffer from this limitation to a varying degree.

The ideas presented in this paper center around the no-
tion of localized flow analysis, i.e. the analysis of the contri-
bution in a subregion to the global flow of a given dataset.

To this purpose, we construct a so-called potential flow that
matches the original field on the boundary of the sub-domain
but is otherwise simple in the sense that it has vanishing
divergence and curl. In other words, it represents the lami-
nar flow in the sub-domain. Through subtraction of this field
from the original flow, we are left with a localized flow that
is confined to the sub-domain under consideration and con-
tains the local contribution to the global flow. As an impor-
tant side-effect, the influence of the frame of reference that is
reflected on the boundary of the sub-domain is removed. In
this way, topological analysis and frame of reference are sep-
arated. Visualization methods that are based on divergence
or rotation of the flow (both local in nature) are unaffected
by this approach since the localized flow retains the original
rotation and divergence. The method presented here works
well for both two-dimensional and three-dimensional flow
fields. The choice of subregion is arbitrary up to the condi-
tion that it is a simple domain with piecewise smooth bound-
ary. We describe an algorithm that reflects the given ideas on
unstructured triangular or tetrahedral meshes using a stan-
dard finite-element approach. Although the computation of
the potential flow is a complicated numerical procedure, our
algorithm works well even on large CFD datasets with mil-
lions of cells.

Our work can be seen as having similarities to what others
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Figure 1: Illustration of the different components of the flow around the delta wing. Left: Original flow field from the CFD
simulation, Middle: Laplacian field computed by the original field’s flow normal to the boundary. Note that the flow is simple
but not constant. Right: Localized or region-specific flow obtained by subtracting the Laplacian field from the original field.

have published before (cf. [PP00,PP03,TLHD03], therefore
we describe some essential differences to the work presented
here in Section 2 as well as other work that is related to this
paper. In Section 3, we sketch out the mathematical concepts
that the region-specific flow is based on and give a detailed
discussion on its usefulness in dataset analysis. The imple-
mentation on triangular and tetrahedral grid is the topic of
Section 4. Finally, we discuss the application of topological
methods on some examples in Section 5, as well as other
particular visualization and feature extraction methods. Sec-
tion 6 concludes on the presented work.

2. Related Work

The notion of localized flow analysis under preservation of
the original characteristics of the field (i.e. divergence and
rotation) is in part related to work published by Polthier and
Preuss [PP00, PP03] (in 2D) and Tong et al. [TLHD03] (in
3D). These authors employ the Hodge decomposition theo-
rem from vector analysis, stating that any vector field can be
decomposed into three fields containing the divergence, rota-
tion and harmonic parts. The decomposition is given in terms
of potentials for the divergence- and rotation-components:

v = grad u + curl w + h,

which are explicitly computed. Analysis is then attempted
by locating features as extremal points of the first two com-
ponents. Although these approaches seem quite similar to
what we describe here, our motives and technique are differ-
ent. It is our aim to analyze the localized flow with conven-
tional flow visualization techniques, as opposed to making
use of the potentials for that purpose. Moreover, in spite of
the superficial similarity between the potential flow and the
harmonic field h from above, we believe that our approach
is better suited to the localized analysis of flow since we use
specific boundary conditions to guarantee that the potential
flow contains the part of the flow that does not originate in
the considered domain. No such condition is imposed on h.
In addition, little is known as to how existing visualization
methods are affected by the Hodge decomposition, a topic

we discuss and examine in detail in Sections 3.3 and 5. Last
but not least, the computation of the potential flow is con-
ceptually simpler than that of u and w, as only one poten-
tial and this only of scalar nature has to be computed. We
therefore feel that our contribution is significantly different
from [PP00, PP03, TLHD03].

Concerning topological analysis and feature extraction
of vector fields, there is a large body of literature avail-
able. [PVH∗03] provides a good overview. Of special in-
terest in this paper are especially topological methods as
treated by many authors, e.g. Helman and Hesselink [HH89],
Globus [GLL91], Scheuermann et al. [SKMR98], Tricoche
et al. [TWSH02] and Theisel et al. [TWHS03] to name just
a few. We are also concerned with more general feature
extraction methods, such as the vortex core line extraction
method of Sujudi and Haimes [SH95] and the region-based
λ2-criterion by Jeong and Hussain [JH95] that we discuss in
the context of the localized flow.

3. Localized Flow Analysis

In the following, let v : R
d
→ R

d
,d = 2,3 be a continuous

(flow) vector field. Let Ω ∈ R
d be an open, bounded and

connected domain and n the outward normal field on ∂Ω.

In order to analyze the specific contribution of the flow in
Ω to the global flow field, we define the region-specific flow
vR : Ω → R

d by requiring two essential conditions:

1. it retains the essential behavior of the flow in terms of
rotation and divergence, i.e.

div vR = div v and curl vR = curl v on Ω.

2. it is isolated from the global flow on the boundary of
the sub-domain, i.e. the region-specific flow through the
boundary vanishes:

vR ·n = 0 on ∂Ω.

The suitability of these conditions is discussed in more de-
tail in 3.3. The difference of global and region-specific flow
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is then given by

vP := v − vR.

Owing to the linearity of divergence and curl, vP must
satisfy

div vP = 0 and curl vP = 0 on Ω, (1)

and we find that

vP ·n = v ·n on ∂Ω. (2)

We next look at how the construction of vP can be achieved
by a simple mathematical procedure.

3.1. A Special Neumann Problem

Let us assume that vP is given as the gradient of a function
u : Ω → R (then vP is called potential flow). It is immediate
that

curl vP = curl grad u = 0 on Ω.

Requiring that vP has vanishing divergence, we compute

0 = div vP = div grad u = ∆u on Ω,

where ∆ denotes the Laplace operator on scalar functions.
Rewriting Eq. (2) in terms of u, it turns into

n ·grad u = v ·n on ∂Ω.

Hence, for vP := grad u to fulfill the conditions (1) and (2),
u must solve

∆u = 0 on Ω (3)

n ·grad u = v ·n on ∂Ω (4)

This class of problem is called a Neumann-Laplace prob-
lem for u, and it is solvable up to a constant under the con-
dition that

Z

∂Ω
v ·n = 0, (5)

i.e. the total flow through the boundary must vanish (for de-
tails on this the reader is referred to [Hac92]). From this con-
struction, we are able to determine vP by solving for u. The
fact that u is only determined up to a constant does not mat-
ter here, since the constant vanishes after taking the gradient.
However, to guarantee uniqueness of u and make the prob-
lem well defined, a condition of the form

Z

Ω
u = 0

can be imposed. Finally, the region-specific flow is then
given via

vR := v − grad u.

The solvability condition (5) is by definition fulfilled for

incompressible flows (e.g. liquid flow), since by Stokes’ the-
orem

Z

∂Ω
v ·n =

Z

Ω
div v = 0.

In the next section, we detail a modification of the Neumann
problem for the case of compressible flows.

3.2. A Modification for Compressible Flows

When considering compressible flows, e.g. those arising as
solutions of the full Navier-Stokes equations, the solvabil-
ity condition (5), by the divergence theorem, needs not hold.
However, compressible flows satisfy the conservation of mo-
mentum law which reads

div ρv = 0, (6)

where ρ > 0 denotes a material density that may vary spa-
tially. Based on this, we are able to enhance our approach
from above to guarantee results for compressible flows. The
modified Neumann problem then reads

∆u = 0 on Ω (7)

n ·grad u = (ρv) ·n on ∂Ω (8)

The solvability condition for this system coincides with
Eq. (6) and is hence fulfilled. Then, vP is again divergence-
and curl-free and by setting

ρvR := ρv−grad u

it follows

n ·ρvR = n · (ρv−grad u) = 0 on ∂Ω.

Dividing by ρ we find

n · vR = 0 on ∂Ω,

i.e. the region-specific flow is again confined to Ω and inher-
its the original flow’s characteristics.

3.3. Interpretation of the Region-Specific Flow

Until now we have only considered the mathematical con-
struction of the region-specific flow. Along the way, some
conditions were imposed to guarantee solvability of the
problem. We will now dedicate some thoughts as to how
these conditions affect applicability of our method to the
general localized analysis of flows. More specific results and
application examples are given in Section 5.

From a purely physical point of view it does not seem
feasible at first glance to manipulate a flow field in order to
further its analysis. It is known practice, however, to subtract
a constant vector field to reveal structures that are not visi-
ble in the original field (heuristically, the average (bound-
ary) flow is subtracted). This is justified by the principle of
Galilean invariance which states that the properties of flow
have to be the same for a constantly moving and for a rest-
ing observer. However, in most cases, this approach is not
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appropriate as it does not preserve boundary conditions. For
example, in the flow around a stationary object, subtraction
of a constant vector field yields streamlines that are not tan-
gential to the enclosed surface. Since the boundary condi-
tions are an integral part of the region-specific flow (via con-
ditions (1) and (2)), it does not suffer these problems.

Furthermore, both vorticity and divergence of the original
flow are preserved in the region-specific approach. There-
fore, feature definitions that build on these quantities and
consequently algorithms that extract these features are natu-
rally unaffected. Recently, work has been published treat-
ing analysis and visualization of three-dimensional vector
fields based on vorticity and vorticity lines (see [SPP04]).
While the streamlines of the velocity are naturally different
in the region-specific flow, the invariance of vorticity lines
and hence the non-changing vorticity transport in the flow
imply that all vortical structures are kept. This confirms our
approach to be meaningful and to contain the information
for the important features present in the original field. In
summary, the region-specific flow contains exactly the local
domain-specific contribution to the global flow.

Concerning the influence of the frame of reference on flow
analysis, the region-specific flow delivers a natural abstrac-
tion. The correctframe of reference might not be known a-
priori or hard to construct, as is often the case in the analysis
of measurement datasets involving geometries moving rela-
tive to the observer. For the common case that features in the
flow are obscured by a dominating through-flow, the influ-
ence of the latter is caughtin the boundary conditions of the
potential flow, even if it is non-constant. It is subsequently
subtracted from the original flow and does not show up in the
region-specific flow. Through this, for the case of topologi-
cal methods, critical points such as sinks, sources and spirals
relating to extremal divergence and vorticity are much more
likely to occur than in the original flow, enabling the use of
such methods in a broader context of flow analysis.

Figure 2 exemplifies some of these considerations. The
2D vector field shown represents the incompressible flow
passing around a cylinder. On the downstream side of the
cylinder, the well known Karman vortex street should de-
velop. However, it cannot be observed in the original flow.
Removing the average flow reveals some but not all of the
features present and yields a strong diagonal flow component
that has no physical interpretation. The constructed potential
flow is very uniform except in the vicinity of the cylinder
where it reflects the flow around it. Subtracting the computed
flow from the original flow reveals all the downstream vorti-
cal structures through a topological analysis.

3.4. Constraints

The computed potential flow is simple in the sense that it
is irrotational and solenoidal. Although it is still possible for
saddle points to occur, this does not play a role in the analysis
of the region-specific flow.

a) original flow

b) original flow minus average flow

c) potential flow

d) original flow minus potential flow

Figure 2: Comparison of different fields obtained from cylin-
der dataset with Karman vortex street. a) Streamlines in the
original flow. Only sinuous line structures give hints on the
vortices. b) Three vortices revealed by removing average
flow. c) Potential flow induced by the flow on the boundary
of the considered region. Note how the flow attaches to the
cylinder and does not seem to cross it as it would be the case
for constant flow. d) Subtracting the Laplacian field reveals
all five vortices present in the considered region by use of
topology.
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In the preceeding discussion, we did not reflect on the
choice of the subdomain Ω that is subject to the localized
analysis. From the mathematics of solving the special Neu-
mann Problem 3, it is only required that Ω be open, bounded
and connected. These requirements are easily fulfilled and
do not constrain the choice of region much. Regarding the
numerical schemes we apply in the application of our ideas
in the next section, a convex domain with piecewise smooth
boundary is greatly beneficial in terms of convergence.

4. Implementation

The construction of the region-specific flow for discrete
datasets is straightforward. In the following, we will revisit
the steps of Section 3 and discuss how to implement them.

We assume that the discrete flow field is given on the ver-
tices of a triangular or tetrahedral grid. This is a form that
most modern CFD datasets are either supplied in or easily
brought into. It should be noted here again that the deriva-
tion of the potential flow is basically the same in any spa-
tial dimension. In the implementation, however, differences
show up since the method works on triangles in the two-
dimensional case and on tetrahedra in three dimensions. By
formulation in the context of finite element methods, a uni-
fied numerical formalism can be achieved nevertheless.

The region Ω is easily discretized as a subset of the grid
simplices that forms a connected set. The Neumann prob-
lem is then discretized on this set by the application of a
Galerkin-type finite element method. The basic idea is sim-
ple (cf. [ACF99] for a very concise presentation) and results
in a linear system of equations Ax = b with a sparse symmet-
ric positive-definite matrix A. The system can then be solved
using a standard iterative technique such as the precondi-
tioned conjugate gradient scheme, yielding a discrete poten-
tial u on the vertices of the grid. Owing to the finite element
approach, the dimension of the system matrix A is equal to
the number of grid points n. Therefore, A is best represented
in a sparse storage format. This allows us to treat grids with
millions of cells without resorting to out-of-core or clus-
ter techniques which makes the implementation straightfor-
ward. Computational complexity is two-fold: the assembly
of the system matrix A is relatively costly since the com-
plexity is linear in the number of grid cells. The complexity
of the successive matrix inversion is then again a function of
n, depending on the dimension.

The implementation of the boundary condition deserves a
more specific description: since the outer normal field of the
grid is (depending on the dimension) edge- or face-based, we
use averaging of adjacent edges or faces to compute the ap-
propriate boundary condition. Having obtained the discrete
potential u, taking its gradient gives a cell-wise constant vec-
tor field. Again, we use weighted averaging of neighboring
simplices to compute the vector field values of vP on the
vertices of the grid. Finally, vR is obtained by subtracting vP
from v at the grid vertices.

Concerning the solvability condition (5) of the Neumann
problem, in our experiments we found that due to discretiza-
tion errors of the underlying CFD computation, the condition
is sometimes not fulfilled exactly, hindering convergence of
the matrix inversion. In our experience, it is best to settle for
a least squares solution to the linear system in these cases.
While these do only approximate the requirements of Sec-
tion 3 they can still be used to perform localized flow analy-
sis. The validity of Eq. (5) is easily checked by summing up
the orthogonal velocity components over the boundary.

In discretizing a continuous problem, there is always the
question of which grid is suitable for approximation. In our
case, the grid is given as a subset of the computational grid
of the CFD simulation, therefore we are limited to its pre-
cision. A remeshing is prohibitively complicated and expen-
sive, except for very simple geometries. In our experiments,
however, we found the adaptive-resolution grids typical for
CFD datasets well suited to our purpose.

Overall, the algorithm is easily implemented with the help
of broadly available algorithms or libraries (cf. the Matrix
Template Library with its companion Iterative Template Li-
brary).

5. Results and Examples

In this section we present some examples in the form of CFD
application datasets that we have applied the localized flow
analysis to. All datasets were treated on a consumer-type PC
workstation with 3 gigabytes of RAM. Two of the datasets
(the cylinder and the vortex generator) are rather academic
in nature, but the delta wing configuration and the HART II
datasets stem from actual application projects.

5.1. Delta Wing

As non-artificial example we studied a CFD simulation of
airflow around a delta wing. The simulation was performed
over 1000 time steps that show the genesis and burst of the
two main vortices (see fig. 1) over time. We picked out one
time step to test our method. The field consists of roughly
3 million vertices and 18.1 million unstructured tetrahedra.
The region for the localized flow analysis was chosen as a
box around the wing, since the dataset contains no other
interesting areas. As is typically for CFD data, the resolu-
tion is much higher in highly turbulent regions, in our exam-
ple near the wing. Unfortunately, our box thus contains still
more than 17.3 million tetrahedra.

The results of subtracting the potential flow from this
dataset can be seen in figure 1. To check the benefits of our
approach, we also removed an average flow field for tests.
This yielded no interesting results. The reason for this is in
part to be blamed upon the large vortices above the wing
that disturb the average computation for the full dataset.
Subtracting only the average of the boundary yielded much
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better results. But as described in Section 3.3 removing a
constant component does not respect the boundary condi-
tions of the original flow. This was striking on the surface
of the delta wing. While the vortices formed above the wing
in the region-specific flow, they seemed to form around and
through the wing for the flow reduced only by a constant
field.

Studying the localized flow, we observed in some regions
around the wing a similarity between its streamlines and
streamlines in the gradient field of the pressure. This is espe-
cially emphasized at the tip of the delta wing. Looking at the
Navier-Stokes equations, these similarities lead to the idea
that a major part of the local flow is induced by the pressure
distribution, i.e. by the acceleration produced by the pressure
gradient. While this interpretation applies to the flow near
the tip, it is not convincing in the rear part of the wing where
we found only weak similarities. Considering the Navier-
Stokes equations again yields the solution. Apart from the
pressure gradient there are additional forces resulting in the
stress induced by the no slip boundary on the surface of the
wing. At the tip of the wing the flow has not yet passed a
large part of the surface, the influence of the stress is small
there and thus the pressure gradient is the driving force in the
local flow. Moving along the surface to the back of the wing
the effect of the pressure gradient mixes with the growing
stress influence and the similarities disappear.

The topology of the flow appears to be simple but mean-
ingful. While the original vector field contains no interest-
ing critical points, there appear two singular points in the
localized flow where the main vortices cross the borders
of the sub-domain. The position of these two 3D-saddles
are marked in the right image of figure 5. The two one-
dimensional separatrices starting from the two saddles are
also shown in figure 5. Both separatrices almost exactly
match the vortex core lines of the main vortices in the origi-
nal flow. This means that, in the localized flow, we are able
to detect the vortex core lines just by extracting the topology.
This should be true for other datasets as well.

Applying standard vortex detection methods on the
region-specific flow yields results that are nearly the same
as in the original flow. As can be verified in the left im-
age in figure 5 all six vortices, the two main vortices and
the secondary and tertiary vortices, are present in the lo-
calized flow. This confirms the argument that these feature
extraction methods built on divergence and rotation are not
affected by localizing the flow.

5.2. HART II

Our second realistic dataset stems from the HART II test
[vdWBY∗04] for measuring helicopter rotor wakes. The aim
of the test is to improve the knowledge about the evolution
of the vortex generated by a moving rotor blade. This is im-
portant because the vortex location relative to the following

blade is crucial for reducing rotor noise which, in fact, is cre-
ated by interaction of a wake and a following blade hitting
the wake. PIV (Particle Image Velocimetry) was used to ob-
tain instantaneous flow field data in a large observation area
and in a smaller close-up view of the vortex core. We con-
sider a 2D vector field from such a close-up view. The field
has 8316 quadratic cells consisting of 8500 vertices.

We tested our method for this dataset because the correct
frame of reference is not known to us. As can be seen in the
left image of figure 3 without working on the field no vorti-
cal structure can be found at all. A small part of the vortical
structure can already be revealed removing the average of
the field, but is much clearer when removing the potential
flow induced by the boundary (see right image of fig. 3).

5.3. Vortex Generator

The Vortex generator dataset clearly is an academic example.
It has two blade-shaped obstacles placed in the dataset to
generate vortices that are very explicit and easy to handle.
There appear no problems in detecting the vortex core lines.
We present this dataset nevertheless, as it nicely shows how
the localized flow emphasizes the structure of the flow in the
considered region. Figure 4 shows extremely clear where the
vortices have their start point and how the obstacles are the
origin for the important parts of the local flow structure.

5.4. Performance

For most of our datasets the whole procedure of cutting,
solving, computing the derivatives and subtracting the ob-
tained potential flow field took only a few minutes. The sub-
domain of the delta wing, with its over 17 million cells was
the exception. Computing the solution in this case took 75
minutes. Much of this time was spent for the assembly of
the matrix and for incorporating the boundary conditions.

5.5. Choice of Region

Choosing the region in a good way lies in the hand of the
user. It is up to him to decide which parts may be interesting
without the flow induced by the boundaries. However, as the
resulting field is forced to be parallel to the boundary, some
care has to be taken. The region should not be to small, for
example its boundary should not cut through a feature the
user wants to emphasize. Cutting such a feature results in bi-
asing of the feature in the localized flow. Keeping some dis-
tance from interesting features to the boundary can enhance
the quality of the localized flow.

A good example showing that different choices can be
useful is the delta wing. We chose the whole wing to get an
overall picture, but it is also interesting to consider a cylin-
der around one of the vortices or a region at the wing apex.
Indeed, choosing a box at the apex revealed the coincidence
of the localized flow with the pressure gradient, mentioned
earlier in this section.
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6. Conclusion and Outlook

We have introduced a method to isolate the flow in sub-
domains of flow datasets from the flow in the neighborhood
by constructing a Laplacian field from the flow at the bound-
ary of the sub-domain and subtracting it from the original
field. The method retains the original features of the flow and
is thus ready for the application of many standard methods
for feature and topology analysis. We discussed the differ-
ential equation that has to be solved to obtain the Laplacian
fields and described our implementation. Applied to a large
dataset from CFD simulations and to a measurement dataset
our method proved to be scalable and robust.

Finally, it is left mentioning that discussions with engi-
neers showed that our concept is simple to understand for
them since potential flow fields are well known.

As we have just begun to study the flow resulting from our
method, there are many avenues of future research:

• The ideas given here are strongly tied to the study of flow
fields. We would like to investigate in how far they can
be applied to the study and visualization of other vector
fields.

• By now we have only studied the change of the most com-
mon flow field quantities (e.g. vorticity) when subtract-
ing potential flow. How other quantities as helicity or the
derivatives of the flow are influenced are still open ques-
tions.

• Having no sinks or sources in the region-specific flow the
streamlines have to be closed. Since the vectors at the
boundary have to be tangential to it, all streamlines have
to stay in the region. This leads to the idea to study how
bundles of closed streamlines form knots and loops and
how they are knotted.

• In more complicated cases where the potential flow field
has saddles it may be interesting to not only study the lo-
calized flow but also the subtracted flow.
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Figure 3: HART II dataset consisting of PIV measurements. Left image shows the original measured flow with no visible
features. On the right, the topology of the region-specific flow reveals the vortices present in the correct frame of reference

original flow potential flow original flow minus potential flow

Figure 4: Original, potential and region-specific flow around two obstacles for vortex generation. The local contributions to
the flow and the locations where the vortices begin are easily identified in the right image.

Figure 5: Left:Vortex core lines and volume rendering of the λ2-criterion, both computed for the localized flow around the
delta wing. The vortex core lines were extracted using the algorithm of Sujudi and Haimes. Right: Streamlines and topology in
the localized field of the delta wing dataset. Two 3D-saddle points are shown as small spheres. 1D separatrices are integrated
from the saddles.
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