
Volume Graphics (2006)
T. Möller, R. Machiraju, T. Ertl, M. Chen (Editors)

Adaptive Sampling in Single Pass, GPU-based
Raycasting of Multiresolution Volumes

Patric Ljung†

Visual Information Technology and Applications, Linköping University

Abstract

This paper presents a novel direct volume rendering technique for adaptive object- and image-space sampling
density of multiresolution volumes. The raycasting is implemented entirely on the GPU in a single pass fragment
program which adapts the sampling density along rays, guided by block resolutions. The multiresolution volumes
are provided by a transfer function based level-of-detail scheme adaptively loading large out-of-core volumes.
Adaptive image-space sampling is achieved by gathering projected basic volume block statistics for screen tiles
and then allocating a level-of-detail for each tile. This combination of techniques provides a significant reduction
of processing requirements while maintaining high quality rendering.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Viewing algorithms; I.4.10
[Image Processing and Computer Vision]: Volumetric;

1. Introduction

The rendering of gigabyte sized volumes on desktop PCs is
a highly desired but challenging task. Interactive exploration
and analysis of these data sets calls for methods that are not
restricted to a pre-determined set of features being used to
compress the data. In medicine, in particular, these data sets
cannot be compressed using lossy methods and the origi-
nal data must be retrievable. Consequently, in cases where
computing and memory resources are not abundant, these
data sets have to be dealt with using techniques thatcan , at
run-time, optimize the level-of-detail (LOD) with respect to
available resources and the current task. One way to deter-
mine the current task is by using a transfer function based
LOD selection that provides dynamic loading of blocks at
varying resolutions depending on their contribution to the
final image. The definition of available resources typically
refers to the amount of texture memory on the GPU.

The work presented in this paper is based on a flat block-
ing multiresolution LOD volume scheme [LLYM04] and it
is shown how the blockwise LOD can guide the sampling
density along rays in the volume raycasting. When a ray

† plg@itn.liu.se

passes through a low resolution block the sampling density
is decreased and when it passes through a high resolution
block it is increased. This technique thus constitutes a more
adaptive sampling strategy compared to the discrete nature
of space-leaping approaches. The method is implemented
entirely on the GPU as a single-pass raycasting fragment
program. In addition to the adaptive object-space sampling
the paper presents an adaptive image-space sampling tech-
nique where higher frame rates are achieved by rendering
tiles of the screen at varying resolutions rather than lowering
the image-space resolution uniformly. Tiles with rays inter-
secting high resolution volume blocks will be given a higher
priority and rendered at higher resolution than tiles having
rays intersecting only low resolution blocks.

Casting rays on the GPU in single pass programs is highly
desired since it improves the precision of the volume integral
computation compared to texture slicing techniques where
framebuffer precision is usually limited to 8 or 16 bits per
component. High quality rendering of large data sets often
requires many hundreds to thousands of composited slices
generating a huge framebuffer bandwidth demand.

This paper is organized as follows. Section 2 reviews re-
lated work and section 3 then presents the object-space adap-
tive sampling. Section 4 describes the adaptive sampling

c© The Eurographics Association 2006.

39

http://www.eg.org
http://diglib.eg.org

Ljung / Adaptive Sampling in GPU-based Raycasting of Multiresolution Volumes

scheme in image-space. Results and benchmarks are pre-
sented in section 5 and section 6 presents our conclusions
and future work directions.

2. Related Work

Multiresolution volume representations of regular volumes
have been proposed by several researchers. Hierarchical
schemes, so called octrees, have been presented and used
[LHJ99,WWH∗00,BNS01,GWGS02]. If a volume block in
the hierarchy is found to be of inadequate resolution it is re-
placed by eight ’children’, all having the same number of
samples but with each covering 1/8 of the spatial volume of
its parent. Flat blocking schemes have also been proposed
and used [IP99, BIP01, NS01, LLYM04]. Here each block
occupies a constant spatial domain and, instead, its content
is replaced with more or fewer samples, also usually with a
factor of 8.

Several measures and schemes for determining the LOD
for block resolutions have been proposed. A strictly view-
dependent criterion, distance to viewer, was proposed by
LaMar et al. [LHJ99] and Weiler et al. [WWH∗00]. Data
errors between resolution levels was presented by Boada
et al. [BNS01] and Guthe et al. [GWGS02]. LaMar et
al. [LHJ03] use frequency tables and derive a grey scale
Transfer Function (TF) error between resolution levels.
Guthe and Strasser [GS04] approximate the image-space er-
ror by means of maximum voxel deviation and overestima-
tion of a TF-based difference in the RGB-channels. Gao et
al. [GHSK03] presented a scheme using a Plenoptic Opacity
Function (POF) for each block, based on a set of TF ba-
sis functions. Ljung et al. [LLYM04] introduced a simpli-
fied histogram representation and estimate a post-TF max-
imum error between the lowest resolution and the simpli-
fied histogram, representing the full resolution block. The
error is derived in the perceptually adapted CIELUV color
space. A coarse value histogram has also been used by Gao
et al. [GHJA05].

Rendering of multiresolution volumes on graphics hard-
ware has mostly been accomplished by means of texture
slicing [CCF94] in the papers referenced above. Based on
view-dependent LOD, decreased sampling density along the
viewing rays is provided by increased interslice distance for
more distant slices [LHJ99, WWH∗00]. This approach has
also been taken by Guthe et al. [GWGS02, GS04] where
the block resolution dictates the interslice distance. The is-
sue of interpolation of samples between blocks in hierar-
chical schemes has been addressed by voxel replication and
replacement, where a single-sided replication only requires
a 20% increase of the reduced data size, using 163 voxel
blocks. For flat blocking schemes this overhead is increased
significantly and this issue has been addressed in Ljung et
al. [LLY06] by introducing a direct interblock interpolation
scheme that does not require any voxel replication and which
interpolates smoothly between blocks of arbitrary resolu-

tions. Since a flat blocking scheme provides a simple block
structure it is easier to access arbitrary parts of the volume
by means of a uniform lookup scheme and the packed LOD
volume and block meta-data can be stored in just two tex-
tures.

Krüger and Westermann [KW03] presented a multipass
raycasting scheme for regular volumes where a fixed num-
ber of ray steps are executed in each pass. Stegmaier et
al. [SSKE05] presented a GPU-based technique for render-
ing regular uniform volumes using a raycasting single-pass
fragment program. This provides for improved visual qual-
ity, in terms of computational precision, and a single-pass
approach provides a more flexible framework for advanced
rendering features such as reflection mapping and refraction.

There is a large amount of work devoted to adaptive
image-space sampling, particularly in the ray tracing do-
main. Adamson et al. [AAN05] describe the concepts of
progressive refinement of the entire image, adaptive refine-
ment of local areas with greater visual error/variation, and
spatial/temporal coherence using previous and neighboring
information to speed up image generation. Adaptive refine-
ment was applied to volume rendering by Levoy [Lev90]
and Klein et al. [KSSE05] presented spatial/temporal coher-
ence techniques for single-pass raycasting on the GPU, em-
ploying empty space leaping and reprojection [GR90,YS93].
Space skipping is also presented in [KW03] by means of
skipping rays in passes where they encounter empty space.

3. Adaptive Object-Space Sampling

This section presents the adaptive object-space sampling of
multiresolution volumes. First the structure of the multires-
olution volumes are described since it forms the basic struc-
ture for the renderer to work with. Then the details of the
single-pass raycaster and how adaptive sampling is achieved
are presented.

3.1. Multiresolution Volumes

The multiresolution scheme used in this work is based on a
flat blocking scheme using a transfer function based LOD se-
lection technique [LLYM04]. The blocking scheme divides
the volume into uniform blocks, in this case consisting of
163 voxels. The spatial dimensions of each block are con-
stant, independent of the resolution level at which a block
is selected. Compression of the data sets has not been em-
ployed since medical data sets are primarily being used; in-
stead the data sets are stored block-wise at all resolution lev-
els (in powers of two) which requires a small increase, just
14%, in the size of the volume data.

For a given memory budget, such that a multiresolution
volume fits in the memory of the GPU, the LOD selec-
tion optimizes the block resolutions to minimize an esti-
mated error based on the perceptually adapted CIELUV

c© The Eurographics Association 2006.

40

Ljung / Adaptive Sampling in GPU-based Raycasting of Multiresolution Volumes

color space error, ∆E [Poy97, Fai98]. The loader then con-
structs a packed texture of all the blocks at varying resolu-
tion levels and an index texture, holding block locations and
sizes in the packed texture, in a manner similar to the Adap-
tive Texture Maps in [KE02]. When the TF is changed a new
LOD selection is performed and blocks with changed reso-
lution are read from disk.

3.2. Multiresolution Raycasting

GPU-based single-pass raycasting refers to executing the
entire ray traversal in a single instance of a fragment pro-
gram, in contrast to texture slicing where each pass only
computes the result for a single sample or a ray segment.
In [SSKE05, KSSE05] single-pass approaches for rendering
of uniform, regular volumes are presented. For clarity in this
description some details will be provided here as well.

The raycaster initializes the rays by rendering the volume
bounding box, culling back faces, and providing texture and
geometry coordinates at the vertices. These attributes will
then be interpolated over the surfaces and be readily avail-
able to the fragment program as ray entry points in texture
coordinates, xxx0, and geometric coordinates, ppp0. The cam-
era location, ccc, is retrieved from the last row of the inverse,
transposed model view matrix such that a per-fragment cor-
rect view direction can be determined. In addition, the pro-
gram needs the minimum and maximum texture coordinates
in order to determine the full ray length through the vol-
ume, required to conditionally terminate the program. Fur-
thermore a set of additional parameters are required, includ-
ing the sampling step-length, ∆, and the geometry to texture
coordinate transform matrix, T. The ray step vector, ddd, in
texture coordinate space is then defined by

ddd = T ·∆||ppp0 − ccc||. (1)

A ray, rrr, through the volume is then denoted as

rrr(λ) = xxx0 +λddd, (2)

where xxx0 is the ray entry point and ddd is the ray direction. A
set of discrete sample points, xxxk, is then defined using λ = k,
k ∈ N. For each loop in the raycasting shader program the
ray position is increased by η = 1, such that ki+1 = ki + η .
(η will be used later).

Extending the volume sampling of regular volumes to
multiresolution volumes requires the introduction of a tex-
ture indirection with lookup of block location and scale in
an index texture. The sample volume now contains blocks
at different resolution levels tightly packed in a single tex-
ture object. Figure 1 illustrates a set of rays passing through
a cross-section of a flat multiresolution volume. The black
dots along the rays in the figure indicate the uniform dis-
crete sampling points, xxxk. In order to retrieve a sample for a
position, xxx, the block index and intrablock position, xxx′′′, are
needed. Using the number of blocks, (Nx,Ny,Nz), as the co-
ordinate domain the intrablock position is conveniently com-

Figure 1: A set of rays intersecting a cross-section of a vol-
ume. Black points illustrate uniform sampling along a ray.
Adaptive sample locations are indicated by red circles.

Block 1
Size 1

Block 2
Size 4

Block 3
Size 2

Block 4
Size 8

δ1 δ2

δ3 δ4

Figure 2: Four blocks in a neighborhood. Sample values
within each tile are indicated by red points. A sample bound-
ary, the red dashed lines, mark the domain for texture co-
ordinates within each block. The distances from the sample
boundary to the block borders are indicated with δt for each
block, t. The grey area between block centers indicate the
domain for interblock interpolation.

puted as xxx′′′ = frac(xxx). The block index is given by bxxxc, in
practice achieved through nearest neighbor lookup. From the
index texture the block location in the packed sample tex-
ture, qqq, and the scale, κ , are retrieved. The block scale is en-
coded as κ = σ/σmax, where σ is the block size, the number
of voxels along each dimension and σmax is the maximum
block size (σmax = 16).

Figure 2 illustrates, in 2D, a neighborhood of four blocks,
for each block the sample boundary is shown as red dashed
lines, exactly enclosing the sample data of a block. It is ob-
vious that sampling will be needed outside of the sample
boundaries between blocks and these blocks are not neces-
sarily neighbors in the packed volume and, further, may be
of different resolutions, as illustrated in the figure. Only in-

c© The Eurographics Association 2006.

41

Ljung / Adaptive Sampling in GPU-based Raycasting of Multiresolution Volumes

trablock volume sampling is considered in this paper and the
sample location must therefore be clamped to the block’s
sample boundary, [δ ,1−δ], where δ = 1/2σ . The final tex-
ture coordinate, uuu, for an intrablock sample is then given by

uuu = SκC1−δ

δ
(xxx′′′)+qqq, (3)

where S is the packed texture scaling matrix and Cb
a(x)

clamps the value x to the range [a,b].

3.3. Adaptive Sampling of Multiresolution Volumes

The red circles in figure 1 indicate the actual samples taken
for adaptive sampling. In essence, a low sample density is
desired in reduced resolution blocks and a high sample den-
sity in full resolution blocks. In a naive approach, the inverse
of the current block scale, κ , could be used to advance the
ray with η = 1/κ = σmax/σ steps. Consider entering, how-
ever, a low resolution block corner, the ray could then ad-
vance deep into a consecutive, potentially, high resolution
block. Therefore, limiting the stepping so as to not advance
beyond the first discrete sample point in the following block
seems appropriate. Stepping by a discrete number of inter-
vals enables the use of a compact 2D TF, using the step in-
crement, η , for the second dimension where the TF opacity
and color weighting are adjusted accordingly. In this case
16 different step lengths are used, defined by the maximum
block size σmax.

In order to limit the stepping along the ray, the length of
the ray inside a block must be determined. In general, the
ray length, l, from a position, xxx, to the boundary of a box is
given by

l = min
(

µx − xx

dx
,

µy − xy

dy
,

µz − xz

dz

)
, (4)

where

µρ =

{
xmin,ρ , if dρ < 0
xmax,ρ , if dρ ≥ 0.

,

xxxmin and xxxmax defining the box. Starting from an intrablock
position, xxx′′′, and moving along ray direction, ddd, (4) is used
with xxxmin = (0,0,0) and xxxmax = (1,1,1) to determine the
remaining ray length inside a block. The number of steps to
take then becomes η = min(1+ blc,1/κ).

4. Image-Space Adaptive Sampling

The goal of image-space adaptive sampling is to reduce the
number of evaluated rays in the rendering while maintaining
image quality such that the rendering time can be reduced in
a controllable way, thus providing better interactivity. In ad-
dition it should be suitable for implementation using graph-
ics hardware and support efficient reconstruction of the final
image. A tile-based approach is therefore proposed such that

a) Max b) Average c) RMS

Figure 3: Example of low resolution block statistics ren-
derings using the LOD priority schemes Max, Average, and
RMS of block resolutions (κ). See also figures 8 and 10.

the resolution of each tile can be adapted, in a single render-
ing pass or over time.

The framebuffer is divided into a number of equally large
tiles, denoted with the tilesize τmax. Each tile is given a spe-
cific LOD, τ , and rendered at that resolution level. Resolu-
tions are not restricted to be in powers of two. The final im-
age is reconstructed using an intertile interpolating shader,
an adaptation to 2D of the technique presented in [LLY06].

4.1. Level-of-Detail Selection in Image-Space

The multiresolution volume being rendered already holds
important information about resolution levels. By using the
raycasting framework the index texture can be rendered and
block resolution information is collected from all blocks in-
tersected by the ray. To make this rendering faster, besides
rendering at low resolution, only one sample per block is
taken by advancing the ray by η = blc+ 1 steps from (4)
using the discretized block entry point, xxx′′′. In this rendering
the maximum resolution is collected as the block scale, κ ,
of blocks along the ray. The average value of block scales,
the root-mean-square (RMS), and the number of blocks en-
countered are also gathered. This information is stored in the
framebuffer and copied back for tile priority classification.
This image is rendered at a resolution corresponding to the
number of tiles plus one, along x and y-directions, to sample
the corners of each tile. The following tile priority schemes
have been defined:

Max Set the tile priority to the maximum value of the
Max value-samples of the tile corners. This is a conservative
scheme and can potentially dictate a high priority for all tiles.

Average Set the tile priority to the average of the Average
value-samples of the tile corners. The average scheme gives
higher priority to tiles hitting contours, since the number of
high resolution blocks is higher along such rays.

RMS Set the tile priority to the RMS value of the RMS
value- samples of the tile corners. This is intended to empha-
size high resolution blocks.

In figure 3 example renderings of the block statistics are
shown for the crab data set, the final results can be seen in
figure 8 and 10.

The tile priorities are also recorded in a small array. The

c© The Eurographics Association 2006.

42

Ljung / Adaptive Sampling in GPU-based Raycasting of Multiresolution Volumes

number of slots is defined by the full resolution volume
block size, σmax. This provides a compact description of the
tile priority distribution which is used to compute the tile size
allocation. Tiles none of whose corners intersect the volume
can be discarded. These tiles have a priority of zero. An up-
per bound for tile sizes, QH, is used which is assigned to tiles
in the highest non-zero histogram slot. The tile priority value
is linearly interpolated between this value and a user speci-
fied lower bound, QL. This enables experimentation with the
different schemes in a simple and robust way.

4.2. Tile Rendering and Image Reconstruction

Given the LOD selection from the process described above
the tiles are rendered according to their assigned size. This
is achieved by changing the viewport and projection matrix
in OpenGL and then rendering the volume bounding box.
This procedure is repeated for all tiles. The framebuffer now
contains an image which looks like a mosaic, see top image
in figure 4. Since the tiles in the framebuffer are not tightly
packed, it is also possible to update individual tiles and re-
construct incrementally improved images without having to
re-render the entire scene. This is, however, left for future
work.

Changing the viewport and projection matrix per tile
might be costly and a second tile rendering technique was
therefore developed. This method begins with rendering the
volume bounding box and uses a framebuffer object to store
texture entry points, xxx0, and view direction for each pixel,
similar to [KW03]. In a second pass polygons of size τt are
rendered for each tile t, mapping the full tile size, τmax, in
the previously rendered framebuffer object.

As the last step of this adaptive image-space sampling
technique the final image must be reconstructed from the
mosaic image. To this end the 3D interblock interpolation
from [LLY06] has been adapted to 2D and renamed inter-
tile interpolation, briefly described here. Figure 2 illustrates
a neighborhood of four tiles and a sample, ϕ , lying some-
where (in the grey area) between the tile centers needs to
be computed. A sample, ϕt , from each tile, t, is taken us-
ing texture coordinate clamping (3). A local intertile coordi-
nate, xxx∗ = frac(xxx +0.5)−0.5, is then used to compute edge
weights, ei, j, between tiles, i and j, sharing sides.

ei, j(ρ) = C1
0((ρ +δi)/(δi +δ j)), (5)

where ρ denotes either x∗x or x∗y and δt = 1/2τt . The sample,
ϕ , is then computed as the normalized sum

ϕ =
∑

4
t=1 ωtϕt

∑
4
t=1 ωt

, (6)

with the tile weights, ωt , defined as

ω1 = (1− e1,2) · (1− e1,3),
ω2 = e1,2 · (1− e2,4),
ω3 = (1− e3,4) · e1,3,
ω4 = e3,4 · e2,4.

Figure 4: The Crab dataset rendered using random screen-
space adaptive sampling. Top image shows the original
framebuffer with the rendered tiles. Bottom shows the recon-
structed image using intertile interpolation.

5. Results

This section presents the results and analysis of the methods
presented in this paper. All tests were performed on an AMD
AthlonX2 64 using an ATI X1800XT GPU (ATI) with 512
MB of memory and a Pentium 4 using an NVidia GeForce
7800GTX GPU (NV) with 256 MB of memory. All data sets
are stored in 16 bit integers and the gradients are precom-
puted using a Sobel operator. Gradient data is stored using
four bytes, the first three holding the normalized gradient
direction and the fourth holding the square-root of the gra-
dient length. The threaded run-time data loader updates the
data set in a fraction of a second for smaller changes in the
TF or for changed cropping. A complete change of TF may
require a few seconds of loading in the process background.
The target memory budget for the data reduction using the
TF-based LOD selection is typically 96 MB, including gra-
dient data. The data sets used are listed in table 1. Shaders
have been implemented in the OpenGL Shading Language
and the OpenGL ARB Fragment Program extension.

c© The Eurographics Association 2006.

43

Ljung / Adaptive Sampling in GPU-based Raycasting of Multiresolution Volumes

a) Full (5.1 FPS) b) Limited (14.1 FPS) c) Naive (19.8 FPS)

Figure 5: Rendering the female data set with adaptive sampling along the ray. Left image shows full uniform sampling, middle
image shows adaptive stepping with block boundary limits and right image shows naive stepping. The naive approach suffer
from visual errors due to view-dependent under-sampling. Images were rendered in a 1024×1024 viewport. The data reduction
is 11:1 through the run-time TF-based LOD-selection.

Table 1: All data sets are stored in 16 bit integer precision
with precomputed gradients in four bytes. Size indicate orig-
inal and gradient data, and size on disk include all resolution
levels.

Data Set Dimensions Size Size on disk
Female 512×512×628 942 MB 1.3 GB
Crab 512×512×512 768 MB 877 MB

5.1. Adaptive Object-Space Sampling Performance

Previous presented GPU-based raycasting results [KW03,
SSKE05, KSSE05] indicate a performance drop of a factor
about 2, compared with traditional texture slicing without
optimizations. This ratio is also confirmed for the multires-
olution case on the GF7800 but not for the X1800, where it
performs equally well as its texture slicing counterpart. For
a data reduction factor of g it can be expected that the adap-
tive sampling along the ray will yield a g

1
3 speed-up since

sampling is adapted in only one dimension. From the per-
formance results in table 2 it can be seen that this expected
speed-up is achieved by the limited sampling, a data reduc-
tion 11:1, 30:1 and 9:1 yield expected speed-ups of 2.2, 3.1
and 2.1, respectively. The frame-rates are further increased
by the naive scheme, but then visible errors are introduced.
Renderings of the female data set, at a data reduction of 11:1,
are shown in figures 5 and 9.

Table 2: Rendering performance of the adaptive object-
space sampling in a 1024×1024 viewport. Data reductions
are given for each data set. TS refers to texture slicing and
is comparable with the full single-pass raycasting. Numbers
specify FPS (speed-up vs. full sampling).

Dataset GPU TS Full Limited Naive
Female 11:1 ATI 5.3 5.1 14.1 (2.8) 19.8 (3.9)
Female 11:1 NV 3.6 2.3 6.0 (2.6) 9.7 (4.2)
Female 30:1 ATI 5.5 5.2 17.4 (3.3) 27.5 (5.3)
Female 30:1 NV 3.6 2.3 6.5 (2.8) 11.1 (4.8)
Crab 9:1 ATI 3.4 2.9 6.2 (2.1) 8.7 (3.0)

5.2. Adaptive Image-Space Sampling Performance

Volume rendering is clearly output-sensitive and typically
scales linearly with the number of pixels being processed.
The goal of the tile-based rendering is to reduce the overall
processing requirement by rendering tiles at varying reso-
lutions. For an ideal situation the performance gain should
scale with the reduction of the number of pixels. The initial
concern is therefore the overhead cost of the imposed tile-
rendering approach. A simple surface shader was first used
to measure performance versus tile size (τmax) and reduc-
ing rendered tile size (τ), having τmax constant. The results
are shown in figure 6 and 7. Figure 6 clearly shows that de-
creased tile size decreases the frame rate and the overhead
of the viewport method is thus not suitable for small tiles,
preventing fine-grained LOD adaption. Polygon based tile

c© The Eurographics Association 2006.

44

Ljung / Adaptive Sampling in GPU-based Raycasting of Multiresolution Volumes

500

400

300

200

100

0
8072645648403224168

Fr
am

es
pe

r
se

co
nd

Tile size, τmax

ATI
NV

Figure 6: Benchmark of tile managed rendering. A simple,
non-volume rendering shader was used. The performance in
terms of framerate is plotted against the tile size (τmax). Tiles
are rendered using the viewport method.

50

40

30

20

10

0
161412108642

Fr
am

es
pe

r
se

co
nd

Rendered tile size, τ (τmax = 16)

ATI VP
NV VP
ATI Poly
NV Poly

Figure 7: Performance of uniformly reducing the rendered
tile size, τ using a constant tiling of τmax = 16 in a
1024×1024 viewport. VP refers to the viewport method and
Poly refers to the polygon method. The viewport method has
significant scaling issues.

rendering for the simple surface shader is constantly high
for tile sizes over 12 pixels, about 800 FPS for NVidia and
160 FPS for ATI. The lower frame rate on ATI is related to
the use of the FBO. The polygon approach shows a signif-
icant speed-up when reducing the tile size, τ , holding the
maximum tile size constant, as can be seen in figure 7. The
performance is, however, not scaling linearly with the num-
ber of rendered pixels as intended.

Examples of the three presented methods for screen-space
LOD selection, Max, Average, and RMS are shown in fig-
ure 8. The Max selection is the most conservative and in or-
der to meet a target frame-rate the highest allowed tile qual-
ity, QH, must be reduced, whereas the Average and RMS
methods have shown to yield an expected larger variation be-
tween resolutions. The RMS method selects slightly higher
resolutions at object boundaries in the volumes.

6. Conclusions

In this paper we have presented a single pass, GPU-based
raycasting scheme for multiresolution volume datasets. A
flat blocking structure are used for the volumes which pro-
vides a simple and homogeneous access scheme that can ef-
fectively be implemented in a fragment program. The result
of adapting the sampling density to the surrounding resolu-
tion shows a significant increase in performance that scales

with the data reduction, g, as g
1
3 without sacrificing visual

quality.

The image-space adaptive LOD rendering also presents
significant potential speed-up. The number of rendered pix-
els can be significantly reduced while maintaining high
quality renderings. The current implementation used on the
tested GPUs, however, still shows that some overhead in-
volved with the use of framebuffer objects needs to be re-
duced. Future research directions include the development
of improved screen-space LOD selection schemes and the
integration of interframe coherence strategies improved in-
teractive work with multiresolution volume rendering.

Acknowledgements

This work has been funded by the the Swedish Research Council,
grant 621-2001-2778 and 621-2003-6582, and the Swedish Founda-
tion for Strategic Research, grant A3 02:116. The Center for Medi-
cal Image Science and Visualization (CMIV) and, in particular, An-
ders Persson and Petter Quick is acknowledged for the Crab data
set. The female data set is provided by Siemens. Many thanks to
professor Anders Ynnerman for helpful discussions.

References

[AAN05] ADAMSON A., ALEXA M., NEALEN A.: Adaptive
sampling of intersectable models exploiting image and object-
space coherence. In Proceedings SIGGRAPH Symposium on In-
teractive 3D Graphics and Games (2005), pp. 171–178.

[BIP01] BAJAJ C., IHM I., PARK S.: 3D RGB image compres-
sion for interactive applications. ACM Transactions on Graphics
20, 1 (January 2001), 10–38.

[BNS01] BOADA I., NAVAZO I., SCOPIGNO R.: Multiresolu-
tion volume visualization with a texture-based octree. The Visual
Computer 17 (2001), 185–197.

[CCF94] CABRAL B., CAM N., FORAN J.: Accelerated volume
rendering and tomographic reconstruction using texture mapping
hardware. In VVS ’94: Proceedings of the 1994 symposium on
Volume visualization (New York, NY, USA, 1994), ACM Press,
pp. 91–98.

[Fai98] FAIRCHILD M. D.: Color Appearance Models. Addison
Wesley Longman, Inc., 1998.

[GHJA05] GAO J., HUANG J., JOHNSON C. R., ATCHLEY S.:
Distributed data management for large volume visualization. In
Proceedings IEEE Visualization 2005 (2005), IEEE, pp. 183–
189.

[GHSK03] GAO J., HUANG J., SHEN H.-W., KOHL J. A.: Vis-
ibility culling using plenoptic opacity functions for large volume
visualization. In Proceedings IEEE Visualization 2003 (2003),
IEEE, pp. 341–348.

[GR90] GUDMUNDSSON B., RANDÉN M.: Incremental genera-
tion of projections of CT-volumes. In Proceedings of The First
Conference on Visualization in Biomedical Computing (1990),
pp. 27–34.

[GS04] GUTHE S., STRASSER W.: Advanced techniques for
high quality multiresolution volume rendering. In Computers &
Graphics (2004), vol. 28, Elsevier Science, pp. 51–58.

c© The Eurographics Association 2006.

45

Ljung / Adaptive Sampling in GPU-based Raycasting of Multiresolution Volumes

a) Original: 8.7 FPS, 100% b) Max: 14.1 FPS, 37%

Figure 8: Comparing the crab rendered at full resolution (a) with a rendering using the Max LOD selection and the high quality
threshold QH = 0.9, thus rendering only 37% of the pixels (b). The polygon based tile rendering method is used in a 512×512
viewport using a tile size of 16 pixels. The image in b has been reconstructed using the intertile interpolation technique.

[GWGS02] GUTHE S., WAND M., GONSER J., STRASSER W.:
Interactive rendering of large volume data sets. In Proceedings
IEEE Visualization 2002 (2002), pp. 53–60.

[IP99] IHM I., PARK S.: Wavelet-based 3d compression scheme
for interactive visualization of very large volume data. Computer
Graphics Forum 18, 1 (1999), 3–15.

[KE02] KRAUS M., ERTL T.: Adaptive texture maps. In Euro-
graphics/SIGGRAPH Workshop on Graphics Hardware (2002),
pp. 7–15.

[KSSE05] KLEIN T., STRENGERT M., STEGMAIER S., ERTL

T.: Exploiting frame-to-frame coherence for accelerating high-
quality volume raycasting on graphics hardware. In Proceedings
IEEE Visualization 2005 (2005), pp. 223–230.

[KW03] KRÜGER J., WESTERMANN R.: Acceleration tech-
niques for gpu-based volume rendering. In Proceedings IEEE
Visualization 2003 (2003), pp. 287–292.

[Lev90] LEVOY M.: Volume rendering by adaptive refinement.
The Visual Computer 6 (1990), 2–7.

[LHJ99] LAMAR E. C., HAMANN B., JOY K. I.: Multireso-
lution techniques for interactive texture-based volume visualiza-
tion. In Proceedings IEEE Visualization 1999 (1999), pp. 355–
362.

[LHJ03] LAMAR E. C., HAMANN B., JOY K. I.: Efficient er-
ror calculation for multiresolution texture-based volume visual-
ization. In Hierachical and Geometrical Methods in Scientific
Visualization (2003), Springer-Verlag, pp. 51–62.

[LLY06] LJUNG P., LUNDSTRÖM C., YNNERMAN A.: Mul-
tiresolution interblock interpolation in direct volume rendering.
In Proceedings Eurographics/IEEE Symposium on Visualization
2006 (2006), pp. 259–266.

[LLYM04] LJUNG P., LUNDSTRÖM C., YNNERMAN A.,
MUSETH K.: Transfer function based adaptive decompression
for volume rendering of large medical data sets. In Proceed-
ings IEEE Volume Visualization and Graphics Symposium 2004
(2004), pp. 25–32.

[NS01] NGUYEN K. G., SAUPE D.: Rapid high quality compres-
sion of volume data for visualization. Computer Graphics Forum
20, 3 (2001).

[Poy97] POYNTON C.: Frequently asked questions about color.
http://www.poynton.com/PDFs/ColorFAQ.pdf, March 1997. Ac-
quired January 2004.

[SSKE05] STEGMAIER S., STRENGERT M., KLEIN T., ERTL

T.: A simple and flexible volume rendering framework for
graphics-hardware–based raycasting. In Eurographics/IEEE Vol-
ume Graphics Symposium (2005), Eurographics.

[WWH∗00] WEILER M., WESTERMANN R., HANSEN C., ZIM-
MERMAN K., ERTL T.: Level–of–detail volume rendering via 3d
textures. In Proceedings IEEE Volume Visualization and Graph-
ics Symposium 2000 (2000), ACM Press, pp. 7–13.

[YS93] YAGEL R., SHI Z.: Accelerating volume animation by
space-leaping. In Proceedings of IEEE Visualization ’93 (1993),
pp. 62–69.

c© The Eurographics Association 2006.

46

