
Volume Graphics (2006)
T. Möller, R. Machiraju, T. Ertl, M. Chen (Editors)

Discontinuous Displacement Mapping for Volume Graphics

Carlos D. Correa1 Deborah Silver1 Min Chen2†

1Rutgers, The State University of New Jersey 2University of Wales Swansea, UK

Figure 1: Four temporal steps in which a dynamic discontinuous displacement map is applied to a piggy bank object interac-
tively to simulate a cutting effect.

Abstract
Displacement mapping is commonly used for adding surface details to an object. In this paper, we outline a gen-
eralized notion of displacement mapping, which allows for unconventional features such as unorthogonal and
discontinuous displacement. By lifting the restriction on the geometric properties of the displacement, we can gen-
erate many different special effects including peeling, cutting and deforming an object. These types of operations
are useful for volumetric objects, where the interior of objects is represented. To address the technical difficulties
associated with this generalization, we employed inverse displacement maps in 3D vector space, and devised a
collection of techniques, including sampling displaced objects through a proxy geometry, computing displaced
surface normals, correcting lighting artifacts at breaking points in a discontinuous displacement map, and creat-
ing composite displacement maps from primitive maps on the fly. Through a number of examples of displacement
maps, we demonstrate the generality, interactivity and usability of this approach on a set of volumetric objects.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture-
Graphics processors; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism.

1. Introduction
One of the key issues in volume graphics is to model interac-
tive deformations including cuts and displacements. Existing
methods for modeling and rendering deformations fall into
two categories, physically-based and non-physically-based
[CCI∗05]. Physically-based deformation uses complex for-
mulas to propagate forces over a mesh (e.g., finite element
methods). Non-physically based techniques (see Section 2)
use rendering mechanisms to achieve a similar effect. How-
ever, in the past, they have not been able to model cuts. Even
for physically-based deformation, cuts are difficult to model
because the mesh needs to be reconfigured. In this paper, we

† {cdcorrea,silver}@caip.rutgers.edu, M.Chen@swansea.ac.uk

present a non-physically based technique to model cuts and
deformations based on a generalized notion of displacement
mapping. This technique can be directly deployed in many
applications where real-time rendering is essential but real-
istic haptic feedback is not required. It can also be used in a
physically-based deformation pipeline as a rendering engine
after displacements are computed.
Displacement maps are commonly used to add visual details
to a base surface by perturbing points on the surface for a
small distance along the corresponding surface normals. For
this reason, traditional displacement maps are generally (i)
applied along the surface normal and (ii) assumed to be con-
tinuous. These conditions make it difficult to simulate large
and complex deformations such as cuts and flipping-over.
The first condition has been relaxed in some recent work.

c© The Eurographics Association 2006.

9

http://www.eg.org
http://diglib.eg.org

C. D. Correa & D. Silver & M. Chen / Discontinuous Displacement Mapping for Volume Graphics

Wang et al. [WWT∗03] employed volumetric displacement
functions in order to simulate non-orthogonal displacements
on surface objects. Similar ideas are found in [WTL∗04]
and [PBFJ05]. These approaches, nonetheless, consider only
displacements within small volumetric regions along the sur-
face. The removal of the second condition is critical to ren-
dering large cuts and breaks. Surface meshes do not contain
adequate volumetric information, such as surface thickness
and interior structure, to allow the creation of correct visual
effects. Although this can be handled using a tetrahedral de-
scription of the interior, re-tesselation of such meshes is a
time-consuming task, which limits the quality, smoothness
and thickness of cuts and breaks.
In this paper, we introduce a generalized notion of a dis-
placement map, which allows for unconventional features
such as unorthogonal and discontinuous displacements. Fig-
ure 2 illustrates the difference between the traditional and
generalized displacement mapping. We discuss the major
technical difficulties associated with this generalization, and
outline our solutions to these problems. In particular, we
consider a GPU-based volumetric approach without involv-
ing any mesh structure and the intensive computation associ-
ated. By employing inverse displacement maps in 3D vector
space, we are able to apply complex displacements to vol-
umes. Our rendering approach involves the use of a proxy
geometry for sampling of the inverse displacement map,
which is then mapped into the original object space. Correct
calculation of surface normals becomes a particular issue
since conventional normal estimation would lead to notice-
able lighting artifacts on surfaces displaced in varying direc-
tions, and at breaking points in a discontinuous displacement
map. We show how to specify discontinuous maps in RGBα
texture memory, and to render objects displaced under such
maps on current GPU hardware. We adapted slicing-based
rendering strategies, so that the deformed space is sampled
in a view-oriented manner. We show how displacement maps
can be combined to produce complex volumetric effects.
Through these examples, we demonstrate the generality, in-
teractivity and usability of this new approach, and its po-
tential as a powerful technique for rendering many types of
object interactions.

2. Related Work
Displacement Mapping. Displacement mapping was intro-
duced by Cook [Coo84] as a type of texture mapping tech-
nique for modifying the geometry of a surface, resulting
in correct shadows and silhouettes (in contrast to bump
mapping [Bli78]). Typical approaches to the realization of
displacement mapping include explicit surface subdivision
(e.g., [CCC87]), direct ray tracing (e.g., [LP95,PH96]), and
image space warping (e.g., [SP99]).
In surface subdivision [CCC87], geometric primitives are
subdivided into micro-polygons, resulting in an explicit
representation of the displaced surface. The method has

been made available through commercial software such as
RenderManTMand MayaTM. Hardware solutions were also
developed [GH99, DH00]. Discontinuities are introduced
with costly re-meshing of the object. This approach can-
not be extended easily for volume graphics, since no surface
model is available.
In ray tracing, the conventional approach is to pre-compute
an inverse displacement map, and perform the intersection
calculation in the displaced space of a surface [LP95,PH96],
similar to Barr’s suggestion for rendering deformed objects
[Bar86]. To alleviate the cost of ray-tracing an entire scene,
recent approaches to displacement mapping propose to tra-
verse rays through extruded triangles in the texture space
[WWT∗03, WTL∗04, PBFJ05]. In image space warping, the
visual effect of a displacement is achieved in the image space
rather than the object space. The method was first introduced
by Schaufler and Priglinger [SP99], focusing on warping the
image of the base surface according to the projected dis-
placement, and later extended by Oliveira et al. [OBM00].
The extension of ray tracing to the modeling of cuts is diffi-
cult, since it requires to determine a ray intersection with the
new surface produced by the cut. Further, current approaches
for displacement mapping based on extruded triangles can-
not model large or discontinuous displacements. In our pa-
per, we exploit the GPU capabilities of contemporary graph-
ics boards to solve the limitations of the inverse displace-
ment maps and image-space warping approaches when ap-
plied to discontinuous displacement on volumetric objects.
Non-physically based deformation. As an alternative to
displacement maps, cuts and deformations have been ex-
plored as a modeling problem. The work presented here
is not about physically-based deformation, or surgical sim-
ulation, for which there is a wide collection of literature
(see [NMK∗05] and [CCI∗05]). While physically based de-
formations are useful for realistic haptic feedback, they re-
quire a huge computational cost which limits the complex-
ity that can be achieved with desktop commodity hardware.
Non-physically based deformation is a cost-effective alter-
native in many applications, such as illustrative, educational
and entertainment software, where it is necessary to ren-
der complex deformations at interactive rates Existing non
-physically-based methods in volume graphics include ray
deflectors [KY97], spatial transfer functions [CSW∗03], vol-
ume splitting [IDSC04], volume browsing [MTB03] and
non-linear warping [BNG06]. Volume browsing uses point
primitives to render cuts via forward transformations, which
inherently allows for discontinuities. However, the use of
points limits its quality in rendering, as undersampling oc-
curs for large deformations. Ray deflectors and spatial trans-
fer functions are ray-based approaches that use inverse map-
ping. They can be used to simulate cuts and other defor-
mation effects such as magic lenses [WZMK05]. However,
the issue of correct normal estimation along the cuts and
breaks was not considered in the existing ray-based meth-
ods. It is also difficult for discrete ray casting to achieve

c© The Eurographics Association 2006.

10

C. D. Correa & D. Silver & M. Chen / Discontinuous Displacement Mapping for Volume Graphics

surface
displacedn

p’

p

base surface

n
base surface

p

n’
p’

D
n’

d point
break

Figure 2: A cross section illustration of the traditional dis-
placement mapping (left) and the generalized displacement
mapping allowing for unorthogonal and discontinuous dis-
placement (right).

the same level of performance as texture-based volume ren-
dering without special data structures, which further compli-
cates the simulation of cuts. In [BNG06], deformations are
hard-coded in the GPU. An initial effort at inverse mapping
is presented, but cuts cannot be achieved in real-time. Other
deformation approaches, such as [WS01] and [RSSSG01]
are based in the forward deformation of proxy geometry. It is
difficult to extend these approaches for modeling cuts, since
it would require a fine re-tesselation of the proxy geometry.
Both displacement mapping and texture-based volume ren-
dering are desirable because of their suitability for GPU-
based rendering. In this paper, we combine the best of both,
remove the dimensional and geometric constraints normally
associated with surface-based displacement mapping, and
solve the technical challenges in the integration of general-
ized displacement mapping into a texture-based volume ren-
dering pipeline.

3. Displacement Mapping
Displacement mapping is traditionally considered as a vari-
ation of 2D texture mapping, and it is used to alter the base
surface geometrically. A volumetric displacement mapping
can be considered as a variation of 3D texture mapping,
where 3D displacements are used to perturb the volume, en-
abling the simulation of large deformations and cuts. Since
texture mapping in 2D or 3D often involves textures defined
in a higher dimensional parametric space, we consider a gen-
eral notion of space Λ without explicitly distinguishing be-
tween geometry and texture spaces.
A Generalized Notation. Let Λ be a common reference co-
ordinate system shared by an object position function P and
an object displacement function −→D B. We consider the fol-
lowing generalized mapping from a point on the object P(λ)
to a new point P′(λ)

P′(λ) = P(λ)+
−→D B(λ) (1)

λ ∈ Λ is a common reference. P defines a coordinate map-
ping from a common reference to a point in E

3. DB is a vec-
tor function that can be specified procedurally or by using a
discretized representation such as a texture. In Eq.(1), it is no
longer a must that the surface normal determines the direc-
tion of displacement, and function −→D B is no longer assumed

to be continuous. As illustrated in Figure 2, in comparison
with the traditional notion on the left, this generalized notion
allows for unorthogonal and discontinuous displacement.
Λ can be a 2D parametric space as in the traditional no-
tion, the 3D Euclidean space as in [KL96], or any reference
system appropriate to an application. In this work, we use
Λ = E

3 as the common reference coordinate system. In the
following discussions, we use mainly the inverse form of Eq.
(1), that is,

P(λ) = P′(λ)+
−→D C(λ) (2)

where −→D C is the inverse of −→D B. Since Λ = E
3, we can make

P(λ) = p and P′(λ) = p′ where p,p′ ∈E
3. By decomposing

−→D C as D(P′(λ)) = D(p′), Eq. (2) can thus be rewritten as
p = p′ +D(p′) (3)

For simplicity, we consider the backward displacement map-
ping function in the form of D in the following discussions.
There is no constraint as to the displacement values of D.
The displacement can be of any direction and magnitude.

4. Rendering
Our approach uses texture-based volume rendering with
view-aligned slices. We use slicing as a rendering mecha-
nism for discrete sampling of the displaced object space,
rather than for storing a view-dependent representation of
the displaced object. Since this space is unknown we define
a bounding box object as a proxy scene geometry.
Let O be the function of an object and O′ that of the dis-
placed object. The proxy scene geometry in effect defines
a bounded spatial domain of O′. If the proxy scene geome-
try contains a volume data set, we can use the texture-based
volume rendering method which samples the proxy scene
geometry with slices parallel to the view plane. Each pixel
in a slice is then mapped back to the original object space
where O is defined, via an inverse displacement map. Func-
tion O can be any object representation such that given a
position p in the original object space, it returns appropriate
luminance attributes at p. O(p) can easily be an implicit sur-
face function, a level set surface, a distance field or a color
volume texture. In our case, we use a scalar volume dataset,
which we denote as O j , and store it as a 3D texture in GPU
memory. We also obtain a discretization of a displacement
function, which we denote as Dk, from a procedural spec-
ification. Dk is stored as a texture of 8-bit or 16-bit point
numbers, normalized in the interval [−1,1].

4.1. Displacement Setup
To create a displacement texture, Dk, of size w× h× d, we
first specify −→D B procedurally, and then sample its inverse
transformation D =

−→D C at discrete positions {x,y,z|x =
0,1, . . . ,w;y = 0,1, . . . ,h;z = 0,1, . . . ,d}. For a discontinu-
ous transformation, however, its inverse D that is analyti-
cally valid at all points does not exist, since some points in

c© The Eurographics Association 2006.

11

C. D. Correa & D. Silver & M. Chen / Discontinuous Displacement Mapping for Volume Graphics

SAMPLE
OBJECT

GET
NORMAL

TRANSFORM
Eq (4) CUTS: Eq (5)

ADJUST NEAR (p’)nn(p)

APPLY
LIGTHING RGBα(

FINAL
)

αDk)(

j(O)

Oj

αDk

Dkα

(D .x)k

k(D .y)
k(D .z)

αDk)(

Dk

RGBαRGBα
HANDLE
DISCONTINUITIES

ADD
p’+d = pp’ DISPLACEMENT

J

gradients

d

Scene Bounding Box

JD D

Figure 3: System diagram for discontinuous displacement mapping. As we sample the bounding box of the scene, each fragment
p′ is displaced by a distance d obtained by sampling the displacement texture Dk. The resulting position p = p′ + d is used to
sample the object texture O j and gradient texture ∇(O j), to obtain color and normal information. Color, normal and opacity
(obtained from alpha mask αDk) are used to compute the final color of the fragment.

the domain of D do not have a pre-image. For this reason, we
compute a pseudo-inverse Dk, which is defined as the inverse
D for those points in the co-domain of −→D B, and it maintains
C0 continuity.
In other words, Dk is valid for all points in the proxy scene
geometry, including those where there should be a discon-
tinuity. Dk is then normalized in the interval [−1,1], then
scaled and biased to fit in the range of valid values of GPU
textures. In order to model the actual discontinuity, we define
a mask αDk , such that αDk (p′) is 1 if p′ has a pre-image in
the co-domain of −→D B and 0 otherwise, and discretize it in a
3D texture. Dk and αDk are illustrated in Figure 3, where the
striped pattern in the displacement map is used to show the
stretching that occurs at the discontinuity. The actual break
is modeled as 0 values in the alpha texture. Having the dis-
placement map as a continuous field and the alpha mask
to model discontinuities, we have addressed the need for
proper trilinear interpolation of displacements performed by
the graphics hardware. If an arbitrary displacement value is
used to represent an empty voxel (e.g., 1 or −1) due to a cut,
voxels in the boundary of the cut would have displacement
values interpolated between the displacement of the nearest
voxel in the surface of the cut and this arbitrary value, which
clearly results in visual artifacts.

4.2. Displaced Object Points
In order to determine the displaced volume, we slice the
proxy scene geometry into view-oriented slices, as shown
in Figure 3. The bounding box of O′ can easily be found
by combining the bounding boxes of the object(s) and their
displacements. The slices are rendered in back-to-front or-
der and finally composited using alpha blending. For each
point p′ on the slice, we must find the appropriate displace-
ment, since there can be more than one displacement acting
on the object (See Section 6 on composite maps). We use a

fragment program to find the opacity and color values of a
given pixel with texture coordinates p′. This program com-
putes p = p′+Dk(p′), where p is the position in the original
object O that corresponds to the texture coordinate p′. It then
samples the 3D texture of O at the position p and retrieve the
color components. Finally, in order to handle discontinuities,
it samples the alpha mask αDk at the position p′ and modu-
late the pixel’s color components with the mask. In order to
avoid aliasing artifacts in the cut, the program considers a
point as transparent if the alpha mask is less than 0.5, and
the resulting pixel will not contribute to compositing. The
process of the fragment shader is depicted in Figure 3.

4.3. Displaced Surface Normal
In order to properly shade the object, we need the normal in-
formation at each point. Since we store objects as volumes,
normals can be obtained using finite differences or more so-
phisticated filters such as the Sobel operator. For interactive
rendering, the gradient can be pre-computed and stored in
a 3D texture. When processing fragments, a texture fetch
of the gradient texture yields the normal of the voxel and
its magnitude (This is shown as ∇O j in Figure 3). There
are three cases to be considered: the points that are not dis-
placed, the displaced points, and those in the boundary of
a discontinuity. For points not displaced, the pre-computed
normals can be used directly. The other two cases are han-
dled as follows.

4.3.1. Normals at Displaced Points
For a point undergoing displacement, we must obtain a new
normal. Figure 4(b) shows the case where the pre-computed
normal is used, which results in incorrect shading. In Fig-
ure 4(b), we peel the top of a piggy bank object (the light is
above the piggy bank). We see the incorrect shading of the
peeled surface. Since the surface was originally facing away

c© The Eurographics Association 2006.

12

C. D. Correa & D. Silver & M. Chen / Discontinuous Displacement Mapping for Volume Graphics

from the light, it remains dark even though it is now facing
the light after peeling. A more accurate shading of the sur-
face can be seen in Figures 4(c) and 4(d) where the peeled
surface is correctly shaded and toward the light.
Normals can be computed on-the-fly by sampling the neigh-
boring voxels (after displacement) and applying finite dif-
ferences. However, this method requires up to 6 (for central
differences) additional displacement computations, which is
computationally expensive. What is needed is a way to trans-
form the undeformed normals on the fly without additional
sampling. Barr [Bar84] describes a transformation of nor-
mals for a forward transformation.
Given F a forward mapping such that p′ = F(p), the new
normal −→n (p′) is:

−→n (p′) = detJF(JF
−1)>−→n (p) (4)

where JF is the 3×3 Jacobian of F . Our rendering approach
requires and inverse mapping. Given G = F−1 as that inverse
mapping such that p = G(p′), Eq.(4) leads to:

−→n (p) = detJG(JG
−1)>−→n (p′) or:

1
detJG

(JG)>−→n (p) = −→n (p′) (5)

where JG is the Jacobian of G. Since G is obtained via 3D
displacement, as defined in Eq.(3), or more explicitly:

p = G(x,y,z) =

g1(x,y,z)
g2(x,y,z)
g3(x,y,z)

 =

x+Dx(x,y,z)
y+Dy(x,y,z)
z+Dz(x,y,z)

the Jacobian JG is the derivative of G with respect to the
spatial coordinates. Therefore:

JG(x,y,z) =

∂g1
∂x

∂g1
∂y

∂g1
∂ z

∂g2
∂x

∂g2
∂y

∂g2
∂ z

∂g3
∂x

∂g3
∂y

∂g3
∂ z

=

1+ ∂Dx
∂x

∂Dx
∂y

∂Dx
∂ z

∂Dy
∂x 1+

∂Dy
∂y

∂Dy
∂ z

∂Dz
∂x

∂Dz
∂y 1+ ∂Dz

∂ z

= I+JD

where I is the identity matrix and JD is the Jacobian of the
displacement map. Then, Eq. (5) becomes

−→n (p′) =
1

det(I+JD)
(I+JD)>−→n (p)

Since normal vectors must be normalized, the 1
det(I+JD)

fac-
tor can be omitted. This leads to our normal transformation
equation:

−→n (p′) = (I+J
(p′)
D)>−→n (p) (6)

This last step avoids the division for zero that might oc-
cur when the Jacobian is singular. However, the Jacobian is

(a) (b)

(c) (d)

Figure 4: Lighting computation for the piggy bank object.
The light is above the piggy bank. (a) No lighting. (b) Using
the pre-computed gradient results in incorrect lighting, no-
tice how the underside of the cut surface is dark even though
it is facing the light. (c) Correct lighting, but artifacts occur
at discontinuities – rim of the cut area. (d) Correct lighting
with proper handling of normals at discontinuities. Now the
rim, which is facing the light, is lit properly.

only singular at regions of breaks. In our approach, the dis-
placement map is well defined and continuous for all points,
and the breaks are handled by a different mechanism in the
pipeline (see Figure 3). In practice, the Jacobian of the dis-
placement map is approximated as the gradient of the dis-
placement texture, i.e., JD ≈

(

∇Dx ,∇Dy ,∇Dz

)>, using finite
differencing. For speed up, one can pre-compute the matrix
B = (I+J

(p′)
D)> for each voxel in the displacement map, and

store it as a 3D texture.

4.3.2. Normals at Discontinuities
Unfortunately, even with corrected normal transformation,
we still see artifacts on the resulting objects at the boundaries
of cuts. In this case, the normals of an object may change
even when that part of the object does not undergo displace-
ment. An example of this is depicted in Figure 4(c). Note that
the rim of the piggy bank at the cut is dark. This is because
those normals have not undergone transformations (like in
the underside of the peeled surface) and are therefore incor-
rectly pointing away from the light source. This is especially
noticeable on solid objects with a uniform interior. Even for
the case of objects with a heterogeneous interior, as long as

c© The Eurographics Association 2006.

13

C. D. Correa & D. Silver & M. Chen / Discontinuous Displacement Mapping for Volume Graphics

their normals are not directed orthogonal to the cut, the cut
surface will be lit incorrectly.
To properly compute the normals at the discontinuities, we
need a way to determine the new surface that has been cre-
ated. This information is stored in the alpha map αDk . We
can compute the gradient of the alpha mask ∇(αDk), and use
this value only at the boundary of a cut. However, applying
only this gradient in the boundary, may generate artifacts
near the boundary. To solve this, we gradually correct the
normal in the vicinity of the cut to the desired normal, via
blending:

−→n (p′) = ω(I+JD)>−→n (p) +(1−ω)∇(αDk)
(p′) (7)

where ω ∈ [0,1] is a blending factor. Figure 4(d) shows the
result of applying this method for the piggy bank object.
Note that the pixels at the rim of the cut are now properly
shaded. This blending mechanism is similar to the solution
proposed by Weiskopf et al. [WEE03] for volumetric cut-
aways. Although the alpha gradient can be computed on the
fly using finite differencing, it can also be precomputed and
stored in a 3D texture for speedup.

5. Construction of Displacement Maps
This section describes the process of creating a displacement
map, using deformation of the bunny dataset as an example
(Figure 8). This displacement uses a 3D Gaussian function
to simulate a pull in the Z direction. The displacement can
be constructed as:

D(x,y,z) =
(

0, 0, −ze
(x−0.5)2+(y−0.5)2

2σ2

)>
(8)

for (x,y,z) in a unit cube, and σ chosen so that displacement
becomes 0 at the XY boundaries of the unit cube. This dis-
placement is discretized and stored in a 3D texture of size
64× 64× 64. Note that the z value is used to modulate the
amplitude of the Gaussian pull, and that the Z component of
the displacement is negative, since D stores the inverse dis-
placement. For instance, the point (32,32,32) in the 3D tex-
ture, corresponding to the normalized point (0.5,0.5,0.5) in
the unit cube, contains the displacement vector (0,0,−0.5).
When considering cuts, we follow a similar process. First,
we compute the alpha channel of the cut procedurally, so
that αDk (x,y,z) is 0 whenever there is a cut, and 1 elsewhere,
and discretize it in a texture volume. In addition, we apply a
smoothing operator over the alpha mask in order to obtain a
smooth region around the boundaries needed for the blend-
ing of the normals, as described in Section 4.3.2. The result
is stored in the alpha component of the displacement texture.
One challenge in the creation of displacements is the pro-
vision of user interfaces that would allow the user to define
cuts and peels of arbitrary size and shape. In addition, user
interface widgets are required to manipulate the different pa-
rameters of the displacement while rendering the volume.
This is an important issue and it is ongoing research.

(a) p = p′ +D1(p′ +D2(p′)) (b) p = p′ +D2(p′ +D1(p′))

Figure 5: Composition of two displacement maps D1
(wave) and D2 (peel) in different order.

6. Composite Displacement Maps
In general, two transformations can be combined as follows:

p = G1(G2(p′)) (9)

where G1(u) = u + D1(u) and G2(v) = v + D2(v) are dis-
placement mappings.
For computing the normal, we must simply concatenate the
Jacobians of the two mappings:

−→n (p′) = (B1 ×B2)
−→n (p) (10)

where B1 = (I + JD1)
> and B2 = (I + JD2)

> are the pre-
computed normal transformation matrices of the displace-
ment mappings, as defined in Eq.(6). An example is shown
in Figure 5, where two different displacements are combined
in different order and applied to the tomato dataset. Since
each displacement changes the frame of reference, composi-
tion is not commutative in general.
A powerful, yet rather simple, type of composition is
through linear transformations. A linear transformation M

can be defined as a 4×4 matrix, and can describe global ro-
tations, translations or scalings of a coordinate frame. When
applied to a displacement, it allows us to interactively place
and scale the displacement map arbitrarily in the volumetric
object, enabling effects as the one seen in Figure 1. From
Eq.(9), we have:

p = M×
(

M
−1p′ +D(M−1p′)

)

= p′ +M×D(M−1p′)

The normal transformation is obtained by concatenating the
inverse transpose of the Jacobians of M and M

−1.
Pre-computed combination of displacement maps results in
another displacement map and does not require any changes
in the GPU rendering process. It is a useful mechanism
to create complex displacements from simple ones. On
the other hand, on-the-fly combination enables the interac-
tive creation and manipulation of independent displacement
maps, though it requires a modified GPU implementation.
Composite maps can be realized in the GPU program in a
single pass by iterating the displacement procedure on the
voxel positions for each displacement map, before sampling
the original object. This approach, however, cannot be gen-

c© The Eurographics Association 2006.

14

C. D. Correa & D. Silver & M. Chen / Discontinuous Displacement Mapping for Volume Graphics

Dataset Resolution fps
Teddy Bear (Fig.7) 256×256×224 18.81
Bunny (Fig.8) 256×256×256 11.51
Piggy Bank (Fig.1) 190×190×134 7.52
Tomato (Fig.6) 256×256×162 6.24

Table 1: Performance results for different volume datasets
(sampling distance d = 1.0)

eralized easily to many compositions. The research on a gen-
eral multi-pass rendering process is being undertaken.

7. Results
We have implemented the displacement mapping approach
within an interactive program which allows the user to rotate
and scale the object and to move or change the displacement
map. The displacement map can be changed interactively via
linear transformations (see Section 6). Figure 1 shows a peel-
ing of the size of a piggy bank dataset, revealing the coins in
the inside. Figure 6 shows a slicing of a tomato dataset. Sev-
eral time steps are rendered which show a progressive slicing
as the user moves the displacement vertically. This displace-
ment can be obtained from a simple slicing displacement and
repeating it periodically. Figure 7 shows an opening of the
teddy bear at the seam. Accurate lighting of the interior is
required to avoid artifacts due to back facing normals. Fig-
ure 8 shows a Gaussian displacement to simulate a deforma-
tion of the Stanford bunny dataset. They can be placed and
scaled anywhere in the scene, showing the flexibility of our
approach to simulate other “traditional” deformations. Addi-
tional results are shown in the accompanying video, and at:
http://www.caip.rutgers.edu/~cdcorrea/displacement/

8. Rendering Performance
Since we follow a slicing approach to render our scenes, ren-
dering performance is mainly influenced by the fragment
shader capabilities of the graphics board. The rendering
speed is affected by a number of factors, including: sampling
distance of the slices, resolution of the object, relative size of
the displacement map, and viewport size. Our test configu-
ration consists of a Pentium XEON 2.8 Ghz PC with 4096
MB RAM, equipped with a Quadro FX 4400 with 512MB of
video memory. The performance results are shown in table 1,
for a slicing distance of 1.0 and a viewport of size 512×512,
for the displacements described in Section 7. Note that the
performance is affected by the relative size of the displace-
ment map. For instance, the teddy bear opening at the seam
is smaller in size than the peeling of the piggy bank, and it is
rendered at higher rates, even though the dataset is larger.
One aspect that affects the performance is the texture mem-
ory size and bandwidth. Volumetric displacement mapping
requires the storage of the x,y,z components of the displace-
ment. Although they can be stored in a single texture using
8 bits for each component, this precision is usually low for
a smooth deformation, and results in visible jagged lines. In
these cases, a 16-bit displacement can be used which would

Displacement Resolution Size in KB
Peel (e.g. Fig. 1) 128×128×1 320
Slicing (e.g. Fig. 6) 128×128×1 320
Extrusion (e.g. Fig. 8) 32×32×32 640
Seam opening (e.g. Fig. 7) 64×64×64 5120

Table 2: Size in voxels of the displacement textures and tex-
ture memory requirement in total

require at least two 3D textures. The first texture DISPXY
stores the x and y components of the displacement as the
luminance and alpha components, while the second texture
DISPZA stores the z component and the α value (for dis-
continuities). This requirement does not pose a scalability
problem in practice, since the use of general displacement
maps allows the creation of complex cuts and deformations
with relatively small 3D textures. Table 2 shows the size
of the displacement textures used in this paper, and the to-
tal amount of texture memory required, which includes the
storage of pre-computed Jacobians. Note that they are well
within the limits of current GPU technology.

9. Conclusions and Future Work
In this paper, we have demonstrated how discontinuous dis-
placement maps can simulate many different types of vol-
ume graphics effects such as fracturing, slicing, deforming,
and cutting of graphical objects. We have employed inverse
displacement maps in 3D vector space to solve for large and
discontinuous displacements. We have also devised a col-
lection of techniques, including computing surface normals
changed due to unorthogonal displacement, correcting light-
ing artifacts at fractures, and creating composite maps from
primitive maps on the fly. The displacement map can eas-
ily be represented as a 3D texture and the entire rendering
process can be coded into a fragment program yielding in-
teractive results. We have implemented several displacement
maps and have shown their effect on a number of different
models, demonstrating the generality, interactivity, and us-
ability of this approach.
In this work, each displacement map is precomputed on the
CPU from a procedural model. Such a model cannot capture
the semantic information of the volume object to be manip-
ulated, such as the thickness of a surface and a volume seg-
ment. Research effort is being made to incorporate semantic
information through different feature-aligned displacement
maps [CSC]. Further developments also include a displace-
ment map editor for creating primitive and composite maps
and a new version of user interface with novel interaction
features. In addition to volume objects, the described tech-
nique can be applied to procedural volume models by sub-
stituting volume sampling with implicit function evaluation
during object texture fetch.

Acknowledgment
Volumetric Datasets courtesy of the High Performance Computing and Communications,
U.S. National Library of Medicine,University of Erlangen and Lawrence Berkeley Labo-
ratory.

c© The Eurographics Association 2006.

15

http://www.caip.rutgers.edu/~cdcorrea/displacement/

C. D. Correa & D. Silver & M. Chen / Discontinuous Displacement Mapping for Volume Graphics

References
[Bar84] BARR A.: Global and local deformation of solid primitives. Computer Graphics

(Proc. SIGGRAPH 84) 18, 3 (1984), 21–30.

[Bar86] BARR A.: Ray tracing deformed surfaces. Computer Graphics (Proc. SIG-
GRAPH 86) 20, 4 (1986), 287–296.

[Bli78] BLINN J. F.: Simulation of wrinkled surfaces. Computer Graphics (Proc. SIG-
GRAPH 78) 12, 3 (1978), 286–292.

[BNG06] BRUNET T., NOWAK K., GLEICHER M.: Integrating dynamic deformations
into interactive volume visualization. In Eurographics /IEEE VGTC Symposium on
Visualization 2006 (2006), pp. 219–226.

[CCC87] COOK R. L., CARPENTER L., CATMULL E.: The Reyes image rendering
architecture. Computer Graphics (Proc. SIGGRAPH 87) 21, 4 (1987), 95–102.

[CCI∗05] CHEN M., CORREA C., ISLAM S., JONES M. W., SHEN P.-Y., SILVER D.,
WALTON S. J., WILLIS P. J.: Deforming and animating discretely sampled object
representations. In Eurographics State of the Art Report (2005).

[Coo84] COOK R. L.: Shade trees. Computer Graphics (Proc. SIGGRAPH 84) 18, 3
(1984), 223–231.

[CSC] CORREA C., SILVER D., CHEN M.: Feature aligned volume manipulation for
illustration and visualization. To Appear.

[CSW∗03] CHEN M., SILVER D., WINTER A. S., SINGH V., CORNEA N.: Spatial
transfer functions – a unified approach to specifying deformation in volume modeling
and animation. In Proc. Volume Graphics 2003 (2003), pp. 35–44.

[DH00] DOGGETT M., HIRCHE J.: Adaptive view dependent tessellation of displace-
ment maps. In Proc. EG/SIGGRAPH Workshop on Graphics Hardware (Interlaken,
Switzerland, 2000), pp. 59–66.

[GH99] GUMHOLD S., HÜTTNER T.: Multiresolution rendering with displacement
mapping. In Proc. EG/SIGGRAPH Workshop on Graphics Hardware (1999), pp. 55–
66.

[IDSC04] ISLAM S., DIPANKAR S., SILVER D., CHEN M.: Temporal and spatial split-
ting of scalar fields in volume graphics. In Proc. IEEE VolVis2004 (Austin, Texas,
October 2004), IEEE, pp. 87–94.

[KL96] KRISHNAMURTHY V., LEVOY M.: Fitting smooth surfaces to dense polygon
meshes. In Computer Graphics (Proc. SIGGRAPH 96) (1996), pp. 313–324.

[KY97] KURZION Y., YAGEL R.: Interactive space deformation with hardware-assisted
rendering. IEEE Comput. Graph. Appl. 17, 5 (1997), 66–77.

[LP95] LOGIE J. R., PATTERSON J. W.: Inverse displacement mapping in the general
case. Computer Graphics Forum 14, 5 (1995), 261–273.

[MTB03] MCGUFFIN M. J., TANCAU L., BALAKRISHNAN R.: Using deformations
for browsing volumetric data. In Proc. IEEE Visualization 2003 (2003), pp. 401–408.

[NMK∗05] NEALEN A., MULLER M., KEISER R., BOXERMAN E., M.CARLSON:
Physically based deformable models in computer graphics. In Eurographics STAR
Report (2005).

[OBM00] OLIVEIRA M. M., BISHOP G., MCALLISTER D.: Relief texture mapping.
In Computer Graphics (Proc. SIGGRAPH 2000). 2000, pp. 359–368.

[PBFJ05] PORUMBESCU S. D., BUDGE B., FENG L., JOY K. I.: Shell maps. ACM
Trans. Graph. 24, 3 (2005), 626–633.

[PH96] PHARR M., HANRAHAN P.: Geometry caching for ray-tracing displacement
maps. In Proc. Eurographics Rendering Workshop (1996), pp. 31–40.

[RSSSG01] REZK-SALAMA C., SCHEUERING M., SOZA G., GREINER G.: Fast vol-
umetric deformation on general purpose hardware. In Proc. SIGGRAPH/Eurographics
Graphics Hardware Workshop 2001 (2001), pp. 17–24.

[SP99] SCHAUFLER G., PRIGLINGER M.: Efficient displacement mapping by image
warping. In Proc. Eurographics Rendering Workshop (1999), pp. 175–186.

[WEE03] WEISKOPF D., ENGEL K., ERTL T.: Interactive clipping techniques for
texture-based volume visualization and volume shading. IEEE Trans. Vis. Comput.
Graph. 9, 3 (2003), 298–312.

[WS01] WESTERMANN R., SALAMA C.: Real-time volume deformations. Computer
Graphics Forum 20, 3 (2001).

[WTL∗04] WANG L., TONG X., LIN S., HU S., GUO B., SHUM H.-Y.: Generalized
displacement maps. In Proc. Eurographics Symposium on Rendering (2004).

[WWT∗03] WANG L., WANG X., TONG X., LIN S., HU S., GUO B., SHUM H.-
Y.: View-dependent displacement mapping. ACM Transactions on Graphics (Proc.
SIGGRAPH 2003) 22, 3 (2003), 334–339.

[WZMK05] WANG L., ZHAO Y., MUELLER K., KAUFMAN A. E.: The magic volume
lens: An interactive focus+context technique for volume rendering. In IEEE Visualiza-
tion (2005), p. 47.

Figure 6: Slicing of the tomato

Figure 7: Opening at the seam of the teddy bear dataset

Figure 8: Gaussian displacement map to simulate extrusion
on the Stanford bunny CT dataset

c© The Eurographics Association 2006.

16

