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Abstract

High angular resolution diffusion imaging (HARDI) is a MRI imaging technique that is able to better capture
the intra-voxel diffusion pattern compared to its simpler predecessor diffusion tensor imaging (DTI). However,
HARDI in general produces very noisy diffusion patterns due to the low SNR from the scanners at high b-values.
Furthermore, it still exhibits limitations in areas where the diffusion pattern is asymmetrical (bifurcations, splaying
fibers, etc.). To overcome these limitations, enhancement and denoising of the data based on context information
is a crucial step. In order to achieve it, convolutions are performed in the coupled spatial and angular domain.
Therefore the kernels applied become also HARDI data. However, these approaches have high computational
complexity of an already complex HARDI data processing. In this work, we present an accelerated framework
for HARDI data regularizaton and enhancement. The convolution operators are optimized by: pre-calculating
the kernels, analysing kernels shape and utilizing look-up-tables. We provide an increase of speed, compared to
previous brute force approaches of simpler kernels. These methods can be used as a preprocessing for tractography
and lead to new ways for investigation of brain white matter.

Categories and Subject Descriptors (according to ACM CCS): Image Processing and Computer Vision [I.4.3]: En-
hancement/Smoothing

1. Introduction
Diffusion Weighted imaging is a fairly new MRI acquisition
Technique, first introduced by Basser et al. [BML94]. By
measuring the directional pattern of local water diffusion, it
has the capability to non-invasively allow the inspection of
biological fibrous tissue structure such as the brain.

In Diffusion Tensor Imaging (DTI), the prominent local
orientation of the fiber bundles can be estimated. In DTI the
local diffusivity pattern is approximated by a 2nd-order dif-
fusion tensor (DT). Although simple and with established
mathematical frameworks, these DTs fail to capture more
complex fiber structures than a single fiber bundle, such as
crossings, bifurcations and splaying configurations.

Approaches based on High Angular Resolution Diffu-
sion Imaging (HARDI) were pioneered by Tuch [Tuc02]. In
HARDI more sophisticated models are employed to recon-
struct more complex fiber structures and to better capture the
intra-voxel diffusion pattern. Some of the proposed models
include high-order tensors [OM03], mixture of Gaussians
[Tuc02, JV07], spherical harmonic (SH) transformations
[Fra02], diffusion orientation transform (DOT) [OSV∗06],
orientation distribution function (ODF) [DAFD07] using the

Q-ball imaging [Tuc04], and the spherical deconvolution ap-
proach [TCGC04].

It is important to note that all of the diffusion weighted
MRI modelling techniques model functions that reside on a
sphere. For simplicity we will refer to them as spherical dis-
tribution function (SDF). Whereas the physical meaning of
these SDFs can be different (a probability density function
(PDF), iso-surface of a PDF, ODF, FOD, etc.), in all cases
they characterize the intra-voxel diffusion process, i.e. the
underlying fiber distribution within a voxel. Due to the lim-
itations in acquisition, the SDF is always antipodally sym-
metric and therefore can only model single fiber tracts or
symmetric fiber crossing configurations. In HARDI, high b-
values are needed to be able to capture the more complex
profiles. Therefore, HARDI produces, in general, noisy dif-
fusion patterns due to the low SNR. To overcome these lim-
itations, postprocessing of the data is crucial. As commonly
done in image processing, the noise can be reduced and the
data enhanced by taking into account the information in a
close neighborhood (i.e. the context).

Previous research has been done on smoothing and
regularization of DTI/HARDI images [FB, Flo, HMH∗ul,
KTT∗09], however they do so considering the spatial and
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orientational domains separately. In these approaches diffu-
sion is only performed over the spherical function per voxel
(i.e. the angular part). By not considering the neighborhood
information, these methods often fail at interesting locations
with composite structure, since locally a peak in the profile
can be interpreted as noise and therefore smoothed out.

In recent work the diffusion process is done consider-
ing the full domain, i.e. considering both spatial and ori-
entational neighborhood information. In [ABF08] the esti-
mated asymmetric spherical functions, called tractosemas,
are able to model local complex fiber structures using inter-
voxel information. Duits and Franken [DF09] proposed a
framework for the cross-preserving smoothing of HARDI
images by closely modelling the stochastic processes of wa-
ter molecules (i.e. diffusion) in oriented fibrous structures.
These approaches increase the complexity of already com-
plex and computationally heavy HARDI data.

In the presented work, we establish a faster framework
for noise removal and enhancement of HARDI datasets. We
optimize the convolution operators by: pre-calculating the
kernels, analysing kernel’s shape; and accelerating convo-
lution using the look-up-tables concept. Compared to pre-
vious brute force approaches, we provide a significant in-
crease of speed, enabling a contextual processing framework
of HARDI data.

In Section 2 we start by establishing the mathematical
basis on which the HARDI convolution method lives. The
accelerated convolution framework is presented in Section
3. Following, in Section 4, we present experimental results,
both in artificial and real HARDI data, supporting the valid-
ity and improvements of the method.

2. Background
In this section we will provide a self-contained introduction
to convolution of HARDI data over the joint domain of po-
sitions and orientations. Several kernels for these convolu-
tions will also be addressed as illustration of the presented
method.

2.1. Theory
Diffusion weighted MRI modelling techniques estimate
functions that reside on a sphere, the spherical distribution
functions (SDF). Therefore, a HARDI image is a function
not only on positions but also on orientations:

U : R3 o S2→ R+ : U(y, ñ(β̃, γ̃)) (1)

Meaning that at every position y ∈ R3, the probability of
finding a water particle moving in a certain direction

ñ(β̃, γ̃) = (sin β̃,−sin γ̃ cos β̃,cos γ̃cos β̃)T ∈ S2, (2)

is given as a positive scalar. Here, ñ(β̃, γ̃) is a point on the
sphere parameterized by β̃ ∈ [−π,π) and γ̃ ∈ [− π

2 , π

2 ).
To stress the coupling between orientation and positions

we write R3 o S2 rather than R3×S2.

2.2. Convolutions
An operator U 7→ Φ(U) on a SDF should be Euclidean in-
variant (independent on the choice of orthonormal coordi-
nate system). In other words rotating and translating HARDI

input U : R3 o S2 → R+ corresponds to rotating and trans-
lating the output Φ(U) : R3 o S2 → R+. If such operators,
designed for smoothing and enhancement of HARDI data,
are linear then these operators can be written as a HARDI-
convolution:

(Φ(U))(y,n)

=
Z

R3

Z
S2

p(RT
n′(y−y′),RT

n′(n))U(y′,n′)dy′ dσ(n′)

=
Z

R3

Z
S2

k(y,n; y′,n′)U(y′,n′)dy′ dσ(n′)
(3)

where
• U denotes the input HARDI dataset.
• Φ(U) denotes the output HARDI dataset (obtained by ap-

plying a convolution operation to the input with p)
• k(y,n; y′,n′) is the full kernel in the kernel operator.
• p(y,n) is the convolution kernel related to k(y,n; y′,n′)

by means of

p(y,n) = k(y,n; 0,ez), with ez = (0,0,1)T

From this moment, kernels will be noted as p(y,n), i.e. the
a priori probability density of finding a fiber fragment at
(y,n) given that there is a fiber fragment at (0,ez).
• Rn is any rotation such that Rnez = n. The choice of Rn

does not matter as long as p has a symmetry with respect
to rotations around ez [DF09, Corr.1].

• σ denotes the surface measure on the sphere.
As mentioned previously, convolutions can operate over

different domains, obviously, with different outcomes. Next
consider the special cases of Eq. 3.
Spatial domain filtering can be applied to each of the di-
rections without relating the directions between each other:

(Φ(U))(y,n) =
Z

R3
q(y−y′)U(y′,n)dy′ (4)

This relates to Eq. 3, if p is set as a product of a spatial kernel
q with a delta-spike in orientation space.
Orientational domain filtering can be applied to each
voxel independently, i.e. considering each SDF indepen-
dently from each other. In this way, each voxel is smoothed
locally:

(Φ(U))(y,n) =
Z

S2
r(RT

n′n)U(y,n′)dσ(n′) (5)

Similarly, this relates to Eq. 3 where p is a product of an
angular kernel q with a delta-spike in position space.

However, appropriate treatment of crossings and bifurca-
tions requires regularization along oriented fibers (where po-
sition and orientation are coupled) and consequently our a
priori fiber extension probabilities p : R3 oS2→R+ should
not consist of a delta-spike in position space nor in orien-
tation space. This means we should not restrict ourselves to
Eq. 4 or 5. Next we explain how to discretize full convolu-
tions (Eq. 3) on positions and orientations.

2.3. Discretization
For computation purposes, these functions are usually dis-
cretized by nearly uniform sampling on the sphere using a
method such as tessellation of an icosahedron (see Figure 1).
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In[167]:= GraphicsRow��g1, g2, g3�, ImageSize � 500�

Out[167]=

Use ListHardiPlot to  draw  a  complete  HARDI  data  set.  The  parameter  Μ is  a  scale  parameter  and
can  be  given  as  an  option  to  scale  the  size  of  the  individual  glyphs,  and  NormalizeData  is  an  option
that  specifies  wether  the  data  should  be  normalized  before  display.

Options�ListHardiPlot� � �Μ � 1, NormalizeData � True,
ViewPoint � �1.3, �2.4, 2.�, PlotLabel � "HARDI Visualization"�;

ListHardiPlot�U_, OptionsPattern��� :�
Graphics3D�MapIndexed��EdgeForm�None�, FaceForm��Lighting � "Neutral"��, Translate�

Glyph3D��1, OptionValue�Μ, If�OptionValue�NormalizeData, Max�U, 1��, �2�� &,
U, �3��, Axes � True, Ticks � None, PlotLabel � OptionValue�PlotLabel,

AxesLabel � �"x", "y", "z"�, LabelStyle � �FontFamily � "Palatino", Bold, 16�,
ViewPoint � OptionValue�ViewPoint�;

� Convolution Algorithm with Kernel Lookup Table

This  routine  can  be  used  to  convolve  a  HARDI  data  set  U  with  some  ('inverse')  kernel  p.  Use  Λ to
set  a  threshold,  which  means  that  indices  in  the  kernel  with  a  kernel  value  lower  than  Λ are  not
considered,  speeding  up  the  algorithm.

LutConvolve�U_, pcheck_, pchecksort_, Λ_� :� Module��Unew, positions, kernelsort, neededKernel,
indicesNeededKernel, indicesNeededU, kernelValues, oriId, posId�,

Unew � Array�0 &, �Dimensions�U � Append��Dimensions�pcheck��2 ;; 4� � 1, 0���;
positions � Tuples�Range��Dimensions�Unew��1 ;; 3�;
kernelsort�dumori_, Τ_� :� ��2 ;; 6� & �� Extract�pchecksort, Position�

pchecksort�Range�Position�pchecksort�All, 6�, _?�� � Τ &�, �1�, 1��1, 1� � 1���
All, 1�, _?�� � dumori &���;

Print�ProgressIndicator�Dynamic�oriId, �1, Length�orientations��;
For�oriId � 1, oriId � Length�orientations, oriId��,

neededKernel � kernelsort�oriId, Λ�;�indicesNeededKernel, kernelValues� ��neededKernel�All, 1 ;; 4�, neededKernel�All, 5��;
For�posId � 1, posId � Length�positions, posId��,

indicesNeededU � Append�positions�posId� � 1, 0� � � & �� indicesNeededKernel;
Unew�Sequence �� positions�posId�, oriId� �

Total�Extract�U, indicesNeededU� � kernelValues�;�;�;
Return�Unew;�;

A much  faster  way  for  the  colvolution  is  using  the  built-in  Mathem at ica  function.  Because  we  do
not  want  Mathem at ica  to  mirror  in  the  spatial  domain,  we  use   ListCorrelation  instead  of
ListConvolution.

4   HARDI Visualization and Convolution in Mathematica.nb

Figure 1: Discrete samplings of the sphere corresponding
to order 1, 2 and 3 of tessellation of an icosahedron, with
correspondent |T1|= 12, |T2|= 42 and |T3|= 162 points.

Having a discrete lattice of SDFs (the HARDI image U),
the integral over R3 in Eq. 3 becomes a summation over the
lattice. Since, typically, a kernel is stronger around its center
(at position y), a set P can be defined containing the lattice
indices neighbour of y. Additionally, since the SDFs are dis-
cretized over the sphere (see Figure 1), the integral over S2

becomes a summation over tessellation’s vectors, the set T .
Using these discretizations, Eq. 3 becomes:

Φ(U)[y,nk] = ∑
y′∈P

∑
n′∈T

qy,nk (y
′,n′)U(y′,n′) ∆y′∆n′ (6)

where ∆y′ is the discrete volume measure and ∆n′ the dis-
crete surface measure, which in case of (nearly) uniform
sampling of the sphere can reasonably be approximated by
4π

|T | . Kernel qy,nk is the rotated and translated correlation ker-
nel (such that it is aligned with (y,nk)) associated to p as
later explained in Section 3.

One should note the complexity involved in the HARDI
convolution. Given:
• |P|: number of points in kernel’s lattice
• |T|: number of vectors in kernel’s tessellation (and SDFs

of the input HARDI data)
The discretized convolution expressed in Eq. 6, has the com-
plexity of O(|T | |P| |T |), per voxel of the input data. For in-
stance, consider the convolution with a kernel discretized in
a 3× 3× 3 lattice, for 2nd order tessellation (|T | = 42 di-
rections). The discrete convolution in Eq. 6, per voxel in the
lattice of the input HARDI image, involves 42× 27× 42 =
47628 iterations.

2.4. Tractosemas
In the work of Barmpoutis et al. [ABF08], a field of assy-
metric spherical functions, called tractosemas, is extracted
from a field of SDFs. The kernel that governs the smoothing
process is defined as a function over space and orientation,
i.e. over the full domain R3 o S2. The proposed kernel intu-
itively describes when a structure should be enhanced. It is
constructed as a direct product of three parts involving von
Mises and Gaussian probability distributions :

k(y,n; y′,n′) = kdist(‖y−y′‖) · korient(n ·n′)·
kfiber

(
n

‖y−y′‖ · (−(y−y′))
)

,
(7)

where the different factors are given by

kdist(‖y−y′‖) = 1

(2πσ)
3
2

e−
‖y−y′‖2

2σ3 ,

korient(cosφ) = kfiber(cosφ) = κeκ cos(φ)

4π sinh(κ) ,

with φ ∈ (−π,π] being the angle, respectively, between the
vectors n and n′ and the angle between the vectors n and
(y− y′). The two scale parameters σ and κ control kernel’s
sharpness. Figure 2 shows an example of the tractosemas
kernel pσ,κ : R3 o S2→ R+ given by

pσ,κ(y,n) =
1

4π
kdist(‖y‖)korient(ez ·n)kfiber(−‖y‖−1n ·y). (8)

Figure 2: Example of the tractosemas kernel (8) [ABF08].
Computed with scale parameters σ = 1.3 and κ = 4, for ori-
entation ez.

2.5. Diffusion Kernels
Duits et al. [DF09,DF10] proposed a kernel based on solving
the diffusion equation for HARDI images. The full deriva-
tion is out of the scope of this manuscript. This kernel rep-
resents the Brownian motion kernel, on the coupled space
R3 o S2 of positions and orientations. This kernel satisfies
the two important requirements for a diffusion kernel:
1. left-invariant The kernel satisfies the right symmetry

constraints, [DF09, Corr.1]. Thereby rotation and transla-
tion of the input U corresponds to rotation and translation
of the output Φ(U).

2. fulfill the semigroup property When the operator is ap-
plied iteratively, the scales can be added.
The diffusion equation is solved by convolution (3) with

the Green’s function for the diffusion equation on the cou-
pled space R3 o S2 of positions and orientations. This
describes Brownian motion on positions and orientations,
where the angular part of a random walk prescribes the tan-
gent vector to the spatial part of the trajectory. Next we
present the close analytic approximation of the Green’s func-
tion as discussed in [DF09]. This approximation is a product
of two 2D kernels on the coupled space p2D : R2 oS1→R+

of 2D-positions and orientations:

pD33,D44,t
3D ((x,y,z)T , ñ(β̃, γ̃))≈

N(D33,D44, t) · pD33,D44,t
2D ((z/2,x), β̃) ·

pD33,D44,t
2D ((z/2,−y), γ̃) ,

(9)

we recall Eq. 2, where y = (x,y,z)T , and where
N(D33,D44, t)≈ 8√

2

√
πt
√

tD33
√

D33D44 takes care that the
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total integral over positions and orientations is 1. The 2D
kernel is given by:

pD33,D44,t
2D (x,y,θ)≡ 1

32πt2c4D44D33
e−
√

EN((x,y),θ)
4c2t (10)

where we use short notation

EN((x,y),θ) =

(
θ

2

D44
+

(
θy
2 + θ/2

tan(θ/2) x
)2

D33

)2

+ 1
D44D33

(
−xθ

2 + θ/2
tan(θ/2) y

)2

where one can use the estimate θ/2
tan(θ/2) ≈

cos(θ/2)
1−(θ2/24) for

|θ|< π

10 to avoid numerical errors.
The diffusion parameters D33 and D44 and stopping time

t allow the adaptation of the kernels to different purposes:
1. t > 0 determines the overall size of the kernel, i.e. how

relevant the neighbourhood is;
2. D33 > 0, the diffusion along principal axis, determines

how wide the kernel is;
3. D44 > 0 determines the angular diffusion, so the quotient

D44/D33, models the bending of the fibers along which
diffusion takes place.

Figure 3: Diffusion kernel proposed in [DF09] computed
with parameters D33 = 1.0, D44 = 0.04 and t = 1.4, for ori-
entation ez.

3. Accelerated Convolution
A convolution in the full HARDI domain, as addressed in
Section 2.2, is a complex task, dependent on the number of
points in the kernel’s lattice and number of vectors in the
tessellation of the sphere, the same for both kernel and the
input SDF. Applying these operations in a real dataset and
for smoother (higher) orders of tessellation quickly escalates
into a time consuming process.

How can this process be accelerated?
• Pre-computing - One immediate optimization is to pre-

calculate and store the kernel for every direction nk, in-
stead of calculating on the fly the respective kernel qy,nk

per position y and direction nk. This is allowed, as the ker-
nels are not adaptive to the data, i.e. they do not change
depending on each voxel.

• Truncation - As we can see in Figure 4, these kernels typ-
ically exhibit an interesting characteristic: the probability
of diffusion is larger at the locations around the starting
direction ez, and quite small further from it depending on
the values of the parameters D33 and D44. We truncate the
kernel such that only the meaningful directions are con-
sidered in the convolution.
Following, we explain the details of these procedures.

3.1. Pre-computing
Recall that in a convolution one shifts over a dummy vari-
able y′ whereas in a correlation one shifts over the outcome
variable y. Consequently, convolution with k(x) is the same
as correlation with ǩ(x) = k(−x). Next we apply the same
idea to convolutions on HARDI.

The check convolution kernel p̌ : R3 o S2 → R+ is basi-
cally the correlation kernel related to the convolution kernel
p : R3 o S2→ R+:

p(y,n) = k(y,n;0,ez) whereas
p̌(y,n) = k(0,ez;y,n)

where we recall from Eq. 3 that

k(y,n;y′,n′) = p(RT
n′(y−y′),RT

n′n).

To align the correlation kernel with each position y and ori-
entation nk we define the pre-computed aligned check kernel
q as:

qy,nk (y
′,n′) = p̌(RT

nk (y
′−y),RT

nk n′) ,

which we use in our discrete convolution scheme, Eq. 6,
where we stress that

p(RT
n′(y−y′),RT

n′nk) = p̌(R−1
nk (y′−y),R−1

nk n′).

which explains why we must use qy,nk rather than the origi-
nal kernel p in Eq. 6. In this step, we compute the set

K(y,nk) = {qy,nk (y
′,n′) : y′ ∈ P, n′ ∈ T} (11)

nk ∈ T , where T are the orientations in the tessellation and
P is the kernel’s lattice.

3.2. Truncation
For all positions in the pre-computed kernel set K(nk) we
truncate the kernel where the probability of diffusion is
small enough (here small enough is defined by a user chosen
threshold ε). The new truncated kernel set is then:

Kε(y,nk) = {(y′,n′,qy,nk (y
′,n′)) | qy,nk (y

′,n′) > ε} (12)

containing the orientations with the largest probabilities.
One could simply iterate through all directions and verify
the above condition 12. Another option would be to set all
directions that do not satisfy the condition to zero, and then
simply convolve with all directions. These options would
then imply unnecessary iterations. To improve the trunca-
tion scheme, the probabilities are sorted, thus ensuring that
only the directions corresponding to the larger probabilities
are iterated. Since only a subset of all directions n′ ∈ T is
used, some bookkeeping is required in order to keep track of
which directions should be iterated matching the kernel and
the input HARDI data U , i.e. the correct indices should be
matched.
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Figure 4: Sample discretized kernel qy,nk (y
′,n′), for nk =

(0,0,1), y′ ∈ P(0) = {(−1,0,0),(0,0,0),(1,0,0)}, where
|T |= 252 orientations. For most of the orientations (the ones
further from nk), the probability of diffusion is quite small.
If, for example, we truncate the kernel at 1

20 of the maxi-
mum value, by the red circle, 212 orientations are actually
ignored in the convolution.

3.3. Look-up-table (LUT) convolution
Since the kernels are truncated and sorted, the convolution
must now take care of matching the correct values per kernel
direction to the corresponding HARDI image directions.

Figure 5 illustrates a simple 2D LUT convolution. Here,
the kernel is discretized in |T | = 12 directions, and we re-
strict ourselves to 1 point in the spatial lattice. Top row of
the figure shows k0 and k1 from the set ki(y) = Kε(y,ni),
i.e. the kernels for the first two directions. The two tables
hold the corresponding index tables needed for the sorted
and truncated kernels. Each row in the table (v,n′) holds the
probability density value v and the respective direction n′.

Figure 5’s bottom row illustrates the LUT convolution of
the input HARDI image U with the pre-computed kernel
K(nk), resulting the output HARDI image O. In the mid-
dle, we can see how Eq. 6 is resolved. Each position y and
direction i in the output O[y, i] is the result of the product of
the corresponding kernel ki with the matching directions in
the input image U:

O[y, i] = ∑
y′∈P(y)

|Tε(d,i)|

∑
a=0

ki[d,a].v×U[y′,ki[d,a].n′] (13)

where a = 0, . . . |Tε(d, i)| is the index of the sorted and trun-
cated tessellation corresponding to the kernel at position
d = y-y’, i = 0, . . . |T |, and .v corresponds to the value and
respective direction .n′. In Figure 5 we removed all posi-
tion dependencies for clarity. It only describes for a fixed
position, the gain in the angular part of the convolution
(a = 0, . . .4).

4. Results
In this section we present the experiments conducted in or-
der to analyse the performance of the proposed optimiza-
tion using a synthetic DW-MRI dataset, the FiberCup’s hard-
ware phantom [PRK∗08] and a real HARDI data set from a
healthy brain. In all presented experiments, QBalls of 4th or-
der Spherical Harmonics (SH) were fit to the (simulated or
acquired) signal, and the resulting SDF was sampled on a
tessellated icosahedron (3rd order, 162 points). The choices
for SH and tessellation orders were taken since 4th order of
SH is the first to convey crossing information, and 3rd order
of tessellated icosahedron is a good balance between num-
ber of points and discretization error. Before convolution,
we preprocess these SDF images by min-max normalization
and squaring them. We visualize the squared output of the
convolution of the convolution algorithm.

For validation and illustration of the method, we gener-
ated a synthetic dataset with an underlying splaying fibers
configuration. The fiber orientations follow the tangent of
two ellipsoids centred in the bottom corners of the im-
age. Using the multi-tensor model as in [DAFD07], we
constructed a dataset with size 20× 28, with eigenvalues
for each simulated tensor to be λi = [300,300,1700] ×
10−6mm2/s, b-value of 1000 s/mm2 and added Rician noise
with realistic SNR of 15.3. Figure 6(a) shows this data and
the result of the convolution with the tractosemas kernel in
Figure 6(b) (σ = 1,κ = 10 and 3 iterations). We can observe
the resulting asymmetric profile in the center region corre-
sponding to the splaying fiber configuration.

Figure 6: Synthetic splaying fibers example: a) Simulated
data; b) The computed convolution with Barmpoutis’ trac-
tosemas.

The proposed framework was also applied to real DW-
MRI datasets. For the next experiments, the diffusion ker-
nel was used with diffusion parameters D33 = 0.4, D44 =
0.02, t = 1.4. From FiberCup’s data, with b-value 1500
s/mm2 and 3× 3× 3mm voxel size, we estimated QBalls
as previously described. Figure 7 shows a region of interest
(ROI) in the full dataset, where two fiber bundles cross. As
we can observe, the QBall model expresses a complex fiber
structure in the crossing region, due to the low b-value, few
voxels actually show the 2 expected maxima. Additionally,
we can also observe the perturbation caused by noise. After
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∑

min

max

X

U0
U1

U2

U3

U4

U5
U6

U7

U8

U9

U10

U11

n0
n1

n2

n3

n4

n5
n6

n7

n8

n9

n10

n11

O0

O1

O2

O3

O4

O5
O6

O7

O8

O9

O10

O11
O

n0
n1

n2

n3

n4

n5
n6

n7

n8

n9

n10

n11

U

k0 k1

=

(...)

K

v n’

0 0.9 0
1 0.5 11
2 0.5 1
3 0.3 10
4 0.3 2
5 0.1 9
6 0.1 3
7 0.1 8
8 0.1 4
9 0.1 7

10 0.1 5
11 0.1 6

v n’

0 0.9 1
1 0.5 0
2 0.5 2
3 0.3 11
4 0.3 3
5 0.1 10
6 0.1 4
7 0.1 9
8 0.1 5
9 0.1 8

10 0.1 6
11 0.1 7

O[0] =

k0[0].v U[0].n’

+ k0[1].v U[11].n’

+ k0[2].v U[1].n’

+ k0[3].v U[10].n’

+ k0[4].v U[2].n’ 

O[1] =

k1[0].v U[1].n’

+ k1[1].v U[0].n’

+ k1[2].v U[2].n’

+ k1[3].v U[11].n’

+ k1[4].v U[3].n’
 

O[i] = ki[a].v U[ki[a].n’]
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Figure 5: The optimized convolution illustrated. The pre-computed kernels, k0 and k1, are sorted and the pairs value/index are
stored. With a threshold t = 0.1, only 5 out of 12 directions are used in the convolution. In the LUT convolution, each direction
in the resulting image Oi is equal to the inner product between the corresponding kernel ki and the matching values in the input
image U.

convolving this dataset with the diffusion kernel, we obtain a
regularized image where the crossing voxels are clearly en-
hanced, with evident maxima matching the underlying cross-
ing bundles.

Applying the optimized convolution, again with the dif-
fusion kernel, to a healthy brain volunteer, acquired with
b-value 4000 s/mm2, clearly illustrates the benefits of such
convolution. Figure 8 shows a region where two major white
matter structures intersect: the corpus callosum from the left,
and the corona radiata from down-right. We can observe
the effect of the low SNR, due to the high b-value, causing
clear perturbations in the profiles, specially in the crossing
voxels. After convolving this data, we obtain the expected
coherency between voxels. Using the neighbourhood infor-
mation allows the regularization of the data, specially in the
more linear areas, and the enhancement of the crossing pro-
files.

4.1. Performance
In Figure 9 we present a time comparison between the dif-
ferent convolution methods. We show the time realizations
for 4 datasets (as previously described):
• Y synthetic - software simulated dataset [DAFD07],

where the tractosemas kernel was applied
• FiberCup - FiberCup dataset [PRK∗08], with b-value

1500 s/mm2 and 3×3×3mm voxel size
• Brain slate - one coronal slate from a healthy brain’s vol-

unteer, with b-value 4000 s/mm2

• Brainvisa’s brain - brain dataset [PPAM06], with b-value
700 s/mm2

Precomputing the kernels, for 3rd order tessellation, takes
47 seconds. This calculation, of course, is only needed once,
per set of parameters. To evaluate the quality of the proposed
method, we quantify the difference between the image result
from using the full kernel and the image result from our ac-
celerated convolution. To quantify the differences we cal-
culate the root mean square difference normalized by the
range of the values in the accelerated convolution image
(NRMSD).

Applying the proposed optimization (described in Section
3), by truncating the kernels at ε = 0.003 (meaning 90% of
its total sum), we obtain very similar results as using the full
kernel, however 8 times faster. Figure 10 shows the relation
between truncation and the quality of the resulting image (in
our experiments, less than 1% difference).

The used threshold was chosen by analysing visually the
resulting output that differs minimally from the result using
the full kernel. Since no difference can be evaluated qualita-
tively, no image is shown. Further work will investigate the
influence of the threshold on the resulting smoothed image,
but our initial results shows that a substantial time improve-
ment can be obtained with small loss in accuracy.

5. Conclusions and Future Work
There are two key limitations inherent with DW-MRI acqui-
sition: images can be very noisy, specially at high b-values;
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Figure 7: Crossing bundles example, within the FiberCup
dataset [PRK∗08], with b-value 1500 s/mm2 and 3× 3×
3mm voxel size. a) QBall’s 4th order of SH, sampled on a
3rd order tessellation; b) After convolving with the diffusion
kernel.

spherical distribution functions are symmetric, which does
not always express correctly the underlying fiber structure.
Processing of the data on the full domain (spatial and orien-
tational), where contextual information plays an important
role, is therefore of utmost importance. The complexity of
the involved operators is, however, a limiting factor for their

Figure 8: Coronal ROI of a healthy brain volunteer, ac-
quired with b-value 4000 s/mm2. Convolving the 4th order
SH QBall’s (a) with the diffusion kernel results in a regular-
ized field of SDFs where the corpus callosum and the corona
radiata clearly cross in the centrum semiovale.
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Figure 9: Table a - Time performance comparison between
applying the convolution with full kernel or with accelerated
lut convolution. All computations were conducted in a AMD
Athlon X2 Dual 2.41GHz, with 3GB of RAM.

use. The proposed framework allows the addition of these
methods to the DW-MRI processing/visualization pipeline,
with much improved time costs. The framework’s kernel in-
dependence enables the use of different kernels, for different
purposes (e.g., smoothing, enhancing, completion), but still
with optimized costs. Fiber tracking applications, for exam-
ple, can be significantly improved with the use of a process-
ing method such as tractosemas, resolving the problem of
splaying fibers.
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Figure 10: Quality comparison between applying the con-
volution with full kernel or with accelerated LUT convolu-
tion. In red (continuous) the NRMSD between full and ac-
celerated convolutions. In blue (dashed) the corresponding
decrease of used kernel’s mass.

Further work will analyse the optimal balance between
optimization (i.e. which threshold value) and results’ accu-
racy. Further improvements can be achieved by making use
of multiple processors or GPUs (common in nowadays com-
puters) as the processing algorithm can be easily atomized
to voxel level, thus becoming easily parallelized.
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