
Eurographics Symposium on Point-Based Graphics (2007)
M. Botsch, R. Pajarola (Editors)

Efficient Refinement of Dynamic Point Data

B. Solenthaler †, Y. Zhang, R. Pajarola

Visualization and MultiMedia Lab, Department of Informatics, University of Zurich

Abstract
Particle simulations as well as geometric modeling techniques have demonstrated their ability to process and
render points interactively. However, real-time particle-based fluid simulations suffer from poor rendering quality
due to low surface particle resolutions. Surfaces appear blobby, surface details are lost, and features like edges are
degraded due to smoothing effects. This paper presents a novel point refinement method for irregularly sampled,
dynamic points coming from a particle-based fluid simulation. Our interpolation algorithm can handle complex
geometries including splashes, and at the same time preserves features like edges. Point collisions are avoided
resulting in a nearly uniform sampling facilitating surface reconstruction techniques. No point preprocessing
is necessary, and point neighborhoods are dynamically updated reducing computation and memory costs. We
show that our algorithm can efficiently detect and refine the surface points of a fluid and we demonstrate the
improvement of rendering quality and applicability to real-time simulations.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]: –
Animation and Virtual Reality I.3.5 [Computational Geometry and Object Modeling]: – Curve, surface, solid, and
object representations

1. Introduction

Point representations have been used successfully in geo-
metric modeling and in physically based particle systems.
The lack of topological and connectivity information simpli-
fies modeling interaction effects (eg. [MKN∗04, MHTG05,
MSKG05,PKA∗05,SSP07]) as well as geometric manipula-
tions (eg. [ZPKG02,AD03,PKKG03,PKG06]). However, it
comes at a cost, as neighborhood information has to be com-
puted. Nevertheless, [MCG03] succeeded in interactively
simulating and rendering particle-based fluids and demon-
strated its applicability to virtual reality simulators and 3D
games [MST∗04,Age05]. However, due to the real-time con-
straint, the number of particles has to be low which causes
a loss of visual quality. Surface details are smoothed out as
a result of surface reconstruction techniques and bumps re-
lated to the coarse particle distribution are visible. Using a
point splatting approach as rendering technique is also not
feasible as under-sampled geometries show artifacts at the
silhouette and blur due to large splat radii. It would be desir-
able to improve the visual quality of low resolution particle
simulations while still running at interactive frame rates.

The presented approach is to use an upsampling algorithm

† e-mail: {solenthaler, zhang}@ifi.uzh.ch, pajarola@acm.org

on the surface particles to optimize the visual appearance of
particle simulations. Such a technique avoids the overhead
of running a high resolution physical simulation which is
substantial as the number of physical particles increases dis-
proportionally with the desired number of surface particles.
Even worse, the Courant condition requires smaller time
steps for higher resolutions ([Mon89]) resulting in a com-
putational effort of physical simulations increasing quadrat-
ically with the number of desired surface particles.

For static point geometries, refinement methods have al-
ready been demonstrated (e.g. [PGK02, ABCO∗03, GBP04,
GBP05]). Nevertheless, these methods cannot be applied
to points evolved by a Smoothed Particle Hydrodynamics
(SPH) simulation [Mon92] due to the real-time constraint
as well as the challenging properties of such dynamic SPH
particles. The challenges thereby are irregularly distributed
particles, low-quality normals, as well as complex surfaces
including splashes and isolated particles. Another issue is
the robustness of the algorithm used for surface particle de-
tection and upsampling in order to avoid visible artifacts re-
sulting from the dynamic nature of particle simulations.

1.1. Our Contributions

To reveal all details present in (low resolution) particle-based
fluid simulations (for interactive and real-time applications),
we propose an efficient upsampling method applicable, but

c© The Eurographics Association 2007.

http://www.eg.org
http://diglib.eg.org

B. Solenthaler & Y. Zhang & R. Pajarola / Efficient Refinement of Dynamic Point Data

not limited to irregularly sampled, dynamic point data. The
main features of our method are:

• Low computational costs: No point preprocessing is nec-
essary, new points are added efficiently, and neighbor-
hoods are updated dynamically instead of being deter-
mined from scratch each refinement step, reducing com-
putation and memory costs.

• Irregular inital sampling: SPH particles are often irreg-
ularly distributed during the simulation. The refinement
procedure effectively copes with this problem, and holes
are generated only if indicated by the physics simulation.

• Uniform sampling after refinement: Point collisions are
detected and avoided resulting in a nearly uniform sam-
pling.

• Details and sharp features: Our interpolation yields
many details of surfaces and splashes, and preserves fea-
tures like edges.

• Splashes and isolated particles: Although isolated parti-
cles and particles in splashes posess low-quality normals,
curvature and connectivity are preserved in a plausible
way.

1.2. Related Work

Currently, many particle-based fluid simulation models
are based on SPH, which was developed in astro-
physics [Mon92, Mon05]. SPH has been successfully used
in graphics to simulate soft objects [DC96], lava [SAC∗99],
multiple fluids [MSKG05], phase changes [MKN∗04,
KAG∗05,SSP07] and interaction with solid objects [MKI03,
MST∗04]. It was also used for fluid control [TKPR06] and
with adaptively sized particles [APKG07]. A real-time SPH
simulation was demonstrated in [MCG03].

To reconstruct the surface from a set of fluid particles sev-
eral techniques have been proposed, all without upsampling
the surface points of a fluid. An efficient approach is pre-
sented in [MCG03] where they render the isosurface of a
color field defined by the particles. A grid-based level-set
simulation guided by particles is presented in [PTB∗03],
where they succeeded in achieving high visual quality but
at the expense of computation time. [ZB05] presented a re-
construction technique using an implicit function defined on
the center of mass of a local neighborhood of the particles
leading to very smooth surfaces. Unfortunately, this method
suffers from artifacts in concave regions which they propose
to remove in a post processing step. In [SSP07], a method is
presented to detect and avoid these errors on the fly. Another
extension has been presented in [APKG07], where particle-
to-surface distances are used for the reconstruction of sur-
faces from adaptively sized particles.

In geometry processing, a surface reconstruction based
on the use of Radial Basis Functions with global support
is presented in [CBC∗01], whereas [OBA∗03, TRS04] re-
duce the support by local approaches. MLS surface recon-
struction [Lev03] has shown to be successful in surface

editing [PKKG03], raytracing [AA03], and up- and down-
sampling [PGK02,ABCO∗03]. A sphere fit MLS improving
the stability of the projection in low-sampled and curved re-
gions has been presented in [GG07]. However, since the pro-
jection procedure of the MLS is quite expensive, it is unsuit-
able for upsampling a set of points in real-time. Real-time
upsampling restricted to static, uniformly sampled point data
was presented in [GBP04]. [GBP05] overcomes this weak-
ness and presented a method which is able to fill large holes
of static point clouds.

2. Particle-Based Physics Simulation

We briefly describe the particle-based fluid simulation model
SPH which we use to demonstrate our upsampling method.
SPH is an interpolation method for particle systems, where
viscosity and pressure force fields are directly derived from
the Navier-Stokes equations. The fluid is discretized using
particles which carry field quantities A. At any position r in
space, these quantities can be evaluated by summing up the
weighted contributions of the neighboring particles p j:

A(r) =∑
j

m j

ρ j
A jW (r− rj, r), (1)

where mj and ρ j are the mass and the density of particle p j,
respectively. The radial symmetric weighting kernel W (r, r)
has a finite support determined by the support radius r. In our
simulation, we use the physics equations and kernel func-
tions presented in [MCG03] and [MSKG05]. For a more de-
tailed description about SPH we refer to [Mon92, Mon05].

3. Refinement

3.1. Surface Particle Detection

Since we are interested in visualizing the fluid surface, we
only want to refine surface particles. The detection of free
surface particles is a difficult problem and has shown to be
a critical step in our refinement procedure as erroneously
detected and erroneously undetected particles can lead to
surface artifacts. In the particle simulation literature, several
methods to detect surface particles have been proposed, of-
ten based on the number of neighbors in the support radius.
These techniques do not satisfy our needs as particles are
partly erroneously detected as surface, especially when high
pressure forces are involved. This is ascribed to the irregular
particle distribution and therefore to the non-constant num-
ber of particles in the neighborhoods.

We propose a method to detect surface particles which is
based on the distance from the particle to the normalized
center of mass cm of its neighborhood N. This criterion still
investigates the particle distribution in the neighborhood of a
particle but is independent of the actual number. See Figure 1
for an example. For each particle pi, this distance di,cm is
calculated by

di,cm =
∑ j(ri − rj)mj

∑ j m j
. (2)

c© The Eurographics Association 2007.

66

B. Solenthaler & Y. Zhang & R. Pajarola / Efficient Refinement of Dynamic Point Data

Figure 1: Our surface particle detection method applied to
a splashing scenario (left). The red particles are detected as
being surface (middle) and correspond to the input set of the
upsampling procedure (right).

A surface particle is defined by having a di,cm exceeding a
certain threshold. In order to avoid oscillations between be-
ing surface and not being surface, we use a slow reaction for
surface particles to turn into the state of not being surface.
This is achieved by using two different thresholds, where
a lower one is used for particles which are already marked
as surface. Isolated particles have to be treated separately,
where they are defined by having an empty neighborhood.

3.2. Point-Normal Interpolation

3.2.1. Initial Neighborhood

We use the surface particles as initial point set P0 for the re-
finement procedure (Figure 1). Similar to [GBP04] we insert
additional points which yield a new point set P1 ⊃ P0. The
new point set P1 is then used for the next refinement step.
This procedure can be repeated until the desired point reso-
lution is reached. During one refinement step, an additional
point is inserted between each point pi and its neighbors p j ,
where it is avoided to generate points which are too close to
points already created in order to achieve a nearly uniform
sampling (Section 3.3). Figure 2 illustrates the points of the
individual refinement steps. The neighborhood Nsur f ace

i of
each point pi ∈ P0 is inherited from the physics simulation,
where Nsur f ace

i ⊂ Ni: if two surface particles are visible to
each other in the physics calculation, meaning that they in-
teract with each other, the pair is refined. Otherwise, if two
particles have a distance larger than the support radius and
do not interact with each other, no additional point is added.
That is, the initial visibility radius r0 used in the refinement
procedure is equal to the support radius r used in the physics.
Note that r0 is the same for all points. In the following refine-
ment step, the radius is reduced as described in Section 3.2.3.
The point normals are determined either in the physics by
using the method proposed in [MCG03] or by using a trans-
formation invariant homogeneous covariance analysis as de-
scribed in [Paj03]. The latter is more expensive but leads
to higher quality normals which is crucial when using point
splatting as rendering technique (see Figure 9).

Figure 2: A wavy scene is upsampled from 2.5k to 110k
points. The point colors correspond to the different refine-
ment steps: black P0, blue P1, red P2, and yellow P3.

3.2.2. Spherical Interpolation

If a new point is added, its position and normal have to be
determined. For real-time applications, it is important that
we get these values at low computational costs. Neverthe-
less, surface details should be preserved as far as possi-
ble. While standard Bezier schemes are efficient ([GBP04,
GBP05]) they often show insufficient uniformity of upsam-
pled points. We therefore propose a spherical interpolation
method which sets a new point (child c1,2) onto a sphere
which is defined by the two points being refined (parents
p1 and p2), as illustrated in Figure 3. The child point is set
onto the perpendicular bisector of d = r1 − r2, where the dis-
placement from d onto the sphere is called h. The position
of the child rc is given by

rc =
r1 + r2

2
+hnc, (3)

where nc is the normal of c1,2 as defined in Equation 14.

Each parent computes a displacement h1 and h2, respec-
tively, and the final h is a function of h1 and h2. There are
different possibilities to determine h, one is to take the aver-
age, another one is to take the absolute minimum:

h =
h1+h2

2
(4)

h = min(|h1|, |h2|). (5)

The first one (illustrated in Figure 3) leads to a smooth sur-
face whereas the second one preserves edges and corners
more accurately. We prefer the second one and our results
are all computed using this approach.

To facilitate the calculation of h1 and h2, we determine
the slopes s1

t1
and s2

t2
. The displacements are given by

h1 =
s1

t1

‖d‖
2

(6)

h2 =
s2

t2

‖d‖
2

, (7)

where s and t are defined by

s1 = |n1 ·a| (8)

t1 = n1 ·b +‖nc‖ (9)

and

s2 = |n2 ·a| (10)

t2 = n2 ·b +‖nc‖. (11)

c© The Eurographics Association 2007.

67

B. Solenthaler & Y. Zhang & R. Pajarola / Efficient Refinement of Dynamic Point Data

d/2

/2

h
/2

/2
/2

t1 t2

s1

s2

p1 p2

c1,2

n1 n2

a

b

/2

/2

/2
/2h1

h2

d/2

/2

h
/2/2/2

,2

a

b

/2

/2

h1

h

Figure 3: A new child point c1,2 is added between the par-
ent points p1 and p2. Each parent computes its h1 and h2,
respectively, where the final h is a function of h1 and h2.

a and b are two basis vectors, where the normal nc of the
child point corresponds to b:

a =
d

‖d‖ (12)

b′ = n1 +n2 − ((n1 +n2) ·a)a (13)

b = nc =
b′

‖b′‖ . (14)

‖b′‖ can be zero if the normals of both parents are parallel
to d or if the normals sum up to zero. In these situations,
we assume that the points belong to different surfaces and,
therefore, the points are not refined.

3.2.3. Radius in the Next Refinement Step

For efficiency reasons, it is desirable to limit |h| to hmax.
We choose hmax so that 6 points may still refine to a per-
fect sphere assuming this is a reasonable requirement to the
resolution of an underlying simulation. For an illustration in
2d see Figure 4. In this situation, hmax is given by

hmax = ρ− ri

2
=

ri

2
(
√

2− 1), (15)

where ρ is the sphere radius. As we know hmax, the radius
ri+1 of the next refinement step is always well-defined, since
it is required that the child is just in the neighborhood of its
parent to avoid parasitic holes. Therefore, ri+1 is defined by

ri+1 =
√

h2
max +(

ri

2
)2 =

ri

2

√
4− 2

√
2 (16)

which means that in each refinement step the radius is re-
duced by a factor of ≈ 0.54.

3.3. Point Collision Avoidance

As mentioned above, for each pair of points a new point is
inserted. As we want to reach a uniform sampling after the
refinement procedure, it is important to avoid adding points
too close to existing points.

r i/2

r i/2

hmax

r i+1

Figure 4: Two-dimensional illustration of the limitation of
h to hmax. In three dimensions, 6 points are refined to an
accurate sphere.

3.3.1. Collision Detection

We use a collision distance β which defines a sphere around
a point which has to be empty. The collision volume of a
child point for the case h = hmax is two-dimensionally illus-
trated in Figure 5 as red circle. If any other point lies in the
same volume the child point is rejected and not added. In
each refinement step, β is adjusted proportionally to ri. We
use β = 0.2ri which we have determined heuristically to be
adequate to approach a uniform sampling. There are three
different collision configurations, see Figure 6 for an illus-
tration. (for simplicity reasons, we refer to the different re-
finement steps as s0, s1, s2, ..., sn, and a point which is added
in step si is called psi):

1. A point created in the current refinement step si is closer
than β to its parents.

2. A point created in the current refinement step si is closer
than β to a (non-parent) point which was created in one
of the last refinement steps s j<i.

3. A point created in the current refinement step si is closer
than β to another point which was also created in the cur-
rent step si.

The first type where a child collides with its parents can be
avoided by not refining a pair of points which are closer than
ri+1. This is valid as long as β < 0.5ri+1, which is the case
when using β = 0.2ri. In this situation, the pair gets refined
in the next refinement step si+1.

Since both parents know their neighboring points added
in s j<i we can avoid collisions of type 2 by taking the inter-
section set I of both parent neighborhoods N1, N2, which is
I = N1 ∩N2. As can be seen in Figure 5, the blue region B
corresponds to the critical volume which has to be checked
when h is not known. This volume encloses the red region R
(collision volume) and is enclosed by the intersection set I:
R ⊂ B ⊂ I. Therefore, all collisions of type 2 can be found
by distance checking the child with all ps j<i ∈ I. Since the
number of points in I is relatively small, the fact that I is
larger than R is not very time critical.

c© The Eurographics Association 2007.

68

B. Solenthaler & Y. Zhang & R. Pajarola / Efficient Refinement of Dynamic Point Data

hmax

r

p1 p2

hmaaxx

c1,2

ri+1

S

B

N1 N2

R2R1

I

R

Figure 5: Red: Collision region R for a child point in the
case where h = hmax. Blue: Critical region B which has to be
checked for collisions when h is not known. Dashed yellow:
A new point psi registers at all points ps j<i ∈ N1∪N2 if point
is inside that region (except at points in the green region).
Dashed black: R1, R2: Registered point sets of p1 and p2.

r r

Figure 6: Refined points without and with using our point
collision avoidance algorithm. The red points were added in
s0 and the blue points in s1.

However, this is different for the third type, since the num-
ber of psi is growing disproportionally. It turned out that
an efficient way to solve type 3 collisions is to register an
added child point at all points ps j<i ∈ (N1 ∪N2) which are
closer than ri+1 +β. For c1,2 in Figure 5 these points lie all
in the yellow dashed region. As a result, each ps j<i knows
the newly added points psi inside the radius ri+1 + β. For
the parent points p1 and p2 these registered point sets are
illustrated by the black dashed regions R1 and R2. To check
for case three collisions, we investigate the distances of each
point in the intersection set S of R1 and R2 of both parents,
thus S = R1∩R2. S fully encloses the blue region: S⊃ B⊃R.

As can be seen in Figure 5, it cannot be guaranteed that
all collisions are found. A new child does not register in the
green region which is outside of the union U = N1 ∪N2. But
since this volume is very small and is getting smaller or even
disappears the smaller h is, this method is a good approxi-
mation and almost all collisions are avoided. Nevertheless,
by using a smaller collision distance β or reducing hmax it is
possible to detect and avoid all collisions.

3.3.2. Collision Handling

When we detect that a child point c collides with an existing
point p and therefore is rejected, we move p into the direc-

hmax
ri+1

ri

hmax

ri

hmax

p1 p2

c1,2

N1 N2

Nc

V

Figure 7: A point created by two parent points outside U
are always outside the red region V . As V fully encloses the
child’s neighborhood Nc of the next refinement step (blue)
all candidate neighbor points are known and neighborhoods
can be updated correctly.

tion of c in order to achieve that p is more equally distanced
to the nearby points. This is done by averaging the positions
and normals:

rp =
rpwp + rcwc

wp +wc
(17)

np =
npwp +ncwc

‖npwp +ncwc‖ , (18)

where w is a weight which is assigned to a point at the time
of creation. We chose this weight to be proportional to the
distance from its parents, where a high weight is assigned to
all p ∈ P0 in order to preserve the original surface geometry.
After a collision is detected, the weight of the point which is
moved in the process is adjusted as well:

wp = wp +wc. (19)

This averaging positively affects the uniformity of the points
after the refinement.

3.4. Neighborhood Update

To execute the next refinement step si+1, the new neighbor-
hoods defined by ri+1 have to be determined for each exist-
ing point. Instead of using a search data structure and recom-
puting the neighborhoods in each step, we iteratively update
the neighbors of each point which is less expensive concern-
ing computation time and memory usage while maintaining
correctness.

Neighborhood updates are done simultaneously to the
registering described in Section 3.3 as in both steps we have
to access all points ps j<i ∈ U . In order to save computation
time, the distances which were already calculated in the col-
lision test are reused, and neighborhoods are not updated af-
ter the last refinement step. We distinguish between three
different neighbor relations (note that these are symmetric
since the same r is used for all points):

c© The Eurographics Association 2007.

69

B. Solenthaler & Y. Zhang & R. Pajarola / Efficient Refinement of Dynamic Point Data

1. Two points created in one of the last refinement steps s j<i
are neighbors.

2. A point created in one of the last refinement steps s j<i
and a point created in the current refinement step si are
neighbors.

3. Two points created in the current refinement step si are
neighbors.

The update of type 1 neighborhoods is straightforward:
as Nsi+1

i ⊂ Nsi
i and the distance to each neighbor is already

known from the last refinement step, we can update the
neighborhoods cheaply by comparing the distance to ri+1.

Neighbor relations of type 2 are generated after having
checked a child point for collisions. When a child does not
collide with any other point and therefore is accepted, it is
added to the neighborhood of all ps j<i ∈ U |d ≤ ri+1, and
vice versa.

Additionally, the child has to be added to all points
psi |d ≤ ri+1 (type 3 relations). Figure 7 illustrates that it is
sufficient to know all ps j<i ∈U to find all neighbor candidate
points psi , as long as each point ps j<i knows the added chil-
dren where it was involved as a parent, and therefore cor-
rect neighborhoods can be guaranteed. As we know hmax,
ri+1, and the maximal distance between two parent points
dmax = ri, we can show geometrically that it is not possible
that two points ps j<i both outside of U are refined yielding
a new point which is closer than ri+1 to the child c1,2. All
points created by such parents would lie outside of the red
dashed region V illustrated in Figure 7. As can be seen, V
completely encloses the neighborhood Ni+1

c defined by ri+1
(illustrated in blue), even in the most extreme case where
hchild = hmax: V ⊃ Ni+1

c . This means that all neighbor can-
didate points psi are known by the child and can be distance
checked.

4. Results and Discussion

We have tested our new refinement method on different ir-
regularly sampled point scenes and rendered them either us-
ing the raytracing approach presented in [SSP07] or point
splatting. All timings are given for an Intel Core2 2.66 GHz.

Three frames of a splashing column simulation consist-
ing of 3k physics particles are shown in Figure 8. During
the whole simulation, a point generation rate between 415k
and 845k points per second is achieved (Table 1). A simu-
lation sequence running at interactive rates is demonstrated
in Figure 9, where the upsampled fluid with 14k surface
points is running at 11fps (41 time steps per second) and
the initial fluid with 1k surface points at 17fps (58 time steps
per second). These timings include all computational costs
(physics, normals, refinement, and visualization).

The effect of upsampling a textured fluid can be seen in
Figure 10. Whereas the initial fluid appears blurry, the up-
sampled fluid is much sharper and detail-conserving. The
introduced smoothing related to the original texture is visu-

Figure 9: Initial and refined points (left: 1k, right: 14k) sim-
ulated and rendered at 17fps and 11fps, respectively.

Figure 10: Left: inital points (12k). Right: upsampled points
(140k). Bottom row: smoothing related to the original tex-
ture.

alized in the bottom row, where red and yellow correspond
to low and high smoothing, respectively.

In Figure 11, we applied our refinement method to 9k
randomly chosen points of the static ball joint model (140k
points), yielding 50k points. The initial and the upsampled
points are visualized using point splatting. As can be seen,
more surface details are visible after upsampling and arti-
facts at the silhouette can be reduced. The quality of the
splatting could be further improved by optimally determin-
ing the splat radius for each point, whereas in our examples
we use a constant radius for all points.

Currently, we reach a point generation rate of up to 34k
points per frame at 25fps. It is possible to improve the com-
putation times or the visual quality even further by inte-
grating more sophisticated methods to optimally select the
points which are going to be refined. Selection operators
based on curvature and level of detail information could be
applied, additionally, the computation costs of the refine-
ment could be approximately halved by omitting the upsam-
pling of occluded points. While we present the performance
of our algorithm on irregular point samples it is to be noted
that it can be easily applied to regular point samples as well.
In fact, regular point samples facilitate the point generation
process and actually improve the performance as the refine-
ment radii can be smaller, eliminating many of the potential
point collisions.

c© The Eurographics Association 2007.

70

B. Solenthaler & Y. Zhang & R. Pajarola / Efficient Refinement of Dynamic Point Data

Figure 8: Three frames of the column splashing simulation. The left and right image of each pair show the raytraced surface
of the inital surface points and the surface after 3 refinement steps, respectively.

Figure 11: From left to right: splatted surface of the original point model (140k), initial points (9k) randomly chosen from the
original model, upsampled points (50k), splatted surface of the initial point set, splatted surface of the upsampled point set.

P0 P3 tre f ine[s] points/s
Initial block 1’208 42’342 0.05 846’840

Splashing 1’916 103’840 0.25 415’360
Equilibrium 1’359 35’547 0.07 507’814

Table 1: Point numbers and performances of 3 individual
frames of the column splashing simulation sequence.

Certain ring and ribbon like features are visible in sparse
particle regions. While these might look unrealistic, it is not
clear to us how they can be avoided in a consistent way. Fur-
thermore, our refinement technique does not make use of
temporal coherence. This may lead to problems in splash-
ing areas where isolated particles merge and split and the
rendered topology might undergo sudden changes. Although
the integration of time-coherent aspects would reduce this
problem, it would come at the expense of processing time as
connectivity information would need to be stored and reused
in each simulation step. As processing speed was one of our
major constraint, temporal coherence is currently not inte-
grated in our implementation.

5. Conclusion

We have presented a refinement method which is suitable
to efficiently improve the visual quality of low resolution
particle-based fluids used in interactive and real-time ap-
plications. Our algorithm is able to robustly detect and re-
fine surface points, particularly if the input points are irreg-
ularly sampled dynamic points coming for example from an
SPH fluid simulation. No preprocessing is necessary and due
to our fast neighborhood update we can reduce computa-
tion and memory costs. Our interpolation method can handle
complex surfaces and splashes, and features like edges can
be preserved. Point collisions are avoided yielding a nearly
uniform point distribution, which also supports surface re-
construction techniques. Our algorithm can generate up to
34k points per frame at 25fps which makes it suitable to ap-
ply the technique to the computationally expensive field of
fluid simulation. As was shown, our algorithm improves the
visual quality of the surface while preserving surface details.
As future work, we intend to integrate a more robust normal
computation, as the low quality normals currently used ad-
versely affect the reconstructed surfaces. Additionally, we
intend to use more sophisticated methods to optimally select
the points which are going to be refined in order to reduce
the computation costs even further.

c© The Eurographics Association 2007.

71

B. Solenthaler & Y. Zhang & R. Pajarola / Efficient Refinement of Dynamic Point Data

References

[AA03] ADAMSON A., ALEXA M.: Approximating and inter-
secting surfaces from points. In Proceedings of the Eurographics
Symposium on Geometry Processing (2003), pp. 230–239. 2

[ABCO∗03] ALEXA M., BEHR J., COHEN-OR D., FLEISHMAN

S., LEVIN D., SILVA C.: Computing and rendering point set
surfaces. IEEE Transactions on Computer Graphics and Visual-
ization 1, 9 (2003), 3–15. 1, 2

[AD03] ADAMS B., DUTRE P.: Interactive boolean operations
on surfel-bounded solids. In Proceedings of ACM SIGGRAPH
(2003), pp. 651–656. 1

[Age05] AGEIA: Physics, Gameplay and the Physics Processing
Unit,. White paper, 2005. 1

[APKG07] ADAMS B., PAULY M., KEISER R., GUIBAS L. J.:
Adaptively sampled particle fluids. In ACM SIGGRAPH (2007).
2

[CBC∗01] CARR J. C., BEATSON R. K., CHERRIE J. B.,
MITCHELL T. J., FRIGHT W. R., MCCALLUM B. C., EVANS

T. R.: Reconstruction and representation of 3d objects with ra-
dial basis functions. In Proceedings of ACM SIGGRAPH (2001),
pp. 67–76. 2

[DC96] DESBRUN M., CANI M.-P.: Smoothed particles: A new
paradigm for animating highly deformable bodies. In Eurograph-
ics Workshop on Computer Animation and Simulation (1996),
pp. 61–76. 2

[GBP04] GUENNEBAUD G., BARTHE L., PAULIN M.: Dynamic
surfel set refinement for high quality rendering. Computer and
Graphics 28, 6 (2004), 827–838. 1, 2, 3

[GBP05] GUENNEBAUD G., BARTHE L., PAULIN M.: Interpola-
tory refinement for real-time processing of point-based geometry.
Computer Graphics Forum, Eurographics 2005 conference pro-
ceedings 24, 3 (2005), 657–667. 1, 2, 3

[GG07] GUENNEBAUD G., GROSS M.: Algebraic point set sur-
faces. In ACM SIGGRAPH (2007). 2

[KAG∗05] KEISER R., ADAMS B., GASSER D., BAZZI P.,
DUTRE P., GROSS M.: A unified lagrangian approach to solid-
fluid animation. In Proceedings of Eurographics Symposium on
Point-Based Graphics (2005), pp. 125–133. 2

[Lev03] LEVIN D.: Mesh-independent surface interpolation. In
Geometric Modeling for Scientific Visualization (2003), 37–49.
2

[MCG03] MÜLLER M., CHARYPAR D., GROSS M.: Particle-
based fluid simulation for interactive applications. In Symposium
on Computer Animation (2003), pp. 154–159. 1, 2, 3

[MHTG05] MÜLLER M., HEIDELBERGER B., TESCHNER M.,
GROSS M.: Meshless deformations based on shape matching. In
Proceedings of ACM SIGGRAPH (2005), pp. 471–478. 1

[MKI03] MONAGHAN J., KOS A., ISSA N.: Fluid motion gen-
erated by impact. Journal of Waterway, Port, Coastal and Ocean
Engineering 129 (2003), 250–259. 2

[MKN∗04] MÜLLER M., KEISER R., NEALEN A., PAULY M.,
GROSS M., ALEXA M.: Point based animation of elastic, plas-
tic and melting objects. In Symposium on Computer Animation
(2004), pp. 141–151. 1, 2

[Mon89] MONAGHAN J.: On the problem of penetration in parti-
cle methods. Comput. Phys. 81 (1989), 1–15. 1

[Mon92] MONAGHAN J.: Smoothed particle hydrodynamics.
Annu. Rev. Astron. Physics 30 (1992), 543. 1, 2

[Mon05] MONAGHAN J.: Smoothed particle hydrodynamics.
Rep. Prog. Phys. 68 (2005), 1703–1759. 2

[MSKG05] MÜLLER M., SOLENTHALER B., KEISER R.,
GROSS M.: Particle-based fluid-fluid interaction. In Symposium
on Computer Animation (2005), pp. 237–244. 1, 2

[MST∗04] MÜLLER M., SCHIRM S., TESCHNER M., HEIDEL-
BERGER B., GROSS M.: Interaction of fluids with deformable
solids. Journal of Computer Animation and Virtual Worlds 15,
3-4 (2004), 159–171. 1, 2

[OBA∗03] OHTAKE Y., BELYAEV A., ALEXA M., TURK G.,
SEIDEL H.: Multi-level partition of unity implicits. ACM Trans-
action on Graphics 3, 22 (2003), 463–470. 2

[Paj03] PAJAROLA R.: Efficient level-of-details for point based
rendering. In Proceedings IASTED Invernational Conference on
Computer Graphics and Imaging (2003). 3

[PGK02] PAULY M., GROSS M., KOBBELT L. P.: Efficient sim-
plification of point-sampled surfaces. In Proceedings of IEEE
Visualization (2002), pp. 163–170. 1, 2

[PKA∗05] PAULY M., KEISER R., ADAMS B., DUTRE P.,
GROSS M., GUIBAS L. J.: Meshless animation of fracturing
solids. ACM Trans. Graph. 24, 3 (2005), 957–964. 1

[PKG06] PAULY M., KOBBELT L. P., GROSS M.: Point-based
multiscale surface representation. ACM Trans. Graph. 25, 2
(2006), 177–193. 1

[PKKG03] PAULY M., KEISER R., KOBBELT L. P., GROSS M.:
Shape modeling with point-sampled geometry. In Proceedings of
ACM SIGGRAPH (2003), pp. 641–650. 1, 2

[PTB∗03] PREMOZE S., TASDIZEN T., BIGLER J., LEFOHN A.,
WHITAKER R. T.: Particle-based simulation of fluids. In Pro-
ceedings of Eurographics (2003), pp. 401–410. 2

[SAC∗99] STORA D., AGLIATI P., CANI M. P., NEYRET F.,
GASCUEL J.: Animating lava flows. In Graphics Interface
(1999), pp. 203–210. 2

[SSP07] SOLENTHALER B., SCHLÄFLI J., PAJAROLA R.: A uni-
fied particle model for fluid-solid interactions. Journal of Com-
puter Animation and Virtual Worlds 18, 1 (2007), 69–82. 1, 2,
6

[TKPR06] THÜREY N., KEISER R., PAULY M., RÜDE U.:
Detail-preserving fluid control. In Symposium on Computer Ani-
mation (2006), pp. 7–15. 2

[TRS04] TOBOR I., REUTER P., SCHLICK C.: Multiresolution
reconstruction of implicit surfaces with attributes from large un-
organized point sets. In Proceedings of Shape Modelling Inter-
national (2004), pp. 19–30. 2

[ZB05] ZHU Y., BRIDSON R.: Animating sand as a fluid. ACM
Trans. Graph. 24, 3 (2005), 965–972. 2

[ZPKG02] ZWICKER M., PAULY M., KNOLL O., GROSS M.:
Pointshop 3d: an interactive system for point-based surface edit-
ing. In Proceedings of Computer graphics and interactive tech-
niques (2002), pp. 322–329. 1

c© The Eurographics Association 2007.

72

