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Abstract
In this paper we present multiple simple and efficient improvements for splatting based rendering systems. In a
first step we derive a perspectively correct splat rasterization algorithm suitable for both efficient implementation
on current GPU and the design of fast dedicated rasterization units taking advantages of incremental calculations.
Next, we propose a new efficient and high-quality approximation of the optimal EWA (Elliptical Weighted Average)
filtering framework. We also show how transparent point-clouds can be rendered by current GPU in an order
independent way by using a modified depth-peeling approach. Finally, in the context of hybrid points and polygons
rendering systems, we present a simple mechanism to smooth the transitions between the different representations.
Combined to previous contributions in the field, these improvements lead to a high-quality, performant and full-
featured hardware-oriented splatting rendering system.

1. Introduction

Owing to their high flexibility, point-based surface repre-
sentations have been successfully used in a wide range
of applications. Indeed, from interactive surface modeling
[ZPKG02, PKKG03] to real-time visualization of highly
complex-scenes [WFP∗01, GBP04], points have exhibited
several advantages against classical polygons.

The common denominator of every graphic application
is the visualization stage. According to the end purpose of
the application, radically different approaches can be used
to render a point cloud. When very high-quality is required,
a ray tracing approach (backward projection) is probably
the best choice. Most ray tracing methods are based on a
local moving least square (or variants) surface reconstruc-
tion [Lev03] allowing to accurately intersect the point cloud
[AA03, AKP∗05]. One of the most interesting aspect of ray
tracing approaches is that they allow the implementation of
realistic shading calculation [SJ00]. However, in spite of sev-
eral optimizations [WS05], such approaches remain too ex-
pensive for interactive purpose.

On the other hand, rasterization approaches (forward pro-
jection) usually offer a significantly faster rendering and a
higher degree of flexibility since, under a given geometry
complexity threshold, the geometry can be directly rendered
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without the need of any special data structure. Such an ap-
proach is usually based on a splat representation (a set of ori-
ented disks or ellipses) and is implemented with the so called
splatting algorithm. Initially, high-quality splatting can only
be obtained via a pure software implementation [ZPvG01].
Fortunately, recent GPU capabilities now allow us to imple-
ment efficient splatting algorithms on the GPU with the same
rendering quality as software implementations [BHZK05].
To provide high-quality, the key features of a splatting algo-
rithm are:

1. a perspective correct splat rasterization avoiding holes,
2. a band limiting pre-filter for high-quality texture filtering

(EWA filtering),
3. a deferred shading approach smoothly blending the splat

attributes before the shading calculations.

The last criterion is commonly referred as per-pixel shad-
ing. One of the most advanced hardware-accelerated splat-
ting implementation is probably the one of Botsch et al.
[BHZK05] since it fully satisfies the above 1 and 3 crite-
ria. We however see two drawbacks in their approach that
we overcome in this paper. First, from the rendering quality
point of view, their coarse approximation of the EWA fil-
tering may fail to completely remove the aliasing in case of
both minification and magnification. Secondly, from the per-
formance point of view, both their splat rasterization method
and EWA filtering approximation require quite expensive
computations at the fragment level without offering any pos-
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sibility to develop an optimized rasterization unit taking ad-
vantage of incremental calculations. Moreover, none of GPU
based splatting techniques have yet provided a mechanism to
support transparent models.

Beyond purely point-based rendering systems, when very
high performance matters more than flexibility, several
works have already shown that mixing splats with polygons
allows to reach outstanding performances [CAZ01, CN01,
WFP∗01, CH02, DVS03]. Indeed, even though points are
particularly efficient to handle and render complex geome-
tries, they are also significantly less efficient to represent flat
surfaces. Because the flatness of the surface is relative to
the current view point, such an hybrid rendering system dy-
namically selects for each part of the model the best repre-
sentation at the best level-of-details. However, none of these
works have already addressed the problem of the disconti-
nuities which may occur at the transition between polygonal
and splat representations.

Then, the purpose of this paper is to present some sim-
ple but useful splatting improvements allowing us to over-
come the limitations of existing splatting rendering systems
pointed out above. Especially, the contributions of this paper
include:

• an efficient perspective correct splat rasterization algo-
rithm suitable for fast incremental calculations as well as
fast GPU implementation (section 3),

• a high-quality and efficient approximation of the EWA re-
sampling filter (section 4),

• a high-quality hybrid splat-polygon rendering system with
smooth transitions (section 5),

• a GPU accelerated order independent splatting algorithm
of transparent models (section 6).

The improvements proposed in this paper are simple,
practical and very useful to provide high-quality rendering
of point based geometries in real-time.

2. Related Work

This section discusses recent splatting based rendering tech-
niques. More detailed surveys on point-based techniques and
point-based rendering can be found in [KB04, SP04].

A rigorous splatting framefork has been first introduced
by Zwicker et al. [ZPvG01] in 2001. This approach uses a
deferred shading strategy where the surface attributes are re-
constructed before the shading calculations, thus leading to
high-quality per-pixel shading effects. The surface attributes
are reconstructed in the screen space by accumulating the
weighted attributes held by each splat. During this resam-
pling step, aliasing artifacts are avoided by EWA filtering:
high frequencies are removed by applying a screen space
low-pass filter before the splat rasterization. Owing to the
overlapping of splats, visibility computations are performed
by a fuzzy z-buffer which compares the depth values with a

small tolerance threshold ε such that overlapping fragments
of the same surface are effectively blended. The use of a
modified A-buffer allows them to render transparent mod-
els in a single pass and in an order independent way. Al-
though their approach provides high visual quality, this ren-
derer requires an expensive splat rasterization setup and it is
purely software based. Therefore its performances are lim-
ited to about 1M splats per second.

Most of further researches try to overcome these last lim-
itations via hardware-accelerated splatting approaches built
on some restrictions, approximations, or variants of the orig-
inal surface splatting. The first limitation for a GPU imple-
mention is the lack of a fuzzy z-buffer. This limitation is
overcome via a multipass algorithm [RPZ02] shared by all
GPU based splatting approaches. In the first visibility splat-
ting pass, splats are rasterized in order to precompute a hole
free depth buffer. The depth values of splats are shifted by
ε along the view direction. In the second pass, that we fur-
ther refer as the attribute accumulation pass, splats are ren-
dered with lighting and additive blending. Owing to the pre-
vious pass, only effectively visible contributions are accu-
mulated in the destination buffer. In the final normalization
pass, each pixel of the resulting buffer is normalized by the
sum of weights stored in the alpha channel.

Although some methods have used polygonal primitives
to render splats [KV01,RPZ02,PSG04], the pixel shader ca-
pabilities of GPUs now allow us to efficiently draw a splat
via the hardware point primitive [GP03, BK03]. Such an
approach significantly improves the rendering performance
and flexibility, since only one vertex per splat is sent to the
GPU, instead of 3 or 4 vertices for the previous methods.
Since the hardware point primitive only allows to generate
fragments under a custom axis aligned screen space square
area, the pixel weight and depth values must be computed
by a custom fragment shader. However, in all these meth-
ods, the perspective projection is always approximated by
an affine mapping and hence, small holes may appear. To
overcome this problem, Zwicker et al. [ZRB∗04] propose an
affine approximation which accurately maps the splat con-
tours while in [BSK04, BHZK05] Botsch et al. use a ray
casting approach. Sharp features can be represented and ren-
dered using splats clipped by lines defined in their local tan-
gent frame [PKKG03, ZRB∗04].

The first GPU based methods, providing per-pixel light-
ing, store for each splat a precomputed normal field which
is used to derive per-pixel normals [KV01, BSK04]. How-
ever, due to the need of preprocess, such approaches have a
low degree of flexibility and are also rather expensive since
the shading computations are uselessly performed on a large
number of pixels. Since almost two years, GPU provides all
the required features to implement a splatting algorithm with
deferred shading capabilities [BHZK05]. In such a configu-
ration, during the second splatting pass, instead of the shaded
color, the splat attributes required by the shading calcula-
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tions (e.g. color, normal and depth value) are accumulated
into attribute buffers. During the final normalization pass,
attributes are normalized by the sum of weights and these
per-pixel reconstructed values are used to compute the final
output color. In addition to increase the visual quality, a de-
ferred shading approach also allows to implement complex
shading algorithm with a very low overhead since the shad-
ing calculations are performed on visible pixels only.

The splatting algorithms proposed in this paper are built
in such a multipass with deferred shading fashion.

3. Perspective Correct Splatting

In this section we explain how to perform a perspective cor-
rect rasterization of a general elliptic splat. Compared with
the raycasting approach of Botsch et al. [BSK04, BHZK05],
the approach described here is significantly faster and is suit-
able for a fast incremental implementation. This last point
is especially important in order to develop dedicated hard-
ware or software splat rasterization units. Our approach re-
lies on standard perspective correct polygon rasterization
techniques.

In a first step, let us remind the general splatting process.
Let Sk be a splat defined by its center pk = (px, py, pz)T and
a local tangent frame (sk, tk) where the two tangent vectors
sk = (sx,sy,sz)T and tk = (tx, ty, tz)T are scaled according to
the principal radii of the elliptical splat. In this local frame, a
point q = (u,v)T is inside the splat if and only if u2 +v2 ≤ 1.
In order to continuously reconstruct the surface attributes, a
2D reconstruction kernel rk(q) defined in the tangent plane
is associated to each splat. A typical choice for rk is a ra-
dially symmetric Gaussian. Then, the rendering process is
achieved by projectively mapping the reconstruction kernels
from their local tangent frames to the image plane. At each
image sample x, each contribution is accumulated and nor-
malized by the sum of weights. For a given scalar attribute
fk, its reconstructed value f ′(x) at the location x is then:

f ′(x) =
∑k fkrk(M−1

k (x))

∑k rk(M−1
k (x))

= ∑k fkr′k(x)
∑k r′k(x)

(1)

where Mk is the 2D-2D projective mapping from the local
tangent frame of the splat Sk to the image space. Also, r′k(x)
denotes the warped reconstruction kernel in the image space.

3.1. Perspective Splat Rasterization

Now, in order to simplify the following equations, we define
the 2D image plane by its center (0,0,1)T and tangent vec-
tors (1,0,0)T and (0,1,0)T . The projective mappingMk(q)
of a point q = (u,v)T onto the image plane through the origin
(0,0,0)T is then defined as follow:

[
x
y

]
=Mk(q) =

[ usx+vtx+px
usz+vtz+pz
usy+vty+py
usz+vtz+pz

]
(2)

Using homogeneous coordinates, this mapping can be ex-
pressed as the product of the 3×3 matrix Mk with the homo-
geneous point q = (u,v,1)T :

 xz
yz
z

 = Mk

 u
v
1

 =

 sk tk pk

 u
v
1

 (3)

During the rasterization process we need to inverse this
mapping (equation 1). The inverse of a projective mapping is
also a projective mapping and hence we have just to inverse
the matrix Mk. In practice any scalar multiple matrix Nk =
αM−1 with α ∈ R∗ can be used instead of the exact inverse
matrix M−1

k to define the inverse mapping M−1
k : uw

vw
w

 = Nk

 x
y
1

 (4)

For instance we can use for Nk the adjoint ad j(Mk) which
is efficiently computed by only three cross products (a cross
product is a native instruction on current GPU):

ad j(Mk) =

 tk×pk
pk× sk
sk× tk

 (5)

Moreover, in order to perform the visibility computation,
we also need to compute the window space depth value
d(x) of the current splat at every image location x. Most
of z-buffer algorithm does not directly use the view space
z value as the window space depth value but rather 1/z lin-
early mapped to [0,1], i.e. d(x) = a + b/z where a and b
are constants defined by the near and far plane of the view
frustum. Since d(x) is a linear transformation of 1/z, it can
be linearly interpolated in the image space. Again, since we
can use any scalar multiple (not null) of the matrix M−1

k to
compute the inverse mapping, an optimization is to use for
the matrix Nk the matrix ad j(Mk) scaled such that the ho-
mogeneous coefficient w in the equation 4 is equal to b/pz.
If ad j(Mk)3 denotes the third row of the matrix ad j(Mk),
then the matrix Nk is:

Nk =
b

ad j(Mk)3 ·pk
ad j(Mk) (6)

Then, the computation of d(x) requires only a single addi-
tion per pixel x. In practice, because both current GPU and
CPU have four component vector instructions, the product
of a 2D homogeneous vector with a 4×3 matrix is not more
expensive than the one with a 3×3 matrix (if we assume that
the matrix is stored in three vector registers of four compo-
nents). Therefore, a finer optimization is to use the fourth
row to directly compute the final depth value. The value of
the fourth row (Nk)4 is the third row of the matrix ad j(Mk)
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scaled as above but with the offset a added to the third com-
ponents:

(Nk)4 =
b

ad j(Mk)3 ·pk
ad j(Mk)3 +

 0
0
a

 (7)

Finally, because the three coordinates (uw,vw,w) (or four
if we use the second optimization) can be linearly interpo-
lated in the image space, it is easy to derive a very efficient
dedicated splat rasterization unit taking advantage of incre-
mental calculations.

3.2. GPU Implementation details
In practice, since we cannot modify the rasterization unit of
current GPU, as several other GPU-based splatting imple-
mentation [GP03,BK03,ZRB∗04,BSK04,BHZK05] we use
a vertex shader to simulate the splat rasterization setup, the
hardware point primitive to generate fragments and a frag-
ment shader to both evaluate the reconstruction kernel and
compute an accurate depth value.

Splats are sent to the GPU using the standard point prim-
itive. The vertex shader, in addition to common space trans-
formations, computes the matrix Nk defining the inverse
mapping M−1

k as well as a conservative 2D axis aligned
bounding box of the projected splat. The position and size of
the point primitive are respectively the center and the largest
dimension of the box. The fragment shader required by our
approach is very simple, basically only three computational
instructions, and hence it is significantly more efficient than
previous approaches. Indeed, if we transmit the above matrix
to the fragment shader via three column vectors, the matrix
multiplication requires only two MAD instructions (the MAD
instruction of GPU performs one multiplication followed by
one addition). Next, the 2D kernel is precomputed in a 2D
texture such that the weight r′(x) is obtained by a single pro-
jective texture fetch. We remind that the accurate window
space depth value is simply the fourth component coming
from the previous matrix product. Finally, fragments outside
the splats are removed by the alpha test unit, while the mul-
tiplication of the attributes by the weight and their accumu-
lation are performed by the blending unit.

4. High Quality Filtering
In the previous section we have directly rasterized the ob-
ject space reconstruction filter rk without taking into ac-
count the pixel sampling grid. Thus, in the case of mini-
fication and high frequencies, resampling filters may miss
pixels leading to aliasing artifacts (figure 3-top). In order to
overcome this problem, in the original EWA splatting frame-
work [ZPvG01], reconstruction kernels are band limited by
convolution with a screen-space pre-filter. This leads to a
so called resampling filter which is effectively rasterized. A
convolution approach is only conceivable if the result is sim-
ple and can be determined analytically. This is why in the

magnification minification
magnification
+ minification

    reconstruction kernel            low-pass pre-filter

       EWA resampling filter           our approxiamation

                            EWA resampling filter          approximation used in [BHZH05]

Figure 1: Comparison of the shapes of our EWA approxima-
tion to the rigorous EWA resampling filter and the approxi-
mation of Botsch et al. [BHZK05].

EWA framework, an affine mapping approximation is used
instead of the projective mapping and Gaussians are used for
both the reconstruction kernel and the low pass filter.

Unfortunately, the projective mapping of a Gaussian is not
a Gaussian, and hence it is not possible to derive a resam-
pling filter by convolution and some approximations have to
be done. For instance, in [BHZK05] the screen-space pre-
filter is applied by taking the maximal value of the recon-
struction kernel and the low-pass filter results. However, this
approximation has two major drawbacks. From the perfor-
mance point of view, it requires to evaluate, for each frag-
ment, both the resampling kernel and the low-pass filter, that
is quite expensive since the fragment stage is usually the bot-
tleneck of splatting systems. From the quality point of view,
this approximation is very coarse as soon as the splat is in
the case of minification in one direction and magnification
in the other direction (figure 1). In such cases, fine parts of
the splat may still fall between image samples.

4.1. Our EWA approximation
We propose a new approximation being in between the
optimal EWA resampling filter and the approximation of
[BHZK05]. The purpose of our approximation is to dynam-
ically adjust the tangent vectors of the splat in the object
space so that the pre-filter can always be included in the
perspectively mapped reconstruction filter r′k. In this case,
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Figure 2: Illustration of the principle of our EWA filter ap-
proximation. The diameter edge of the splat along the tan-
gent vector t0 is projected onto the screen to obtain t′. Since
its length is lower than the pre-filter radius h, the tangent
vector t is t0 adjusted such that it is parallel to the screen
plane and its projection size is equal to the pre-filter radius.

the warped reconstruction filter will still have the shape of
an ellipse and will never fall between samples of the out-
put image. In practice, a such low-pass filtering approach
only holds if it is computationally significantly less expen-
sive than previous methods. Moreover, our low-pass filter is
only applied in case of minification, i.e. when the reconstruc-
tion kernel has a screen space size lower than a few pixels.
Thus, it is pertinent to use approximations in order to get the
maximal performance, and we propose to simply adjust the
tangent vectors in an independent manner.

Let h be the radius of the low pass filter in the normalized
image plane for which a typical choice is

√
2 2

vpw
(here vpw

denotes the viewport width). Let us denote the initial tangent
vectors of a given splat as s0

k and t0
k . The final vectors sk

and tk are computed identically. The vector tk is obtained by
adjusting the vector t0

k = (tx, ty, tz)T such that the length of
the half of the perspective projection t′k of the diameter edge
(pk − t0

k ,pk + t0
k) onto the screen space is greater than the

radius of the low-pass filter (figure 2). The projected vector
t′k is given by:

t′k =
1

p2
z − t2

z

 tx pz− tz px
ty pz− tz py

0

 (8)

If ‖t′k‖ is already greater than the radius h, then tk is directly
t0
k . Otherwise, we take tk as the projection of t0

k onto the
image plane scaled in order to satisfy our criterion:

tk =
t′k
‖t′k‖

pzh (9)

Finally, the reconstruction kernel is rasterized as explain in
the previous section.

However, independently adjusting the tangent vectors as
explain above only holds if their respective projections onto
the screen space are in orthogonal direction and thus aligned
with the principal axis of the warped reconstruction kernel.
Even though this assumption cannot be satisfied in general,
we propose a simple heuristic computing the initial tangent

vectors s0
k and t0

k while providing very good results. Indeed,
for an isotropic splat of normal nk, any orthogonal tangent
vectors can be used to define the local parametrization and
our heuristic holds in the two following cross products:

s0
k = pk×nk (10)

t0
k = nk× s0

k

We can characterize the accuracy of the basis vectors by the
minimal angle value α formed by their screen space projec-
tions. Then, for a view frustum with an aperture angle of
90 degrees, this heuristic generates basis vectors with an α

value between 90 and 60 degrees and with an average of
81.7 degrees. When the α value is not equal to 90 degrees,
the screen-space low-pass filter could be slightly truncated.
Indeed, in the worst case (α = 60), our algorithm may for-
get to adjust the reconstruction filters for which the minimal
screen space width is h

√
2 (our threshold being 2h), that, in

fact, does not matter since it is still greater than the output
resolution.

We point out that unlike the previous approaches, the
depth correction is lost for splats which are in the case of
minification because the tangent vectors become parallel to
the screen plane. This comportment is intentional because
it prevents from some visibility artifacts that previous ap-
proaches may exhibit in some particular cases. Indeed, if we
do not transform the tangent plane of a minificated splat,
then this splat can lead to arbitrary depth value since the
required stretch value is potentially infinite. Moreover, in
practice, the depth correction is not a requirement for splats
which are below a single pixel.

4.2. Comparison

On the one hand, the main limitation of our approach is that
it works well for isotropic splats only. On the other hand, ex-
cepted when external anisotropic forces are applied to the
point set [PKKG03, MKN∗04], isotropic splats are more
widely used than elliptic splats because they do not require
any expensive preprocessing. Moreover, our high frequen-
cies filtering approach exhibits the following nice features:

• Splats are extended only in the directions of minification:
unlike the original EWA filtering approach, no additional
fragments are generated when it is not necessary.

• All computations are done during the splat setup: unlike
the previous EWA approximation [BHZK05] there is no
overhead at the rasterization step.

• In case of both minification and magnification, our ap-
proximation is closer to the original EWA resampling
filter than the previous approximation of Botsch et al.
[BHZK05] (see figures 1 and 4).

5. High-Quality Hybrid Rendering

In this section we show how a splatting rendering system
can be easily extended to handle hybrid spats and polygons
high-quality rendering.
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Figure 3: A 600×600 points checkerboard rendered from
top to bottom: without screen space pre-filter, with EWA fil-
tering, with our EWA approximation and with the EWA ap-
proximation of Botsch et al. [BHZK05].

Figure 4: A close view of a checkerboard rendered from
left to right with the EWA approximation of Botsch et al.
[BHZK05] and with our EWA approximation.

5.1. Transitions smoothing

Whereas several results have already proven the efficiency
of such hybrid rendering systems, none of them focus on
the problem of the transitions between the polygonal and
the splat representations. Indeed, when a surface is rendered
via both splats and polygons, if no special treatment is per-
formed, discontinuities appear at the transition level (fig-
ure 5a). It is hence essential to provide a mechanism to
smooth these transitions. To do so, two properties are re-
quired: first, splats and polygons must overlap (that is al-

most always the case) and secondly, we need for every pix-
els a weight value continuously varying from 0 to 1 in the
overlapping regions. For the second requirement, a solution
could be to rasterize additional geometries at the transition
level. However, such an approach increases both the render-
ing cost and the complexity of the rendering system. Our so-
lution is simple and based on the following remark: the sum
of weights resulting from the splatting approximately varies
from 1 to 0 at the boundary of the splat representation (fig-
ures 5c-d). Therefore, the idea is to reuse these weights to
perform a linear blending between the two representations.
So, a high-quality hybrid rendering algorithm is obtained
with only minor changes in a classical multi-pass splatting
algorithm:

1. Visibility splatting, no change: splats are drawn as
opaque ellipses into the depth buffer. The depth values
of splats are shifted by ε along the view direction.

2. Polygon rasterization: polygons are rendered upon the
previous depth buffer. Therefore, polygonal regions hid-
den by splats are removed and because the depth buffer
is updated, splat parts hidden by polygons will also be re-
moved during the next pass. In order to be able to reuse
this result, polygons are rendered into a texture.

3. Attribute accumulation: splat attributes are accumu-
lated into the attribute buffers. In order to allow the over-
lapping of splats and polygons of the same surface, the
depth of splats and polygons must be compared with
a tolerance. Then, during this pass, the depth values of
splats are shifted by ε toward the viewer.

4. Finalization: during the normalization and deferred
shading pass, the sum of weights of the splatting is
clamped to [0,1] and used to linearly blend the colors re-
sulting from the splatting and polygon rasterization. Be-
cause it is difficult to ensure that the sum of weights satu-
rates for pixels only covered by splats, this blending must
be done if and only if the pixel is covered by a polygon.
To do so, a solution is to check the alpha component of
the polygon rendered image.

In our algorithm, we blend the resulting shaded colors. How-
ever, we notice that it is also possible to use a deferred shad-
ing strategy for the polygonal representation, and thus we
can blend the attributes before the shading calculations, that
should slightly increase the blending quality.

The quality of the smoothing mainly depends on the point
sampling at the transition (figures 5b-d). Indeed, to get the
best of our approach, it is necessary that the sum of weights
saturate at the transition edges. This can be guaranteed by
uniformly sampling the transition edges such that the splats
share their center with the edge. It is done at the sampling
step or even in a preprocess step. In the context of multireso-
lution rendering, a particular attention must be paid because
splats located exactly on an edge must be drawn once if at
least one of the polygon sharing the edge is drawn as a set of
splats.
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(a) (b) (c) (d)

Figure 5: Illustration of an hybrid rendering with (a) a naive approach and (b) our optimized smoothing method. Figure (c)
illustrates the associated weights and (d) shows our smoothing approach without sampling optimization.

5.2. Multiresolution rendering

In order to experiment this algorithm we have developed an
hybrid multi-resolution rendering system based on an octree.
Each node stores a list of splat indices while the leaves of
the tree store a list of polygon indices. In a preprocessing
step, each edge shared by two polygons held by two differ-
ent leaves are explicitly sampled. Other edges cannot gener-
ate a transition and do not require any special treatment. In
order to avoid oversampling, splats which are too close to a
such edge are removed. Because the splats generated during
this step are shared by two different leaves, they are indexed
in a separate list where each element stores the list of splat
indices shared by two different leaves. At rendering time,
the octree is traversed with per node visibility culling and
level-of-details estimation. If a leaf is under sampled, then
the polygonal representation is selected for this part instead
of the splat representation. At the end of the tree traversal,
each element of the transition list is checked: if at least one
of the leaves shared by the transition is drawn as a set of
splats, then the list of splats held by the transition are also
drawn.

6. Transparency

In this section we present a multi-pass approach to render
transparent point-based models on current GPUs in an order
independent maner. Our approach can be seen as an exten-
tion of depth-peeling techniques to deferred shaded multi-
pass splatting.

Our transparency algorithm is as follow. In a first step,
opaque objects are rendered by the three splatting passes:
visibility, attribute accumulation and deferred shading. Next,
transparent objects are drawn n times in order to get n images

which respectively correspond to the different reconstructed
layers sorted from the closest to the farthest of the viewer.
Layers are iteratively reconstructed as follow:

1. Bind the previous depth buffer as a read-only depth tex-
ture (except for the first pass).

2. Clear the destination buffers (attributes, depth).
3. Visibility splatting. An additional depth comparison with

the depth of the previous layer is performed, such that
only fragments behind the previous layer pass the test.

4. Attribute accumulation. In this pass, two additional depth
comparisons are added in the fragment shader: one with
the depth of the previous layer and one with the depth
of opaque objects such that only visible splats behind the
previous layers pass these tests.

5. Normalization and deferred shading. The result of this
pass is stored in a texture.

When all layers are reconstructed, they are combined with
the final image by their drawing with alpha-blending in the
inverse order of their construction (i.e. from the farthest to
the closest).

Now, let us discuss about the choice of the number of lay-
ers n. The evaluation of the exact number of visible layers
at each frame is a difficult problem. Moreover, performing
a lot of passes is always inefficient and requires a lot of
video memory to store the layers. Thus, we rather propose
to bound the number of reconstructed layers. For instance
three or four layers are sufficient for most of scenes. In this
case, if the view point contains more than n visible transpar-
ent layers, the color information of unreconstructed layers
will be lost, that is not satisfying (figure 6b). Hence we also
propose to accumulate every visible transparent splats be-
hind the layer n− 1 into the last layer n (figure 6c). This is
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(a) (b) (c)

Figure 6: 27 transparent point sampled spheres rendered on a common GPU with the reconstruction of (a) 6 layers at 21 fps,
(b) 3 layers at 45 fps without our blending heuristic and (c) 3 layers at 49 fps but with our blending heuristic.

realized by skipping the visibility splatting pass during the
reconstruction of the last layer, that, as a bonus, slightly re-
duces the rendering time. In order to diminish the artifacts,
we use the transparency coefficients to modulate the splat-
ting weights, such that the most opaque surfaces will have
more importance than others. Moreover, for the reconstruc-
tion of this last layer we switch back to a per-splat lighting
instead of a deferred shading strategy because blending sur-
face attributes coming from different surfaces in a such way
makes no sense. This is not a real issue since the last layer
is necessary far to the viewer and thus contains small splats
leading to a per-pixel lighting equivalent quality. In practice,
artifacts due to this approximation are seldom perceptible
because the contributions of the last layers are mainly atten-
uated by the contributions of the first layers.

7. Results
We have experimented the different algorithms presented in
this paper on an Athlon64 3500+ Linux station equipped
with a GeForce 7800 graphic card.

The main contributions of our splatting implementation
are both the improvement of the frame-rate and the quality
of anti-aliasing in the context of perspectively correct splat
rasterization. Indeed, even though our method and the one
of Botsch et al. [BHZK05] often produce the same image
quality (figure 3), our anti-aliasing filtering approach pro-
vides higher quality than the previous approximation for
parts where the splats are both in the case of minification
and magnification (figure 4). The table 1 summarizes both
the vertex (VP) and fragment program (FP) complexities and
performance of different splatting implementations. We no-
tice, that the number of FP instructions reported in this table
does not include the MOV instructions required to copy the
attribute values. The VP and FP complexities can also be
compared to the perspective accurate EWA splatting method
[ZRB∗04] where they report respectively 120 VP and 13

FP instructions for the attribute pass. Compared to our ap-
proach, the raycasting approach requires simpler vertex pro-
grams but significantly more complex fragment programs
because all the splat rasterization effort is deferred to the
fragment program stage. Since the number of rasterized frag-
ments is significantly larger than the number of splats (at
least a factor of four in the case of complete minification),
our approach is always more performant.

Our order independent transparency rendering algorithm
is illustrated figure 6 on a complex example containing a
maximum of six transparent layers. As we can see, fixing the
number of the reconstructed layers to three combined with
our blending heuristic leads to visual results which are very
close to the reference image obtained by the effective recon-
struction of six layers. Finally, in the context of hybrid rep-

Perspective
splatting

raycasting
[BHZK05]

#instr.
visibility pass 46/3 34/9

attribute pass 58/3 35/13
154k 50 (7.7) 33 (5)
460k 40 (18.4) 26 (12)
1.4M 22 (31) 13 (18.2)
2.5M 15 (37.5) 9.2 (23)
5M 6.5 (32.5) 5 (25)

Table 1: Our splatting algorithm is compared with the ray-
casting approach [BHZK05]. The top parts indicates the
number of vertex and fragment program instructions re-
quired by the two splatting passes. The bottom parts re-
ports the performances of the two implementation for the
Igea data set at various sampling resolutions and for a
1024×1024 window. The first number is the number of
frames per second, while the number under bracket indicates
the million of rendered splats per second.
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resentations, the figure 5 shows the significant improvement
in the rendering quality offered by our transition smoothing
technique. Since our technique does not really require ad-
ditional rendering operations, the performance remains the
same than without transition smoothing.

8. Conclusion

In this paper we have presented an improved splat rendering
pipeline based on a perspectively correct fast splat rasteriza-
tion procedure enhanced by an approximation of the EWA
filter. The efficiency of our technique comes from its very
fast rasterization procedure which requires a relatively sim-
ple setup. We have also shown how to deal with transparent
splat models using a GPU based implementation, without
excessive overhead. Finally, in the context of hybrid render-
ing, we have proposed a new automatic technique blending
splats and polygons at their junction, hence removing visual
discontinuities. Added to existing splat rendering techniques
such as sharp features rendering [ZRB∗04] and real-time re-
finement [GBP05], the results presented in this paper yield
to a more complete, flexible and high-quality splat rendering
pipeline. As future works it will be interresting to improve
our accurate EWA filter approximation in the case of elliptic
splats.
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