

Eurographics Symposium on Point-Based Graphics (2004)
M. Alexa, M. Gross, H. Pfister, S. Rusinkiewicz (Editors)

© The Eurographics Association 2004.

Points Reloaded: Point-Based Rendering Revisited

Miguel Sainz

†

 Renato Pajarola

*

Roberto Lario

‡

†

*

Computer Graphics Lab

‡

Dpto. Arquitectura de
Computer Science Department Computadores y Automática
University of California Irvine Universidad Complutense Madrid

Abstract

The increasing popularity of points as rendering primitives has led to a variety of different rendering algorithms,
and in particular the different implementations compare like apples to oranges. In this paper we revisit a number of
recently developed point-based rendering implementations. We briefly summarize a few proposed hierarchical
multiresolution point data structures and their advantages. Based on a common multiresolution framework we then
describe and examine different hardware accelerated point rendering algorithms. Experimental results are given
with respect to performance timing and rendering quality for the different approaches.

Categories and Subject Descriptiors (according to ACM CCS): I.3 Computer Graphics, I.3.5 Computational Geom-

etry and Object Modeling, I.3.6 Methodology and Techniques

1. Introduction

Point-based surface representation and rendering tech-
niques have recently become very popular [Gro01]. In fact,
3D points are the most simple and fundamental geome-
try-defining entities. Points as display primitives were con-
sidered early in [LW85], however, have only recently
received increased attention.

Based on their fundamental simplicity, points have moti-
vated a variety of research on topics such as shape modeling
[PKKG03], object capturing [SPSM04], simplification
[PGK02], processing [PG01, MN03], rendering (see
Section 2), and hybrid point-polygon methods [CN01,
CH02, CAZ01, DH02]. The major challenge of point-based
rendering (PBR) algorithms is to achieve a continuous
interpolation between discrete point samples that are irregu-
larly distributed on a smooth surface. Furthermore, correct
visibility must be supported as well as efficient
level-of-detail (LOD) rendering for large data sets.

The different PBR methods that have been proposed
have led to a variety of implementations that are as hard to
compare as apples and oranges. In this paper we present an
initial attempt to realistically compare different point-ren-
dering algorithms by implementing several techniques
within the same multiresolution modeling and rendering
application framework. This allows a more objective evalu-
ation of available point-rendering alternatives for quality
and expected relative speed-up with respect to each other.
Note that our experiments focus on the back-end of the
point-rendering pipeline that, given a set of points to be dis-
played, performs visibility splatting and optional blending.

However, besides the back-end rendering also the multi-
resolution model and LOD selection algorithm have a sig-
nificant influence on the overall display performance.
While the rendering back-end is easily interchangeable
between applications, the multiresolution model is often

very specific and not as exchangeable. Therefore, we limit
ourselves to explain qualitative advantages of a few general
multiresolution representations, and concentrate quantita-
tive experiments mainly on the rendering-back end.

Contributions:

In this paper we compare a variety of hard-
ware accelerated point-splatting techniques in a common
view-dependent LOD rendering framework. This allows an
objective evaluation of different exchangeable point-splat-
ting rendering back-ends. The compared methods include a
wide range of techniques from simple screen-parallel
opaque squares to smoothly blended surface-aligned ellipti-
cal disks.

Figure 1:

David head model rendered in Confetti as
smoothly blended depth-sprites at a rate of 2M points/sec
and 2 frames/sec.

2. Related Work

Since the re-discovery of points as rendering primitives in
[GD98] a stream of new PBR algorithms have been pro-
posed.

http://www.eg.org
http://diglib.eg.org

© The Eurographics Association 2004.

122 M. Sainz, R. Pajarola & R. Lario / Points Reloaded: Point-Based Rendering Revisited

Highly space-efficient multiresolution point-hierarchies
have been proposed in [RL00, BWK02] along with effec-
tive LOD-selection and rendering algorithms. Fast
high-quality rendering of smoothly blended point samples
is achieved by hardware accelerated

α

-texturing and
per-pixel normalization in [RPZ02, BK03, PSG04]. Opti-
mized anisotropic texture sampling can be realized by ell-
liptical splat primitives in object-space as proposed in
[RPZ02, PSG04]. The main hierarchical models and hard-
ware accelerated rendering techniques are summarized and
evaluated in this paper.

Recent approaches such as [BK03] or [DVS03] address
high-speed rendering of point data by exploiting hardware
acceleration and on-board video memory as geometry
cache. We compare the various methods for different model
sizes, also with and without using video memory to cache
point data on the graphics card.

The surface splatting technique introduced in
[PZvBG00, ZPvBG01] and the differential points proposed
in [KV01, KV03] offer high-quality surface rendering. The
rendering back-end of surface splatting can be accelerated
by hardware [RPZ02]. Differential points also offer fast
rendering but do not offer interactive view-dependent
LOD-rendering as of yet.

In this paper we focus on comparing the point splatting
techniques of the most generic multiresolution point render-
ing systems [RL00], [BWK02], [DVS03] and [PSG04].
These can directly be applied to any large surface objects
and work with the original input vertices of the surface.

3. Multiresolution Representation

3.1. Point Samples

The data sets considered in this paper are dense sets of sur-
face point-samples organized in a multiresolution represen-
tation. The point samples are in 3D space
and may be irregularly distributed on the object’s surface.
Note that we assume that the discrete point samples satisfy
necessary sampling criteria such as the Nyquist condition,
and fully define the surface geometry and topology.

The point data consists of attributes for spatial coordi-
nates

p

, normal orientation

n

 and surface color

c

. Further-
more, it is assumed that each point also contains
information about its spatial extent in object-space. This

size

 information, e.g. a bounding sphere radius

r

, specifies a
circular or elliptical disk centered at

p

 and perpendicular to

n

. Other attributes optionally include a normal-cone
semi-angle

θ.

For correct visibility the (elliptical) disks of
points must cover the sampled object nicely without holes
and thus overlap each other in object-space as shown in
Figure 2. Elliptical disks

e

 consists of major and minor axis
directions

e

1

 and

e

2

 and their lengths.

Figure 2:

Elliptical disks covering a smooth and curved
3D surface.

3.2. Hierarchy

Besides [GD98, PZvBG00], which use specific re-sampling
techniques to represent objects as points, most approaches
use some sort of a hierarchical space-partitioning data struc-
ture as multiresolution representation. The most often pro-
posed structures are octrees of which the region-octree with
regular subdivision has been favored in [RPZ02, BWK02,
BK03]. In [RL00] a midpoint-split kD-tree and in [Paj03,
PSG04] an adaptive point-octree are used. The latter two
offer data-adaptive hierarchies with fewer nodes than regu-
lar subdivision approaches (see also Figure 3).

Figure 3:

Example hierarchical spatial subdivision of an
adaptive point-octree.

Basically, a LOD point-hierarchy stores aggregate infor-
mation in each node about all points in that subtree such as
centroid position, normal and bounding volume informa-
tion.

An extremely memory efficient point LOD-hierarchy is
given in [RL00]. Aggressive quantization techniques and
look-up tables are used to reduce the cost to represent a
point

p

 and bounding sphere radius

r

 by only 13 bits, as
well as the normal

n

 to 14 bits. The color

c

 is quantized to
5-6-5 bit and the normal-cone semi-angle

θ

 to 2 bits. The
tree structure uses 3 bits in each node to encode the number
of children. The LOD-hierarchy is laid out in breadth-first
order in an array with each group of siblings sharing one
pointer (index) to their list of consecutive child nodes.

In [BWK02] an octree is proposed that implicitly
encodes the point coordinates

p

 as the center of a cell in the
recursive octree subdivision. A byte-code of the subdivision
provides the tree branching information at each node. The
normal

n

 and color

c

 are quantized to less than 2bytes and
1byte respectively. No bounding sphere size is used as it is
implicit in the hierarchy and a normal-cone semi-angle is
optionally maintained in non-leaf nodes only. During hier-
archy traversal, due to the lack of explicit parent child links,
back-tracking at a node is only supported by actively skip-
ping its entire subtree without performing any operations.

Such compact encodings of the LOD hierarchy and point
attributes lead to storage costs of only a few bytes per point
which in turn allows the representation of several 100 mil-
lion points within the 4GB virtual memory addressing limit
of 32bit systems. This is a significant benefit over methods
with more complex node formats.

The LOD-hierarchy in [Paj03, PSG04] does not apply
any quantization to point attributes

p

,

n

,

r

,

θ

 or

c

. In fact, it
additionally keeps optional information do define oriented
elliptical disks instead of circular disks. The hierarchy can
easily be linearized in breadth-first order with each node
storing the index to the first child and branching factor. This
allows a simple implementation for general use and sup-
ports efficient back-tracking in recursive traversal algo-
rithms. However, this representation cannot compete in
terms of memory cost with the methods outlined above. In
this paper, this simple octree structure serves as the com-

p1 … pn, , R
3

∈

p
n

122

M. Sainz, R. Pajarola & R. Lario / Points Reloaded: Point-Based Rendering Revisited 123

© The Eurographics Association 2004.

mon LOD framework to compare the performance of the
different point-rendering algorithms described in Section 5.

3.3. Sequential Point Trees

In [DVS03] a nested bounding sphere hierarchy (i.e.
[RL00]) is sequentialized in such a way that no more
explicit nor implicit parent-child relation is maintained. The
LOD-decision if a node

h

 or its parent

g

 is drawn is entirely
delegated to the individual nodes. The so de-referenced
nodes are then linearly sorted with respect to decreasing
LOD importance. How this is used in the rendering stages is
described in more detail in Section 4.3.

4. LOD Selection

4.1. View-dependent LOD Metric

The basic error metric of most view-dependent LOD meth-
ods is the perspective projection of an object-space devia-
tion to screen-space. In PBR, the screen-space projection of
the spatial extent of a point sample is usually considered.
Given a point’s spatial extent area

A

 in object-space and its
distance

d

 to the viewpoint, a screen-space error metric can
be given as , which is the perspective pro-
jected point sample extent, corrected by a factor

f

 for the
surface normal orientation if applicable.

For bounding-sphere hierarchies [RL00, BWK02,
DVS03] the extent is basically for a given
bounding-sphere radius

r

. Note that in [DVS03] this area
measure is further refined for nodes by approximating the
actual occupancy of points in the subtree. For object-space
elliptical disks as in [Paj03, PSG04] the extent is computed
as with

r

 being the major ellipse axis length
and

κ

 the axis’ aspect ratio.
For a viewpoint

v

 and a point

p

 with normal

n

, the factor

f

 can be computed as

. For non-leaf
nodes in the LOD hierarchy, this should be corrected for the
bounding normal-cone semi-angle

θ

(see [Paj03, PSG04]).
As outlined in Section 5 we compare three different

point-rendering modes: (1) OpenGL point, (2) depth-sprite
or (3) triangle based splatting primitives. Correspondingly
we adjust the view-dependent error metric as follows:

Points:

Renders a screen-aligned disk for each point. Thus
the extent is computed as the disk size using the
bounding sphere radius

r

. The factor

f

 is set to 1.0 as no ori-
entation with respect to the surface normal is considered.

Sprites:

Renders a surface-normal oriented disk for each
point. Hence the extent is computed as with the
bounding sphere defining the disk radius

r

. It also uses the
orientation factor

,

the cosine of the angle

γ

between the normal

n

 and the view-direction |

v

 –

p

| minus
the normal-cone semi-angle

θ

 (and clamped appropriately).

Triangles:

Renders a tangential elliptical disk for each
point. Thus it computes the extent as and
sets the orientation factor to as for sprites.

Therefore, given a screen-space error tolerance

τ

 and
viewpoint

v

, a point (

p

,

n

,

r

,

θ

,

κ

) can be rendered if
, and must be split into smaller point

samples otherwise, if not a leaf node.
Note that the bounding sphere and normal-cone

attributes allow for effective visibility culling in a LOD-
selection algorithm. Given the normals

N

1..4

 of a four-sided
view-frustum and the viewpoint

v

, a point sample is outside

the view-frustum if for any of the normals

N

1..4

. A point is considered back-face culled if the angle
between (

v

 –

p

) and normal

n

, minus

θ

, is larger than 90˚.

4.2. Hierarchical LOD

In hierarchical LOD and rendering systems, the basic
view-dependent LOD-selection algorithm consists of a
depth- or breadth-first traversal of the multiresolution hier-
archy as illustrated in Figure 4. The basic traversal not only
incorporates the view-dependent LOD-metric as outlined in
Section 4.1 to decide wether a node is rendered or further
refined, but also back-tracking based on view-frustum and
back-face culling.

Figure 4:

Example LOD-hierarchy organization and
traversal orders.

In [RL00] a top-down traversal based on an error thresh-
old

τ

 is performed using the explicit tree organization of its
bounding sphere hierarchy. A major implementation detail
is that from the compressed node representation (see
Section 3.2) the rendering attributes are decompressed
on-the-fly for rendering.

Alternatively a depth- or breadth-first traversal of the
LOD hierarchy is used in [BWK02]. Note that the traversal
in this approach incorporates a fast piece-wise incremental
computation of the geometric transformation and projection
of points (on the main CPU). This is particularly useful in a
software-rendering system as in [BWK02]. However, since
GPU performance is increasingly faster than CPU, this
approach may be slower on the CPU than leaving the trans-
formation up to the GPU. Due to the lack of an explicit
octree structure, back-tracking due to culling is only sup-
ported by actively skipping all nodes in a subtree when tra-
versing the linearized octree. This limits culling efficiency
as the data has to be scanned at least up to the level and
index of the highest-resolution point selected for rendering.

The explicit octree in [Paj03, PSG04] allows depth- and
breadth-first traversal algorithms and effective back-track-
ing, e.g. to support culling. A level-by-level linearization,
and embedding of the hierarchy into an array, improves
memory access coherency for breadth-first traversal order
due to its sequential access to nodes, see also Figure 4.

4.3. Sequential LOD

From the projective error metric , with

d

 being
the distance between point

p

 and viewpoint

v

, and

A

 being
the spatial extent of the point sample in object space, one
can define the minimal distance

rmin

h

 at which node

h

 will
be split for a given error tolerance

ε

 by .
Consequently a maximal distance

rmax

h

 is defined at which
the node will be merged based on the

rmin

g

 of its parent

g

.

ε f A⋅ d2⁄=

A π r2⋅=

A π r κr⋅ ⋅=

f n v p–() v p–⁄⋅=

A π r2⋅=

A π r2⋅=

f γ θ–()cos=

A π r κr⋅ ⋅=
f γ θ–()cos=

f A v p– 2–⋅ ⋅ τ≤

v p–() Nj• r>

level 0

level 1

level 2

level 3

level 4

level 5

leaf nodes

inner nodes

depth-first

breadth-first

ε A d2⁄=

rminh Ah ε⁄=

123

© The Eurographics Association 2004.

M. Sainz, R. Pajarola & R. Lario / Points Reloaded: Point-Based Rendering Revisited

Compensated for the distance to the parent node, we get a
merge distance of . This con-
cept has been introduced in [DVS03] to de-couple individ-
ual nodes in the LOD-hierarchy such that each one can
individually be selected and rendered based on its merge
and split distances rmaxh and rminh, that may occasionally
render nodes for which it was determined already to display the
parent node, see also [DVS03]. Note that in the preprocess ε
can be set to 1.0 to construct the sequential point trees. To
determine all points to be rendered they are ordered accord-
ing to rmax. For a given viewpoint v and error threshold τ,
the LOD-selection proceeds as follows.

Based on the bounding sphere of point 0, with radius r0
and center p0, the limiting merge and split distances

 and
are computed. Within the rmax-ordered points, only the
conservative range [lo, hi] of points must be considered for
rendering as shown in Figure 5; with lo and hi being the
smallest, respectively largest index for which

 and . The entire range of
points from plo to phi is then processed by the graphics hard-
ware. Using a vertex-program the actual per-point LOD-test

 is performed
and points failing this test are ignored.

Figure 5: Ordering of points with respect to their rmax
values and selection of LOD-range.

Note that this sequential LOD-range selection does not
support any visibility culling on the CPU before submitting
the entire conservative range of points to the GPU. Further-
more, in [DVS03] the entire LOD point-hierarchy is stored
in on-board video memory. For models exceeding the avail-
able video memory capacity severe limitations may incur as
the highly conservative range of points plo to phi must then
be submitted over the AGP bus prior to being processed by
the GPU.

5. Rendering

In this section we present the most common and efficient
techniques to successfully implement a point-splatting pipe-
line that exploits hardware acceleration. Although there are
many different approaches in the literature, we have consid-
ered the most significant but still sufficiently different ones
in our comparison. We briefly outline the different tech-
niques below and discuss the most significant components
to be considered when implementing a real-time point-ren-
derer. The qualitative and quantitative performance differ-
ences of using various point-primitives are more accurately
given in the experimental results Section 6.

5.1. Point Primitives
The first and probably most important decision, with a
direct impact on the display quality and performance, corre-
sponds to the choice of primitive to render a point sample.
Points: Several approaches (i.e. [RL00, DVS03, BWK02])

have proposed to use simple OpenGL point primitives,
which have the advantage of a low cost per primitive (3D
position, color and normal if lighting is required). The prim-
itive is drawn on screen as a fixed sized square, or rounded
point with GL_POINT_SMOOTH enabled. Moreover, with
the use of vertex and fragment programs and recent exten-
sions, the size of points can be calculated on a per-primitive
basis to be the actual screen-projected size of a point sam-
ple, improving the visual quality by avoiding conservatively
large points and holes between rendered points.
Sprites: Another choice for point primitives consists of
using NV_SPRITES as promoted in [BK03] which can be
considered textured points. This primitive combines the
simplicity of points for geometry submission to the graphics
card with the flexibility of texture mapping with blending
kernels to support smooth interpolation of discrete points
and hence visually higher-quality renderings. With
NV_SPRITES a single coordinate is specified per point and
the graphics card rasterization unit generates a quadrilateral
with texture coordinates. As presented in [BK03], with
some work these sprites can be modified to represent sur-
face-normal oriented disks, rendered with proper per-pixel
depth values using graphics card programmability. More-
over, smooth blending can be achieved by computing a
per-pixel α-value in the fragment program.
Triangles: The third hardware supported class of primitives
are triangles and polygons. In [RPZ02] and [PSG04] polyg-
onal faces are used with an α-texture which provides a disk
or elliptical shape as desired (using α-tests). In fact, the
α-texture can describe any desired blending kernel mapped
onto the elliptical point splat primitive. The system pre-
sented in [RL00] also allows the use of oriented solid
polygonal disks which tend to run significantly slower as
they are made of many vertices. The use of more complex
primitives than simple points has the advantage that α-tex-
ture mapping and blending kernels can be used to obtain
smoothly blended points and more realistic rendered sur-
faces.

In summary, each point can be represented and rendered
in different ways. However, considering float values for the
position and normal, bytes for the color channels and extra
parameters such as the point size (float), texture coordinates
for the blending kernels, etc., we are dealing with point
structures from 28 bytes to 40 bytes for the different
approaches. Of course, quantization can be applied such as
in [RL00] at the expense of on-the-fly decoding.

5.2. Rendering Passes
Depending on the type of point-primitives chosen for dis-
play, different rendering strategies are necessary. The key
factor for this is if blending kernels are used on the points.
If blending is performed then it is necessary to ensure that
only the front-facing points closest to the viewpoint are
combined. If there exist front-facing points farther away,
occluded from the viewpoint, it must be assured that these
are not blended with the closest visible points.

This can be achieved by carefully selecting just the clos-
est overlapping points. Commonly a two-pass ε-z-buffer
rendering approach [RPZ02, PSG03, BK03, PSG04] works
efficiently: the first pass initializes the z-buffer to generate a
depth mask without rendering to the color buffer, and the
second pass only performs z-buffer tests for each pixel frag-

rmaxh rming ph pg–+=

dmin τ p0 v– r0+()⋅= dmax τ p0 v– r0–()⋅=

rminlo dmin≤ rmaxlo dmax≥

rmini τ≤ pi v– rmaxi∧⋅ τ pi v–⋅≥

plo ...

pi

rm
ax

...
...

rmaxi

rmini

dmax
dmin

phi

...

124

M. Sainz, R. Pajarola & R. Lario / Points Reloaded: Point-Based Rendering Revisited

© The Eurographics Association 2004.

ment against some ε offset of the z value from the first pass.
Hence when rendering opaque point primitives with no

blending, only a single pass over the data is performed, but
when polygons or sprites are used with smooth blending a
two-pass approach is required. Although the first pass is
less expensive than the second one, it still requires the
geometry to be processed twice by the graphics hardware.

5.3. Normalization
The normalization problem appears mainly for object-based
blended splatting techniques where it is difficult to guaran-
tee that overlapping blending kernel weights, once pro-
jected to image space, partition unity accurately on a
per-pixel basis. Conservatively low blending kernels avoid
overflow of blending weights in the α-channel and achieve
correctly (proportionally) blended, but under-weighted col-
ors in an intermediate image.

A first attempt to compensate this color defect is to
download the final frame buffer to the CPU and normalize
on a per-pixel basis the weighted color using the accumu-
lated blending weights stored in the α-channel. Although
this may seem to be a low-end approach, it performs fairly
well and the cost of the normalization is significantly less
than any of the other steps in the point-rendering pipeline.

Nevertheless, this can be solved more efficiently using
the graphics hardware. In [PSM03, PSM04] a similar prob-
lem was addressed using the NVIDIA register combiners to
perform the normalization. This has since been replaced by
more efficient fragment programming techniques in
[PSG03, PSG04] and independently in [BK03, DVS03].

5.4. Geometry Caching
The next set of optimizations available to achieve high
frame rates deals with how to compact the data for an opti-
mized submission to the graphics card. The common trend
is to assemble an array of points, and use it in indexed mode
by submitting indices of the selected points. This presents a
large overall increase in performance as buffer traffic is
reduced compared to submission of individual vertices.

A further optimization is to store the original geometry,
or the necessary parts of it, in video memory (using
NV_array_range or ARB_vertex_buffer extensions) and
just submit the array of indices over the bus each frame.
This approach, followed by [RPZ02, BK03, DVS03],
increases the performance significantly at the expense of
video memory. Furthermore, there are two limitations on
current graphics card, which are: (1) addressable cached
elements, i.e. in NVIDIA cards, is limited to a million per
list; and (2) there is a limit of allocatable memory – 32MB
on our test system – which depending on the point storage
size can hold less than one million points. Thus in prior
approaches the entire model could not exceed a complexity
limited by these constraints.

We have successfully overcome this size limitation by
adding a cached geometry manager (CGM) [LPT04] that
updates the content of graphics card video memory dynami-
cally for each frame with the currently visible points. This
exploits coherence between consecutive frames as the set of
visible points changes minimally. For fly-bys around
point-objects this turns out to be very efficient and we have
been able to render models larger than double or more the
amount of available video memory. The CGM follows a
least-recently-used (LRU) strategy to replace cached data.

Once the LOD traversal has compiled a list of visible
points, the CGM updates the cache contents to accommo-
date for any new points and modifies the index list to the
proper indices. Finally these indices are sent to the graphics
card as a regular indexed array.

6. Experiments

6.1. LOD-Framework and Environment
To perform comparative and objective experiments, the dif-
ferent point rendering techniques outlined in Section 5 have
all been integrated into a single common view-dependent
LOD rendering framework. In particular, our point render-
ing system Confetti [PSG04] has been extended to incorpo-
rate the following features:

• Rendering primitives: resizeable GL points, orient-
able NV_SPRITES and triangles with smooth
α-texture blending.

• One-pass rendering algorithm for opaque resizeable
points, and a two-pass rendering for blended primi-
tives.

• A fragment shader based per-pixel normalization
algorithm for blended primitives.

• All geometry is using OpenGL arrays and can use
full caching in video memory, partial caching using
an LRU cache manager or non-cached objects.

• Use of sequential point tree multiresolution repre-
sentation for rendering.

All experiments reported in this section were performed
on a Dell Pentium4 PC with 2.4GHz CPU, 1GB of main
memory and a NVIDIA GeForce 5900 GPU. We have
exhaustively tested 4 models using the Confetti LOD struc-
ture with different rendering pipelines. The original models
are: David 2mm (4,129,534 points), David head (2,000,646
points), Female (302,948 points) and Balljoint (137,062
points).

6.2. Meaningful Experiments
We observed that in many previous publications it was not
fully clear what the actual timing measures included in the
reported tests. For example it makes a huge difference to
compute a point-rendering rate based on timed function
calls and full object size, or based on observed frame rate
and actual number of visible and drawn points. Also it is
not adequate to measure the pure rendering performance by
simply timing the functions that issue any OpenGL calls
each frame as these functions may return before the actual
rendering has completed on the graphics card. Moreover, no
information is usually given on the type and duration of the
animation to perform the tests. In the experiments reported
in this paper we tried to be as specific as possible about
actually observed real-world numbers which could be
expected in other applications using similar techniques.

In order to have statistically meaningful tests, each test
with different parameters has been performed as a rotation
around the object for 1000 frames and with a rotation step
of 1 degree, and averaged over time. The viewer is located
so the object occupies around 50% of the viewport area for
the 512x512 window resolution (see Figure 9). We have
performed the tests with two different resolutions to investi-
gate the fill-rate bottleneck of the different configurations.
Additionally, we have tested 2 different LOD thresholds.

125

© The Eurographics Association 2004.

M. Sainz, R. Pajarola & R. Lario / Points Reloaded: Point-Based Rendering Revisited

6.3. Results
In Table 1 we report the various results we measured in our
experiments. As the CPU is performing these tasks exclu-
sively, the LOD selection and cache manager times are
obtained by timing the appropriate function calls. The ren-
der time, however, was measured as the difference
trender = tframe – (tLOD + tcache) between the real
frame-to-frame time (from one glutSwapBuffers to another
glutSwapBuffers function call) and the sum of LOD and
cache times. While slightly conservative, as it includes a
few minor setup functions, it is much more realistic than
simply timing the functions that perform the OpenGL calls
(i.e. issuing glDrawElements calls costs nothing but surely takes
some time on the graphics card to complete the rendering). The
frame-per-second FPS was obtained by measuring the real
time difference between two separate frames (i.e. from
glutSwapBuffers to glutSwapBuffers).

The avg splats reports the average number of actually
selected, visible and drawn points per frame (i.e. not includ-
ing any culled points). The #points/sec (in millions) (PPS)
reports the pure point rendering rate as avg splats divided
by render time (thus measuring the splat primitive perfor-
mance by not including the Confetti system’s LOD selec-
tion cost), as well as the overall splatting performance in
parenthesis (Confetti’s overall system performance).

All measurements are divided into running the system
without geometry cache (NC) and caching enabled (C).

The different models were tested using three different
multiresolution representations and several point splatting
primitives. We used a simple (linearized) octree hierarchy
(Hier) and sequential point trees (Seq) within Confetti, as
well as the genuine QSplat system [RL00]. The different
splatting primitives encompassed OpenGL points (P),
depth-sprites (S), oriented elliptical disks (E) and oriented
circular polygonal disks (D).

From Table 1 we can observe a number of expected but
also other interesting results. Practically, the most important
measure is the achievable frame rate. We can observe that
(1) points as anticipated are significantly faster than sprites
and ellipses, (2) blended depth-sprites are slightly slower in
most cases than the α-textured triangles (ellipses), (3) the
cache only improves rendering when the entire model fits
into video memory, and (4) in most cases the per-point
LOD selection and rendering wins over the sequential point
trees (which are only faster for the David head model).

With respect to (3) we have to note here that the test
machine has an extremely fast graphics card which makes
any complex and dynamic cache use infeasible. However,
on medium or slow graphics cards we can expect that clever
dynamic cache usage may indeed cause an overall improve-
ment of the rendering speed.

With respect to (4) we observe that the LOD selection of
sequential point trees is virtually zero, however, a signifi-
cantly larger number of points is submitted to the GPU
which in turn reduces the observed frame rate considerably.

Model LOD rep Pri

0.0% threshold 0.0001% threshold
LOD
(ms)

Cache
(ms)

Render
time (ms)

FPS
Avg

splats
#P * 1e6 / SEC (PPS)

LOD
(ms)

Cache
(ms)

Render
time (ms)

FPS
Avg

Splats
#P * 1e6 / SEC (PPS)

NC C NC C NC C NC C NC C NC C

balljoint

Hier
P 6 0 3 0.5 105 151 64490 21 (6.8) 129 (9.8) 5 0 2 0.4 137 184 33759 17 (4.6) 84 (6.2)
S 6 0 45 45 19 19 64490 1.4 (1.3) 1.4(1.3) 5 0 37 37 23.9 23.9 33759 0.9 (0.8) 0.9 (0.8)
E 13 0 36 25 20.2 25.8 64477 1.8 (1.3) 2.6(1.7) 11 0 33 29 22.4 24.9 33718 1.0 (0.7) 1.2 (0.8)

Seq
P 0 0 16 16 63.1 63.4 192031 12 (12) 12 (12) 0 0 15 15 65.1 64.8 188034 12 (12) 12 (12)
S 0 0 63 63 15.7 15.7 192031 3.0 (3.0) 3.0 (3.0) 0 0 60 60 16.5 16.5 188034 3.1 (3.1) 3.1 (3.1)

QSplat
P 14 78.1 73718 (5.4)
D 24 40.6 74612 (3.1)

female

Hier
P 16 0 8 1 42.3 63.1 159959 20 (6.8) 160(10.1) 11 0 4 0.6 64.3 83.2 65173 16 (4.2) 109 (5.4)
S 15 0 78 74 10.7 11.2 159959 2.0(1.7) 2.1 (1.8) 11 0 48 48 16.7 16.6 65173 1.4 (1.1) 1.4 (1.1)
E 33 0 66 33 10.1 8.5 159890 2.4 (1.6) 4.8 (1.4) 25 0 57 35 12.1 11.2 65161 1.1 (0.8) 1.9 (1.0)

Seq
P 0 0 34 34 28.9 29.1 424210 12 (12) 12 (12) 0 0 32 32 30.8 30.8 399546 12 (12) 12 (12)
S 0 0 123 122 8.2 8.2 424210 3.4 (3.5) 3.4 (3.5) 0 0 104 104 9.6 9.6 399546 3.8 (3.8) 3.8 (3.8)

QSplat
P 27 36.5 171114 (6.2)
D 59 16.9 189541 (3.2)

david head

Hier
P 95 135 50 36 6.8 3.7 841696 16 (5.7) 23 (3.2) 17 12 4 0.6 46.6 33.5 63001 16 (2.9) 105 (2.1)
S 95 155 370 317 2.1 1.7 841696 2.3 (1.8) 2.6 (1.5) 17 12 35 18 18.9 21.1 63001 1.8 (1.2) 3.5 (1.3)
E 122 - 139 - 3.8 - 275192 6.0 (1.0) - 42 - 72 - 8.7 - 62996 0.8 (0.5) -

Seq
P 0 - 119 - 8.3 - 1457280 12 (12) - 0 - 39 - 25.4 - 485930 12 (12) -
S 0 - 259 - 3.8 - 1457280 5.6 (5.6) - 0 - 106 - 9.4 - 485930 4.6 (4.6) -

QSplat
P 220 4.5 1092577 (4.9)
D 375 2.6 1068218 (2.8)

david 2mm

Hier
P 98 58 27 14 7.9 5.8 476618 18 (3.8) 34 (2.8) 7 5 2 0.5 112 82.2 26407 13 (2.9) 52 (2.2)
S 98 80 205 153 3.3 3.0 476618 2.3 (1.6) 3.1 (1.4) 7 5 13 8 49.9 49.8 26407 2.0 (1.3) 3.3 (1.3)
E 151 - 148 - 3.3 - 275516 1.7 (0.9) - 19 - 33 - 19.3 - 26408 0.8 (0.5) -

Seq
P 0 - 463 - 2.1 - 5757742 12 (12) - 0 - 10 - 98.6 - 122826 12 (12) -
S 0 - 1200 - 0.8 - 5757742 4.8 (4.7) - 0 - 29 - 34.5 - 122826 4.2 (4.2) -

QSplat
P 73 13.7 585716 (8.0)
D 171 5.8 571793 (3.3)

Table 1: Averaged timing experiments on LOD selection, dynamic caching and rendering (in seconds); observed frames per
second; average number of points rendered each frame; and points rendered per second (in millions); with (C) and without (NC)
caching vertices in video memory; for a 0.0% and 0.0001% viewport are screen-space error tolerance. Models are represented as
octree hierarchy, sequential point trees or QSplat format; and rendered as OpenGL points (P), depth-sprites (S), oriented ellipses
(E) or oriented disks (D).

126

M. Sainz, R. Pajarola & R. Lario / Points Reloaded: Point-Based Rendering Revisited

© The Eurographics Association 2004.

We can also see that the pure OpenGL points/sec render-
ing rate is faster for the per-point LOD selection and render-
ing algorithms than for the sequential point trees. This
makes sense if one considers that the sequential point trees
perform a more complex vertex program on each processed
point. Using depth-sprites, the result turns back in favor of
the sequential point trees for the rendering rate (but not for
the observable frame rate at low error tolerance).

Another observation is that α-textured triangles repre-
senting elliptical disks combined with per-point LOD selec-
tion and rendering are competitive in raw point rendering
speed with sequential point tree depth-sprites, and even
superior in the overall frame rate at low error tolerance.

In Figures 6 and 7 we can see the different rendering
quality achievable in Confetti with resizeable points or
blended depth-sprites and triangles. In this test, the α-tex-
tured triangles suffer from a quantization effect of very low
α-blending weights which are summed together and then
normalized, which in the end causes the observed artifacts.
Figure 8 shows the different rendering quality offered by
QSplat by points or oriented disks.

7. Conclusion

The contributions of this paper lie in an overview and com-
parison of the most recent point-based multiresolution hier-
archies and view-dependent LOD selection algorithms, and
exhaustive experiments and realistic side-by-side evalua-
tion of different hardware accelerated point-rendering tech-
niques.

It shows, within one single common application frame-
work, what the different implementations can offer in terms
of rendering quality and performance. This allows a pro-
spective customer of point-based rendering technology to
make informed decisions on what algorithms to consider for
the particular point-rendering task at hand.

A first conclusion we would like to draw here is that the
observable frame rate (FPS) is the ultimate performance
measure and not any isolated points-per-second (PPS) ren-
dering rate. For example, hierarchical point rendering
achieves a mind boggling 160M pps rendering rate for
female. However, normalized for the observable frame rate
this reduces actually to a realistic 10M pps throughput. Also
notice that sequential point trees exhibit a whopping 12M
PPS throughput, winning over the 10M of hierarchical LOD
selection. However, the frame rate of 63 FPS is double for
hierarchical compared to the 29 FPS of sequential points.

While the pure PPS rate is generally high for sequential
point trees they only work efficiently in FPS if the object(s)
fits in cache and are viewed at a far distance (when many
nodes are cut-off). This is due to the complex GPU vertex
programs, overly conservative number of points processed
and no visibility culling.

Another conclusion is that simple opaque points are
indeed very fast, and they also offer good rendering quality
for most interactive display applications.

Caching on the other hand, has to be improved for the
dynamic case when the object data does not fully fit in
video memory.

8. Acknowledgements

We would like to thank the Stanford 3D Scanning Reposi-
tory and Digital Michelangelo projects as well as Cyber-
ware for freely providing geometric models to the research
community.

9. References

[BK03] Mario Botsch and Leif Kobbelt. High-quality point-based
rendering on modern GPUs. In Proceedings Pacific Graphics
2003, pages 335–343. IEEE, Computer Society Press, 2003.

[BWK02] Mario Botsch, Andreas Wiratanaya, and Leif Kobbelt.
Efficient high quality rendering of point sampled geometry. In
Proceedings Eurographics Workshop on Rendering, pages
53–64, 2002.

[CAZ01] Jonathan D. Cohen, Daniel G. Aliaga, and Weiqiang
Zhang. Hybrid simplification: Combining multi-resolution
polygon and point rendering. In Proceedings IEEE Visualiza-
tion 2001, pages 37–44, 2001.

[CH02] Liviu Coconu and Hans-Christian Hege. Hardware-ori-
ented point-based rendering of complex scenes. In Proceed-
ings Eurographics Workshop on Rendering, pages 43–52,
2002.

[CN01] Baoquan Chen and Minh Xuan Nguyen. POP: A hybrid
point and polygon rendering system for large data. In Proceed-
ings IEEE Visualization 2001, pages 45–52, 2001.

[DH02] Tamal K. Dey and James Hudson. PMR: Point to mesh
rendering, a feature-based approach. In Proceedings IEEE
Visualization 2002, pages 155–162. Computer Society Press,
2002.

[DVS03] Carsten Dachsbacher, Christian Vogelgsang, and Marc
Stamminger. Sequential point trees. In Proceedings ACM SIG-
GRAPH 03, pages 657–662. ACM Press, 2003.

[GD98] J.P. Grossman and William J. Dally. Point sample render-
ing. In Proceedings Eurographics Rendering Workshop 98,
pages 181–192. Eurographics, 1998.

[Gro01] Markus H. Gross. Are points the better graphics primi-
tives? Computer Graphics Forum 20(3), 2001. Plenary Talk
Eurographics 2001.

[KV01] Aravind Kalaiah and Amitabh Varshney. Differential
point rendering. In Proceedings Rendering Techniques,
pages –. Springer-Verlag, 2001.

[KV03] Aravind Kalaiah and Amitabh Varshney. Modeling and
rendering points with local geometry. IEEE Transactions on
Visualization and Computer Graphics, 9(1):30–42, Janu-
ary-March 2003.

[LPT04] Roberto Lario, Renato Pajarola, and Francisco Tirado.
Cached geometry manager for view-dependent lod rendering.
Technical Report UCI-ICS-04-07, Department of Computer
Science, University of California Irvine, 2004.

[LW85] Marc Levoy and Turner Whitted. The use of points as dis-
play primitives. Technical Report TR 85-022, Department of
Computer Science, University of North Carolina at Chapel
Hill, 1985.

[MN03] Niloy J. Mitra and An Nguyen. Estimating surface nor-
mals in noisy point cloud data. In Symposium on Computa-
tional Geometry, pages 322–328. ACM, 2003.

[Paj03] Renato Pajarola. Efficient level-of-details for point based
rendering. In Proceedings IASTED Invernational Conference
on Computer Graphics and Imaging (CGIM 2003), 2003.

[PG01] Mark Pauly and Markus Gross. Spectral processing of
point-sampled geometry. In Proceedings ACM SIGGRAPH
2001, pages 379–386. ACM Press, 2001.

[PGK02] Mark Pauly, Markus Gross, and Leif P. Kobbelt. Effi-
cient simplification of point-sampled surfaces. In Proceedings

127

© The Eurographics Association 2004.

128 M. Sainz, R. Pajarola & R. Lario / Points Reloaded: Point-Based Rendering Revisited

IEEE Visualization 2002, pages 163–170. Computer Society
Press, 2002.

[PKKG03] Mark Pauly, Richard Keiser, Leif Kobbelt, and
Markus Gross. Shape modeling with point-sampled geometry.
In Proceedings ACM SIGGRAPH 2003, pages 641–650.
ACM Press, 2003.

[PSG03] Renato Pajarola, Miguel Sainz, and Patrick Guidotti.
Object-space point blending and splatting. In ACM SIG-
GRAPH Sketches & Applications Catalogue, 2003.

[PSG04] Renato Pajarola, Miguel Sainz, and Patrick Guidotti.
Confetti: Object-space point blending and splatting. IEEE
Transactions on Visualization and Computer Graphics,
pages –, 2004.

[PSM03] Renato Pajarola, Miguel Sainz, and Yu Meng.
Depth-mesh objects: Fast depth-image meshing and warping.
Technical Report UCI-ICS-03-02, The School of Information
and Computer Science, University of California Irvine, 2003.

[PSM04] Renato Pajarola, Miguel Sainz, and Yu Meng. DMesh:
Fast depth-image meshing and warping. International Journal
of Image and Graphics (IJIG), pages –, 2004.

[PZvBG00] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar,
and Markus Gross. Surfels: Surface elements as rendering
primitives. In Proceedings SIGGRAPH 2000, pages 335–342.
ACM SIGGRAPH, 2000.

[RL00] Szymon Rusinkiewicz and Marc Levoy. Qsplat: A multi-
resolution point rendering system for large meshes. In Pro-
ceedings SIGGRAPH 2000, pages 343–352. ACM
SIGGRAPH, 2000.

[RPZ02] Liu Ren, Hanspeter Pfister, and Matthias Zwicker.
Object space EWA surface splatting: A hardware accelerated
approach to high quality point rendering. In Proceedings
EUROGRAPHICS 2002, pages –, 2002. also in Computer
Graphics Forum 21(3).

[SPSM04] Miguel Sainz, Renato Pajarola, Antonio Susin, and
Albert Mercade. SPOC: Simple point-based object capturing.
IEEE Computer Graphics & Applications, pages –,
July-August 2004.

[ZPvBG01] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar,
and Markus Gross. Surface splatting. In Proceedings SIG-
GRAPH 2001, pages 371–378. ACM SIGGRAPH, 2001.

Figure 6: Comparison of rendering quality in Confetti using resizeable OpenGL points, blended depth-sprites and α-textured
triangles (left to right).

Figure 7: Demonstration of antialiasing properties using resizeable OpenGL points, blended depth-sprites and α-textured
triangles (left to right).

Figure 8: Comparison of rendering quality in QSplat using OpenGL points and
oriented disks (left to right). Figure 9: Viewport configuration of

experimental tests.

128

