
Eurographics Symposium on Geometry Processing (2007)
Alexander Belyaev, Michael Garland (Editors)

Multilevel Streaming for Out-of-Core Surface Reconstruction

Matthew Bolitho1, Michael Kazhdan1, Randal Burns1 and Hugues Hoppe2

1Johns Hopkins University, Baltimore MD, USA
2Microsoft Research, Redmond WA, USA

Abstract

Reconstruction of surfaces from huge collections of scanned points often requires out-of-core techniques, and most
such techniques involve local computations that are not resilient to data errors. We show that a Poisson-based
reconstruction scheme, which considers all points in a global analysis, can be performed efficiently in limited
memory using a streaming framework. Specifically, we introduce a multilevel streaming representation, which
enables efficient traversal of a sparse octree by concurrently advancing through multiple streams, one per octree
level. Remarkably, for our reconstruction application, a sufficiently accurate solution to the global linear system
is obtained using a single iteration of cascadic multigrid, which can be evaluated within a single multi-stream
pass. We demonstrate scalable performance on several large datasets.

1. Introduction

We address the robust reconstruction of surfaces from large
noisy oriented point sets. An important application is 3D
scanning, in which data are acquired at sub-millimeter res-
olution over large-scale models, potentially resulting in bil-
lions of points [LPC∗00]. The resulting complexity often ex-
ceeds the available computer memory, thus motivating an
out-of-core reconstruction algorithm. Existing approaches
generally partition the domain into smaller blocks that can
be solved locally. However, such partitioning presents sev-
eral complications. Ideally, surface complexity should adapt
to spatially varying point densities, and this is difficult to
achieve consistently across block boundaries. Most impor-
tantly, the presence of data noise and misalignment makes it
difficult to robustly reconstruct a surface by only considering
small localized neighborhoods.

Recent work by Kazhdan et al [Kaz05, KBH06] demon-
strates that surface reconstruction from oriented points can
be made more resilient to data errors by casting the problem
as a global Poisson system (Section3). Intuitively, the idea
is to interpret the oriented points as samples of the gradient
of the model’s indicator functionχ (defined as 1 at points
inside the model, and 0 at points outside). Thus the desired
indicator function is the one whose Laplacian equals the di-
vergence of a vector field~V constructed from the oriented
points:∆χ = ∇ ·~V. By representingχ using bases defined

Figure 1: Example of curve reconstruction as a sequence of
three multilevel streaming passes over an adaptive quadtree.

over an adaptive octree, the Poisson equation is discretized
into a sparse linear systemLx= b whose size is proportional
to the complexity of the reconstructed surface. Then, the de-
sired model is an isosurface of the resulting indicator field.

The fact that Poisson reconstruction has global support
would seem to preclude an easy out-of-core solution. Indeed,
not only is the matrixL too large to fit in memory, even the
vectorsb andx are too large. Our contribution is to show that
the reconstruction process can be implemented efficiently as
a sequence ofstreamingoperations over out-of-core data.
These operations include the creation of the linear system, its
solution, and the final isosurface extraction. The 2D example
in Figure1 helps to illustrate this streaming process.

In general, a streaming approach is advantageous because
data is accessed sequentially from disk, and moreover it is

c© The Eurographics Association 2007.

http://www.eg.org
http://diglib.eg.org

M. Bolitho, M. Kazhdan, R. Burns & H. Hoppe / Out-of-Core Surface Reconstruction

only loaded once. Such sequential access is typically more
efficient because it allows for data prefetching. In computer
graphics, the concept of streaming computation has been ap-
plied to many data types including triangle meshes, point
sets, and tetrahedral meshes, as reviewed in Section2.

A unique aspect of our problem is the requirement for
an adaptive multiresolution structure, namely an octree,
because a solution over a uniform 3D grid is not scal-
able [Kaz05]. Interestingly, the operations performed on the
octree have different types of inter-level data dependencies,
and consequently no single linear ordering of the octree
nodes is adequate. To overcome these dependencies, we in-
troduce amultilevel streamingrepresentation, in which each
resolution level is stored as a separate stream. Thus, a pro-
cessing pass sweeps over the octree by concurrently advanc-
ing through the multiple streams, of course iterating at a
faster rate through the finer nodes than the coarser ones. De-
pending on the operation, information flows up and/or down
the tree, and computations on coarser levels precede or suc-
ceed those on finer levels.

A surprising result is that we are able to solve the sparse
Poisson systemLx = b with sufficient accuracy for our re-
construction application in asinglemulti-stream pass. Two
factors make this possible. First, clever scheduling of the
computation across levels lets us realize a cascadic multigrid
scheme [BK96], which enables fast convergence using only
local updates. Second, the reconstructed indicator functionχ
has high gradient and therefore requires only limited preci-
sion due to the subsequent isosurface discretization process.

We obtain reconstructions of highly complex models (210
million triangles) on a PC with only 1 GB of memory, and
demonstrate scalable performance.

2. Related Work

Out-of-core surface reconstruction Several surface re-
construction algorithms lend themselves naturally to out-of-
core computation because their access patterns are highly
localized. For instance, the range-image volumetric merging
scheme of Curless and Levoy [CL96] can easily be com-
puted independently on blocks of the domain space. For
each block, one conservatively finds the scanned points that
contribute to it. Schemes based on local neighborhood fit-
ting such as [HDD∗92, ABCO∗01] could be computed in
a streaming traversal, for instance using the scheme of Pa-
jarola [Paj05]. The multilevel partition of unity (MPU) ap-
proach of [OBA∗03] uses an adaptive octree structure to
blend together estimated implicit surface patches. Its use
of local weights should make it amenable to out-of-core
processing. The ball-pivoting algorithm of [BMR∗99] is
implemented out-of-core by partitioning the domain into
slices. Our contribution is to consider a global approach
that has been demonstrated to improve resilience to data er-
rors [KBH06], and to enable this solution over an out-of-core
adaptive octree using a multi-stream scheme.

Stream processing Much of the streaming work in com-
puter graphics addresses irregular triangle meshes [WK03,
ILGS03, IL05, ACSE05, AGL06]. An interesting challenge
is to find a traversal order that minimizes the working
set (bandwidth) of the resulting computation. In practice
though, a simple axis-aligned sweep generally works suf-
ficiently well. Streaming operations include surface smooth-
ing, mesh simplification, remeshing and, normal estimation.
Streaming has also been applied to irregular tetrahedral mesh
compression [ILGS06] and simplification [VCL∗07]. Pa-
jarola [Paj05] describes stream processing on points. His
streaming scheme is able to find the k-closest neighborhoods
of the points, to enable processing operations such as density
computation, normal estimation, and geometric smoothing.
Isenburg et al. [ILSS06] stream through a set of points to
incrementally construct a Delaunay triangulation. Whereas
prior streaming methods operate at a single resolution on the
data, we introduce a multiresolution streaming framework.

Other out-of-core processing Cignoni et al [CMRS03]
introduce an octree-based external memory structure to store
an irregular mesh out-of-core. They describe how to handle
triangles that span octree cell boundaries. Processing a sub-
tree involves loading its adjacent leaf nodes into memory.
Maintaining random access to the octree nodes is beneficial
for view-dependent rendering, as also shown in [LS01].

Out-of-core linear solvers Toledo [Tol99] provides a
nice survey of methods for solving linear systems out-of-
core. For sparse systems, most modern methods assume that
the system matrix itself can fit in memory. A common ap-
proach is to construct a Cholesky factorization out-of-core
(e.g. [GR85]). In our problem, even the solution vector itself
is too large to lie in-core. We must therefore resort to simple
Jacobi iterative updates. However, we show that doing so in
a cascadic multigrid setting, with a per-block Gauss-Seidel
scheme, is able to produce adequate accuracy for surface re-
construction, in a single multi-stream pass.

3. Review of Poisson Surface Reconstruction

We begin by reviewing the method of [KBH06]. The input is
a set of oriented samplesS, where each sample has a position
s.p and normals.~v. The basic idea is to reconstruct a surface
from Sby estimating the indicator functionχ of the model.
Kazhdan et al show that the (smoothed) gradient ofχ corre-
sponds to a vector field~V formed by an integral over the (un-
known) surface, which can be approximated by a summation
over the oriented points. To obtain a least-squares solution of
∇χ =~V, the divergence operator is applied to both sides, i.e.
∇ ·∇χ = ∇ ·~V, resulting in a Poisson equation:

∆χ = ∇ ·~V. (1)

To represent 3D functions efficiently, Kazhdan et al create
an octreeO adapted to the distribution of samples, in which
each nodeo∈ O is associated with a tri-quadratic B-spline

c© The Eurographics Association 2007.

70

M. Bolitho, M. Kazhdan, R. Burns & H. Hoppe / Out-of-Core Surface Reconstruction

blending functionFo(p), shifted and scaled to align with the
node’s extent (see also [SL96]). Expressed in this basis,

χ(p) = ∑
o∈O

xoFo(p) and ~V(p) = ∑
o∈O

~voFo(p), (2)

the Poisson equation reduces to the sparse symmetric system

Lx = b, (3)

wherex= {xo} andb= {bo} are|O|-dimensional vectors of
octree coefficients, the matrix entries are the inner products
Lo,o′ = 〈Fo,∆Fo′ 〉, and the divergence coefficients are

bo = ∑
o′∈O

〈Fo,∇ · (~vo′ Fo′)〉 . (4)

The Laplacian matrixL is sparse because the B-spline func-
tionsF are locally supported.

Using a cascadic multigrid solver, Equation3 is trans-
formed into successive linear systemsLd xd = bd, one per
octree depthd. The solutions at finer depths only consider
the residualdivergence not accounted for at coarser depths.
More precisely, the divergence is updated as

bd
o← bd

o− ∑
d′<d

∑
o′∈Od′

Lo,o′xo′ , (5)

whereOd denotes the set of octree nodes at depthd.

The octree structureO and vector field~V must be con-
structed to account for the nonuniform distribution of the
samplesS. This involves computing for each samplesan es-
timate of its associated widthw(s), or more precisely its area
termw2(s) in the surface integral defining~V.

Using the blending functionF , a family of kernel den-
sity estimatorsK measures the expected number of samples
falling into the ball of radiusw/2 aboutp, for all w > 0:

K(w, p) = ∑
s∈S

F

(

p−s.p
w

)

. (6)

A discrete setKd of such estimators is implemented within
the octree by associating a density estimator valueko to each
node, defined by having each samples∈ S distribute a unit
value into the eight nearest octree nodes at each octree depth,
and setting:

K(2−d, p) = Kd(p)≡ ∑
o∈Od

koFo(p). (7)

Using these estimators, the widthw(s) associated to each
sample is found by solving forK(w(s),s.p) = κ, where the
user-specified desired densityκ adjusts the average number
of point samples per octree node.

The sample widthw(s) is used both to scale the contribu-
tion of each sample to the surface integral~V, and to define
the spatial extent of that contribution (i.e. the octree level
in which it is entered). The vector field approximating the
gradient of the indicator function

~V(p) = ∑
s∈S

w2(s)

w3(s)
F

(

p−s.p
w(s)

)

s.~n (8)

Figure 2: Illustration of the multilevel stream structure (top row)
and the corresponding quadtree nodes (bottom rows) at two mo-
ments in time (i= 3,4). In-core blocks and nodes are highlighted in
blue.

where the numerator is the area weight and the denominator
normalizes the scaled blending functionF such that it has
unit integral. To implement this using the octree B-spline
basis, the depth of the sample’s contribution is defined asd̃ =
log2(1/w(s)) and expressed as the log-based interpolation
d̃ = dα

1 ·d
1−α
2 of depthsd1 = bd̃c andd2 = dd̃e. The vector

field coefficients{~vo} are then updated by having the sample
splat its normal into the one-ring neighborhood of the nodes
o1 ∈ Od1 and o2 ∈ Od2 containings, weighted byw2(s) ·
(2d1)3α andw2(s) · (2d2)3(1−α) respectively.

Finally, to obtain the reconstructed surface, an isovalue is
chosen and the corresponding isosurface is extracted using
an adaptation of the Marching Cubes algorithm to the oc-
tree representation. The isovalueΓ is set to the average of
the reconstructed indicator function at the sample positions,
weighted by the samples’ area. Approximating the contribu-
tion of the samples falling into nodeo by |~vo| and evaluating
the indicator function at the center of the node, this gives

Γ =
∑o∈O γoxo

∑o∈O |~vo|
with γo = ∑

o′∈O

|~vo′ |Fo(o
′.center). (9)

4. Our Multi-Stream Octree Representation

In this work, we show that Poisson surface reconstruction
can be performed as a sequence of streaming passes over an
out-of-core octree representation.

Each streaming pass traverses the octree, sweeping along
thex axis. For an octree of heighth, each traversal step is as-
sociated with a sweep index 0≤ i < 2h−1 defining the sweep
planex = (2i +1)/2h. Because streaming computations are
local, only the subset of the octree intersecting or near the
sweep plane needs to be maintained in main memory. Thus
as we advance to sweep indexi +1, nodes at the back of the
tree (with smallerx coordinates) can be removed from mem-
ory, while nodes at the front of the tree need to be loaded in.

To implement a data structure that supports this traversal

c© The Eurographics Association 2007.

71

M. Bolitho, M. Kazhdan, R. Burns & H. Hoppe / Out-of-Core Surface Reconstruction

pattern, we must address the fact that the in-core persistence
of nodes depends on their depth, since coarser nodes are
maintained in memory longer than finer ones (see Figure2).
This motivates the construction of a multi-stream octree data
structure, consisting ofh different streams{S 0, . . . ,S h−1}.

Each streamS d contains all nodeso∈ Od, and is parti-
tioned into blocksS d[0], . . . ,S d[2d−1] with the nodes in
block S

d[j] all centered on the planex = (2 j + 1)/2d+1.
Thus, at the coarsest depth,S 0 contains only one block
S 0[0] which in turn contains only one node, namely the oc-
tree root node. At finer depths, each blockS

d[j] generally
containsO(2d) nodes (out of 22d nodes in a complete octree)
because the surface has co-dimension 1.

Figure2 shows a visualization of the multi-stream struc-
ture for a quadtree representation. Each row marked with a
depthd = 0. . .4 corresponds to a separate streamS d, and
within a row the rectangles denote the blocksS d[j]. In the
top left diagram, we see the data structure at sweep index
i = 3. The in-core blocks are highlighted in blue, correspond-
ing to all the quadtree nodes that intersect the sweep-plane
as shown in the middle diagram. Note that as we advance to
sweep indexi = 4 (shown in top right and bottom diagrams),
not all streams need to be updated; in this example, it is only
the streams at depthsd = 2,3,4 that are advanced.

At index i, the sweep plane intersects the nodes con-
tained in the blocksS d[bi/2h−d−1c], which we denote by
S d[φd(i)], or simply asS d

i . More generally, stream pro-
cessing operations may require access to nodes in a small
neighborhood of the sweep plane. If the operation needs ac-
cess to ak-neighborhood at each depth, we maintain anin-
core octreeOi,k ⊂ O defined as the union

Oi,k =
h−1
⋃

d=0

S
d
i,k where S

d
i,k =

k
⋃

j=−k

S
d[φd(i)+ j].

Thus Figure2 can be seen to correspond toOi,0 at i = 3,4.

An essential property of the in-core octree is that for any
nodeo∈S d

i and any depthd′ ≤ d, thek-neighborhood of
the ancestor ofo at depthd′, denotedNd′

k (o), is guaranteed
to be contained inOi,k, i.e. to be in-core.

As the sweep index is advanced fromi to i +1, the in-core
octreeOi,k is updated. Specifically, we compute the set of
depths,Di , at which the streams need to be advanced:

Di = {d | φd(i) 6= φd(i +1)}

and for eachd ∈ Di we can unload the blockS d[φd(i)−k]
and load the blockS d[φd(i)+k+1] into memory.

Implementation We store each stream in a separate file
and, using a 64-bit operating system, are able to reserve con-
tiguous blocks of virtual address space large enough to fully
span the streams. An advantage of using virtual addressing
is that, by simple addition with a base address, a pointer to a
node can be represented by the node’s offset in the file.

Within each stream, an “active window” between a head
pointer and a tail pointer is mapped to physical memory.
To efficiently update these pointers during the sweep, we
store the offset and extent of all blocks in an index structure,
which forms a complete binary tree of heighth.

Although we exploit virtual memory addressing, we never
rely on the operating system for demand-based paging, as
this can be inefficient. Instead we explicitly manage the
memory mapping. As the head pointer advances through a
stream, the appropriate pages of virtual memory are com-
mitted to physical memory and read from disk. And, as the
tail pointer advances, dirty data is written to disk and mem-
ory pages are uncommitted. Memory management and I/O
are performed asynchronously by a background thread, to
allow for lazy write-back and anticipatory read-ahead. All
I/O is performed at the granularity of 1 MB to maximize
disk bandwidth and minimize disk seek overhead.

Additionally, we vertically partition the data for each
depth into two separate streamed files that are advanced in
lockstep, one containing the octree topology, and the other
containing the octree data (ko,~vo, bo, γo, xo). Since the first
file becomes read-only after creation, it doesn’t need to be
written back to disk in subsequent passes, thereby reducing
the I/O workload.

5. Streaming Surface Reconstruction

We now describe how Poisson surface reconstruction can be
decomposed into a sequence of streaming passes (Figure3).
The focus here is to demonstrate that, thanks to the compact
support of the basis functionsFo, each step of the reconstruc-
tion process involves local computation, and can therefore be
implemented as a streaming pass. In Section6 we show how
these individual steps can be combined more efficiently into
just three passes over the out-of-core data.

The discussion in this section is guided by Table1, which
summarizes the extent of the data that needs to be in-core to
process blockS d

i in each step of reconstruction. The key
property that enables streaming reconstruction is that this
data extent is always bounded by a neighborhoodk at each
depth, and therefore all the necessary data is available if we
maintain an in-core octreeOi,k as we sweep over indexi.

We briefly review the individual steps of the reconstruc-
tion process, providing the value of the neighborhoodk that
defines the size of the necessary in-core octreeOi,k.

Figure 3: Sequence of streaming passes through the out-of-core
octree data, as described in the naive implementation of Section5.

c© The Eurographics Association 2007.

72

M. Bolitho, M. Kazhdan, R. Burns & H. Hoppe / Out-of-Core Surface Reconstruction

Step Read Write
O constr. (d=h−1) Si ko: S

d′
i,1 d′≤d

~V constr. ko: S d
i,1, Sj φd(j)=φd(i) ~vo: S d

i,1

∇ ·~V distr. ~vo: S d
i bo: S d′

i,2 d′≤d

Γ distr. |~vo|: S d
i γo: S d′

i,1 d′≤d

Γ accum. |~vo|: S d′
i,1 d′<d γo: S d

i

∇ ·~V accum. ~vo: S d′
i,2 d′<d bo: S d

i

∇ ·~V update xo: S d′
i,2 d′<d bo: S d

i

∆ solution bo: S d
i,2 xo: S d

i
Γ comput. |~vo|,xo,γo: S d

i isovalueΓ
Isosurface extr. xo: S d

i,2, Γ surface mesh

Table 1: Read and write operations when processing block
S d

i in the various multilevel streaming computations.

Preprocessing We first rotate the point set so that the
dominant axis of its covariance matrix is aligned with the
x-axis. The intent is to reduce the cross-section complexity
encountered during the sweep, and hence the peak memory
size of the in-core octreeOi,k. We then uniformly scale and
translate the points so that they fit into the unit cube. Fi-
nally, we partition the points into subsetsSi ⊂ S, whosex-
coordinates lie in the range[i/2h−1,(i+1)/2h−1]. This parti-
tioning process is essentially a binning process, and is imple-
mented efficiently as a single-input, multiple-output stream-
ing operation.

Octree Construction (k = 1) At index i we read in the
subset of pointsSi ⊂ S. For eachs∈ Si and every depthd,
we refine the in-core octree so that the nodeod(s)∈O

d con-
taining s and its one-ring neighbors are all present inOi,1,
adding new nodes as necessary. We also update the density
estimator coefficients{ko} by having each samples splat a
unit value into the one-ring neighborhood ofod(s).

Vector Field Construction (k = 1) At index i we iterate
over all sampless∈ Si . For eachs, we evaluate the density
estimatorsKd to determine the sample widthw(s), compute
the corresponding depthsd1 andd2, and splat the sample’s
(weighted) normal into the one-ring neighborhoodsod1(s)
andod2(s) to update the vector field coefficients{~vo}.

BecauseFo is supported in a one-ring neighborhood ofo,
Kd(s.p) can be evaluated without access toko′ for o′ 6∈ Oi,1.

Divergence Computation (k = 2) Since processing a
nodeo∈S d

i , we only haveNd′
k (o) ⊂ Oi,k for d′ ≤ d in the

working set, we decompose the divergence computation into
two steps. Following Equation4, at sweep indexi:

Wedistributedivergence to nodes at depthsd′ ≤ d by iterat-
ing overo′ ∈ Nd′

2 (o) and adding〈∇ · (~voFo),Fo′ 〉 to bo′ .

We accumulatedivergence from nodes at depthsd′ < d by
iterating overo′ ∈Nd′

2 (o) and adding〈∇ · (~vo′Fo′),Fo〉 to bo.

BecauseFo is supported in a one-ring neighborhood ofo,

〈∇ · (~vo′Fo′),Fo〉 6= 0 only if o∈ Nd′
2 (o), and bothbo andbo′

can be incremented without access tovo′ for o′ 6∈Oi,2.

Poisson System Solution (k = 2) The most straightfor-
ward implementation of the cascadic multigrid algorithm
performs two streaming passes for each depth 0≤ d < h
(from coarsest to finest), first updatingbd in the linear sys-
temLdxd = bd using the solution at depthsd′ < d, and then
solving the system. We describe such an approach, and later
in Section6 show that it is possible to performall these 2h
passes in asinglemultilevel streaming pass.

We updatethe divergence coefficientsbo for o∈S d
i by it-

erating overo′ ∈ Nd′
2 (o) for all d′ < d and subtracting the

valuexo′Lo,o′ from bo (following Equation5).

We solvefor the valuesxo with o∈S d
i by performing sev-

eral iterations over the nodes inS d
i and, for each nodeo,

performing the Jacobi update:

xo←
bo−∑o′∈Od Lo,o′xo′

Lo,o
.

BecauseFo is supported in a one-ring neighborhood ofo,
Lo,o′ 6= 0 only if o′ ∈ Nd′

2 (o) so updatingbo and solving for
xo can be done without access toxo′ for o′ 6∈Oi,2.

Computing the Isovalue (k = 1) Since processing a node
o∈S d

i , we only haveNd′
k (o)⊂Oi,k for d′ ≤ d in the work-

ing set, we decompose the isovalue computation into three
steps. Following Equation9, at sweep indexi:

We accumulatethe isovalue from nodes at depthsd′ ≤ d by
iterating overo′ ∈Nd′

2 (o) and adding|~vo|Fo(o′.center) to γo.

We distributethe isovalue to nodes at depthsd′ < d by iter-
ating overo′ ∈Nd′

2 (o) and adding|~vo′ |Fo′(o.center) to γo′ .

Wecomputethe isovalue by addingxoγo to the numerator of
Γ and adding|~vo| to the denominator.

Extracting the Isosurface (k = 2) We extract the isosur-
face by iterating over the leaf nodes, computing the value of
χ at the eight cell corners, solving for the positions ofΓ-
crossings along the edges, and extracting the triangulation.

The challenge in implementing the isosurface extraction
is the evaluation ofχ at the corners of a leaf nodeo∈S d

i .
Since the value at a corner can be determined by the values
of xo′ ∈ Od′ with d′ > d, we are not guaranteed to have the
necessary information in-core when processing the nodeo.

To address this challenge we observe that because the
functionsFo′ are supported in the one-ring neighborhood of
o′, for a cornerc∈ o we haveFo′(c) 6= 0 only if eitherd′ ≤ d
ando′ ∈ Nd′

1 (o), or d′ > d andc is also a corner ofo′. Thus,
wheno is the finest node adjacent to cornerc, χ(c) can be
computed using only valuesxo′ for o′ ∈ Nd′(o) andd′ ≤ d.

This observation motivates an algorithm for isosurface ex-
traction that iterates over the leaf nodes from finest to coars-

c© The Eurographics Association 2007.

73

M. Bolitho, M. Kazhdan, R. Burns & H. Hoppe / Out-of-Core Surface Reconstruction

est and stores the evaluation ofχ at the corners in a tempo-
rary hash table. For a given cornerc of a leaf nodeo∈ Od,
we check if there is an entry in the hash table corresponding
to c. If there is not, this implies that there are no nodes at
depthd′ > d containingc as a corner and the valueχ(c) can
be computed using only information associated to nodes in
the one-ring neighborhood of the ancestors of nodeo.

In practice, separate hash tables are associated with the
corners of the front and back of the leaf nodes at each depth.
As the sweep plane is advanced, the front hash table is up-
dated by evaluating the front corners of leaf nodes intersect-
ing the sweep plane and the back corners of leaf nodes im-
mediately in front of the sweep plane. For a cornerc∈ o that
is also a corner of a nodeo′ ∈ Od−1, we add the valueχ(c)
to the front hash table at depthd−1. Finally, after extracting
the isosurface in the current sweep index, we swap the front
and back hash tables and clear the front one. It is also at this
point that vertices are finalized shortciteIsenburg:VIS:2005.
We write to a block-based streaming mesh format.

6. Optimized Implementation

In the previous section, we showed that the locality of the
Poisson reconstruction steps allows for stream processing.
In this section, we show how the different streaming passes
can be merged into three multilevel streaming passes, with
the passes defined as follows:

Pass 1: Octree construction, vector field construction, di-
vergence distribution, and isovalue distribution
Pass 2: Isovalue accumulation, divergence accumulation,
divergence update, Poisson system solution and isovalue
computation
Pass 3: Isosurface extraction

Our approach is motivated by two observations. First, we can
parallelize streaming steps when there are no data dependen-
cies. Second, even when there are dependencies, we may be
able to pipeline the steps, resolving the dependencies with
only a small increase in the size of the working set.

Due to the data dependencies, three passes are a lower-
bound for our reconstruction algorithm: The fine-to-coarse
distribution of the divergence fieldbo (in pass 1) must be fi-
nalized before the coarse-to-fine cascadic multigrid solution
(in pass 2), and the computation of the isovalue (in pass 2)
must be finalized before the isosurface extraction (in pass 3).

6.1. First Pass (k = 6)

To merge the processing steps in the first pass, we must re-
solve the data dependencies between different steps. We do
this by pipelining the steps, delaying execution of later steps
to allow earlier steps to finalize the dependent data.

Using the sizes of the read/write neighborhoods described
in Table1, we can resolve the data dependencies in the first
pass by iterating over the sweep indices, for eachi:
• Constructing the octree forS h−1[i +5]

and for eachd ∈ Di
• Constructing the vector field forS d[φd(i)]
• Distributing the divergence forS d[φd(i)−3]
• Distributing the isovalue forS d[φd(i)−3]

Taking into account the size of the write neighborhoods for
octree construction and divergence distribution, the first pass
of streaming reconstruction can be implemented by main-
taining the octreeOi,6 in the working set at sweep indexi.

Buffering Samples In addition to maintaining a small
working octree, our method must also address the fact that
to implement the vector field construction for blockS d

i the
processing step needs access to each sample which lies in the
span ofS d

i and has failed the density test at greater depths.

The exhaustive testing of all samples which lie in the span
of S

d
i can be a computational bottleneck for our system

since it requiresh passes through the ordered point set. This
is unnecessarily expensive since we expect a sample’s den-
sity estimate to increase by a factor of four as the depth is
decremented, so the number of samples processed at depth
d but failing the density test should drop by a factor of four,
while the number of samples that lie in the span ofS

d−1
i

should only increase by a factor of two.

We address this concern by associating a sample buffer
to each depth and processing the blocks in decreasing depth
order. Samples are added into the buffer at depthh during
the octree construction step and are promoted to the buffer
at depthd− 1 if they fail the density test at depthd in the
vector field construction step. (Points in the depth-d buffer
that lie in the span ofS d[φd(i)] are removed from the buffer
at the end of the vector field construction step.)

6.2. Second Pass (k = 8)

As in the first pass, we merge the steps in the second pass
by pipelining them to resolve data dependencies. However,
since the consolidation of these steps into a single pass
forces us to iterate over the depths before iterating over
sweep indices, the merging of the divergence update with the
Poisson system solution poses a challenge. For a fixed sweep
index, we can no longer treat the individual steps as atomic
because this would result in a circular data dependency: the
modification of{bo} in the divergence update requiring ac-
cess to{xo} set in the Poisson system solver, which in turn
requires access to{bo}.

We resolve this problem by separately considering the
pipelining that needs to be performed to resolve the data de-
pendencies due to sweep index and due to depth.

Index Dependencies Fixing a depthd and assuming no
cross-depth data dependencies, we define the scheduling as
we did in the first pass. Iterating over the (depth-relative)
sweep indexid, with 0≤ id < 2d, we:
• Accumulate the isovalue forS d[id]
• Accumulate the divergence forS d[id]

c© The Eurographics Association 2007.

74

M. Bolitho, M. Kazhdan, R. Burns & H. Hoppe / Out-of-Core Surface Reconstruction

Model #Points h #Triangles Time Peak mem. Stream
Lucy Statue 95M 12 26.2M 3.1 138 5,135
David Head 216M 13 210M 32.3 780 62,464
Awakening 391M 13 149M 26.6 990 35,840
Awakening 391M 14 431M 82.4 2120 106,496

Table 2: Quantitative results for multilevel streaming reconstruc-
tions, showing input points, octree height h, output mesh triangles,
total execution time (hours), memory use (MB), and total octree
stream size (MB).

Figure 4: Comparing the results of the in-core algorithm (left; h=
11; 4,442 MB peak memory) and streaming algorithm (right; h=13;
780 MB peak memory).

• Update the divergence forS d[id]
• Solve the Poisson system forS

d[id−3]
• Compute the isovalue forS d[id−4]

Depth Dependencies To resolve the depth-related depen-
dencies we offset the values ofid so that values required at
finer depths are guaranteed to have been set at coarser ones.

Analyzing the size of the read/write neighborhoods shows
that the dependencies can be resolved if the indices satisfy
the propertyid−1 ≥ bid/2c+ 6. Expressingid as an offset
from the finest index,id = φd(ih−1) + δ d, and initializing
with δ h−1 = 0, we obtain a recursive expression for the off-
sets:~δ d = {11, . . . ,11,10,9,6,0}. Thus, settingih−1 = i−3,
the second reconstruction pass can be implemented by main-
taining the octreeOi,8 in the working set at sweep indexi.

In practice, we can further reduce the memory require-
ments by observing that processing at the finest depths re-
quires a narrower window size. This allows us to maintain a
working octree with fewer stream blocks at the finest depths.

Figure1 shows an example of the three streaming passes
for the reconstruction of 2D point set, showing the state of
the reconstruction at different sweep indices (indicated by
the arrows). As can be seen, the offsetting of the pipeline
steps in the second pass forces coarser nodes to be solved
ahead of the sweep line, resulting in a lower resolution re-
construction emerging to the right of the sweep index.

7. Results

Large Datasets To evaluate our method, we have re-
constructed highly detailed surfaces from large scanned

Res. Octree Size Peak Memory Running time
In-core Streaming In-core Streaming In-core Streaming

256 49 48 309 521 0.50 0.53
512 188 168 442 278 0.65 0.68

1024 818 702 1285 213 1.05 1.20
2048 3,695 3,070 4,442 212 2.65 3.33
4096 n/a 13,367 n/a 427 n/a 12.6
8192 n/a 39,452 n/a 780 n/a 32.3

Table 3: Comparison of the data structure size (MB), peak working
set (MB), and running time (hours) for the in-core and streaming
reconstruction algorithms over a range of resolutions for the David
Head model. Running the in-core algorithm beyond a resolution of
2048 was impossible due to its high memory requirements.

Figure 5: Memory use over time for a depth 12 reconstruction of
the Lucy statue using two different poses of the model.

datasets, as summarized in Table2. All results use a target
of κ = 2 samples per octree node.

Figure6 shows a surface reconstruction of the Michelan-
gelo’s David statue from an input of 216M oriented points
from raw scan data. The output surface of 210M triangles
was generated at maximum octree depthh=13, and required
only 780 MB of memory. In contrast, the in-core Poisson re-
construction of [KBH06] only produced a 20M triangle ap-
proximation of this same model (at depth 11), and required
4.4 GB of memory. Figure4 shows a close-up visual com-
parison.

As another example of our algorithm’s ability to recon-
struct large models, Figure7 presents a reconstruction of
Michelangelo’s Awakening statue from 391M points from
raw scan data. At a maximum depth ofh=14, our streaming
solution produced a mesh of 431M triangles in 82 hours. Al-
though the storage required for the out-of-core data structure
was 104 GB, our reconstruction algorithm never required
more than 2.1 GB of working memory. Reconstructions at
this resolution allow us to clearly see fine detail such as
chisel markings that could not be seen at lower resolutions.

Scalable Memory Use Each of our three multilevel
streaming passes only maintains a small window on the en-
tire data structure at any one time. Figure8 examines how

c© The Eurographics Association 2007.

75

M. Bolitho, M. Kazhdan, R. Burns & H. Hoppe / Out-of-Core Surface Reconstruction

Figure 6: Views of our reconstruction of the head of Michelangelo’s David. Maximum tree depth was 13, with a target of 2 samples per node.

Figure 7: Views of our reconstruction of Michelangelo’s Awakening statue. Maximum tree depth was 14 with a target of 2 samples per node.

the maximum size of these windows varies with output res-
olution. By comparison, the curve for the in-core algorithm
grows so quickly that it exits the graph on the upper left.

Table 3 shows the octree size and peak memory use as
a function of the resolution (r = 2h) of the octree. As ex-
pected, the total octree size has complexityO(r2) since the
surface has co-dimension 1. However, using the streaming
reconstruction, the size of the in-core window only scales as
O(r), allowing the streaming algorithm to process datasets
that far exceed a system’s main memory capacity.

The unexpectedly large memory use for the coarser reso-
lutions is due to the buffering of points that occurs during oc-
tree construction. When the tree is artificially restricted to a
small depth, many more points fall into the binsSi traversed
at each sweep step. However, this is an atypical scenario.

Memory use is further highlighted in Figure5, which

plots memory use over time through each of the three multi-
level streaming passes during the reconstruction of the Lucy
statue. The two different plot curves show how the sweep
plane orientation can affect performance. The red curve cor-
responds to using the x-axis as the sweep direction, with the
statue oriented in its original vertical pose; in this orienta-
tion, the intersection of the surface with the sweep plane can
be large, resulting in a peak memory use of 223 MB. The
blue curve corresponds to using the dominant principal di-
rection of the point set as the sweep direction; such orien-
tation reduces the intersection of the sweep plane with the
surface, resulting in a peak memory use of only 138 MB.

The graph also shows that the three multilevel stream-
ing passes have similar memory requirements and running
times. The graph curves do not include the preprocess oper-
ations of orienting, scaling, and binning the points. However,

c© The Eurographics Association 2007.

76

M. Bolitho, M. Kazhdan, R. Burns & H. Hoppe / Out-of-Core Surface Reconstruction

Figure 8: The peak working set in our 3 multilevel streaming
passes, and in the in-core algorithm (far left), for a range of re-
constructions of the head of Michelangelo’s David.

Figure 9: The cumulative distribution of geometric error for a
depth 12 reconstruction of the Lucy statue when compared to the
in-core algorithm of [KBH06].

this preprocess is negligible as it requires only about 1% of
the total execution time and uses less memory than the mul-
tilevel streaming passes.

Computation Times Table3 reveals that our streaming
algorithm is time-competitive with the in-core algorithm de-
spite the large amount of I/O. The streaming overhead is
small because the overall process is compute-bound and the
stream read-ahead prevents stalls in computation.

Streaming Solver Accuracy Because our streaming
solver computes only an approximate solution to the Pois-
son equation, the numerical accuracy of the solution could
impact the geometric accuracy of the resulting surface mesh.
(This topic is further discussed in Section8.) To test geomet-
ric accuracy, we compare the surface mesh generated by our
streaming algorithm to that generated by the in-core algo-
rithm of [KBH06]. Figure9 graphs the cumulative distribu-
tion of mesh vertices as a function of their geometric error,
measured as the distance in voxel units to the nearest point
on the reference surface. Despite the fact that our stream-
ing cascadic multigrid performs only a single sweep at each

Figure 10: Comparison of reconstructing the indicator function of
a cow silhouette from its Laplacian using a single-resolution stream-
ing solver (top), a traditional conjugate-gradient solver (middle),
and a cascadic multigrid solver using multilevel streaming (bottom).

level, the resulting surface mesh is still very accurate – only
11% of the vertices have an error greater than 0.1 voxels, and
the maximum error is 0.842 voxels.

8. Discussion

Solving the Poisson system in streaming fashion is a chal-
lenging task since it involves a global linear system in which
Laplacian values at one point affect the solution at points far-
away. The key ingredient that enables an effective streaming
solution is the use of a cascading multigrid approach.

To demonstrate the importance of multigrid, Figure10
shows the quality of solutions to a 2D Poisson problem us-
ing three different techniques. The first row shows the re-
constructions obtained with 1, 4, 16, and 64 iterations of
a block-based Gauss-Seidel solver that streams through the
column blocks of the image, much like one of thesingle-
level streaming passes described in Section5. As shown
in the second row, even if we replace the Gauss-Seidel
solver with the more efficient (but non-streaming) conjugate-
gradient solver, the convergence is still too slow, requiring at
least 64 passes through the data to obtain an approximate so-
lution. In contrast, a cascadic multigrid solver (bottom row)
quickly converges to the indicator function.

For general problems, a multigrid solver typically requires
several Gauss-Seidel iterations per level, which would in-
volve several streaming passes, but remarkably for our re-
construction problem a single pass is usually sufficient. The
intuition is that, in the context of surface reconstruction, the
Poisson solutionχ approximates an indicator function, and
is thus only used to identify the boundary between interior
and exterior. Because the indicator function is a binary func-
tion whose value is either 0 or 1, and the isovalue is approx-
imately 0.5, the reconstruction is sufficiently accurate if it

c© The Eurographics Association 2007.

77

M. Bolitho, M. Kazhdan, R. Burns & H. Hoppe / Out-of-Core Surface Reconstruction

never differs by more than 0.5 from the indicator function.
As shown in the bottom left reconstruction of Figure10(and
also earlier in Figure9), this relaxed error condition can be
met with just one iteration per level of the cascadic multi-
grid solver, allowing us to perform a single streaming pass
at each level. And, one of our key algorithmic contributions
is to show that all such passes can be combined into a single
multilevel streaming pass.

9. Conclusion and Future Work

Streaming computation is an effective tool for processing
huge out-of-core datasets. We have shown that such a frame-
work can be extended to multiresolution computation, in-
cluding global Poisson solution over an adaptive octree
structure in the context of surface reconstruction.

Avenues for future work include:

• Application of multilevel streaming to out-of-core pro-
cessing of multi-gigapixel images.

• Support for multicore parallel processing.
• Generalization to processing of higher-dimensional

datasets such as 4D time-varying volumes.

Acknowledgements

We would like to acknowledge the Stanford 3D Scanning
Repository for generously distributing their data. The au-
thors would also like to express particular thanks to Szymon
Rusinkiewicz and Benedict Brown for providing non-rigid
body aligned Awakening and David scan data [BR07].

References

[ABCO∗01] ALEXA M., BEHR J., COHEN-OR D., FLEISHMAN

S., LEVIN D., SILVA C.: Point set surfaces. InProceedings of
the Conference on Visualization ’01(2001).

[ACSE05] ATTALI D., COHEN-STEINER D., EDELSBRUNNER

H.: Extraction and simplification of iso-surfaces in tandem. In
Symposium on Geometry Processing(2005).

[AGL06] A HN M., GUSKOV I., LEE S.: Out-of-core remeshing
of large polygonal meshes. InVisualization 2006(2006).

[BK96] BORNEMANN F., KRAUSE R.: Classical and cascadic
multigrid – a methodological comparison. InProceedings of the
9th International Conference on Domain Decomposition Meth-
ods(1996).

[BMR∗99] BERNARDINI F., MITTLEMAN J., RUSHMEIER H.,
SILVA C., TAUBIN G.: The ball-pivoting algorithm for surface
reconstruction. IEEE Transactions on Visualization and Com-
puter Graphics 5(1999).

[BR07] BROWN B., RUSINKIEWICZ S.: Global non-rigid align-
ment of 3-D scans. InProceedings of SIGGRAPH 2007(2007).

[CL96] CURLESSB., LEVOY M.: A volumetric method for build-
ing complex models from range images.Computer Graphics
(Proceedings of SIGGRAPH 96)(1996).

[CMRS03] CIGNONI P., MONTANI C., ROCCHINI C.,
SCOPIGNO R.: External memory management and simpli-
fication of huge meshes.IEEE Transactions on Visualization
and Computer Graphics 9(2003).

[GR85] GEORGEA., RASHWAN H.: Auxiliary storage methods
for solving finite element systems.SIAM Journal on Scientific
and Statistical Computing 6(1985).

[HDD∗92] HOPPEH., DEROSET., DUCHAMP T., MCDONALD

J., STUETZLE W.: Surface reconstruction from unorganized
points.Computer Graphics 26(1992).

[IL05] I SENBURG M., L INDSTROM P.: Streaming meshes. In
Proceedings of the Conference on Visualization ’05(2005).

[ILGS03] ISENBURG M., L INDSTROM P., GUMHOLD S.,
SNOEYINK J.: Large mesh simplification using processing se-
quences. InProceedings of the Conference on Visualization ’03
(2003).

[ILGS06] ISENBURG M., L INDSTROM P., GUMHOLD S.,
SHEWCHUK J.: Streaming compression of tetrahedral volume
meshes. InProceedings of Graphics Interface 2006(2006).

[ILSS06] ISENBURGM., L IU Y., SHEWCHUK J., SNOEYINK J.:
Streaming computation of Delaunay triangulations.ACM Trans-
actions on Graphics 25(2006).

[Kaz05] KAZHDAN M.: Reconstruction of solid models from ori-
ented point sets.Symposium on Geometry Processing(2005).

[KBH06] K AZHDAN M., BOLITHO M., HOPPEH.: Poisson sur-
face reconstruction.Symposium on Geometry Processing(2006).

[LPC∗00] LEVOY M., PULLI K., CURLESSB., RUSINKIEWICZ

S., KOLLER D., PEREIRA L., GINZTON M., ANDERSON S.,
DAVIS J., GINSBERG J., SHADE J., FULK D.: The digital
Michelangelo project: 3D scanning of large statues.SIGGRAPH
(2000).

[LS01] LINDSTROM P., SILVA C.: A memory insensitive tech-
nique for large model simplification. InProceedings of the Con-
ference on Visualization ’01(2001).

[OBA∗03] OHTAKE Y., BELYAEV A., ALEXA M., TURK G.,
SEIDEL H.-P.: Multi-level partition of unity implicits. ACM
Transactions on Graphics(2003).

[Paj05] PAJAROLA R.: Stream-processing points. InProceedings
of the Conference on Visualization ’05(2005).

[SL96] SZELISKI R., LAVALLEE S.: Matching 3-D anatomical
surfaces with non-rigid deformations using octree-splines.Inter-
national Journal of Computer Vision 18(1996).

[Tol99] TOLEDO S.: A survey of out-of-core algorithms in nu-
merical linear algebra. InExternal Memory Algorithms and Vi-
sualization, Abello J., Vitter J., (Eds.). American Mathematical
Society Press, 1999.

[VCL ∗07] VO H., CALLAHAN S., LINDSTROM P., PASCUCCI

V., SILVA C.: Streaming simplification of tetrahedral meshes.
IEEE Transactions on Visualization and Computer Graphics 13
(2007).

[WK03] WU J., KOBBELT L.: A stream algorithm for the deci-
mation of massive meshes. InProceedings of the Conference on
Graphics Interface ’03(2003).

c© The Eurographics Association 2007.

78

