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Abstract
We consider the swept volume A (X) of a rigid body X which assumes a general set A of positions. A special case
of this is a one-parameter motion of X, where the set of poses is curve-like. Here we consider a full-dimensional
subset A of the motion group. Such a set of poses can be seen as the tolerance zone of an imprecisely defined
pose. Alternatively, a set of poses may be obtained by by measurements or simulation. We analyze the geometric
properties of such sets of poses and give algorithms for computing the boundary ∂A (X) in the case that A is a
discrete pose cloud. The dimension of the problem, which equals six a priori, is reduced to two.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction.

The volume swept by a moving rigid body is a topic of great
interest and is extensively studied in the literature. We do not
attempt to give an exhaustive list of references, but mention
only [AMBJ] for an overview, [KVLM04] for computation,
and [BL92] for some mathematical methods. The available
literature deals mostly with one-parameter sweeps.

Speaking from a more general an abstract viewpoint, we
could say that a rigid body X moves when it assumes any of
a given set A of positions. We use pose as a synonym for
position. The swept volume means the union of all positions
α

i(X) of the rigid body X , as α
i runs through A . We write

A (X) for this swept volume.

An important special case of this concept is that X moves
only by translations: The new position α(X) of the rigid body
under consideration is the set X + y, where y is a translation
vector taken from a set Y :

A (X) = {X + y | y ∈ Y}= {x + y | x ∈ X , y ∈ Y}= X +Y.

We see that the swept volume coincides with the Min-
kowski sum X + Y of the sets X and Y . Minkowski sums
are an active area of research. The list of references given
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here [AFH02, EHS02, FH00, HH03, SH02, VM04] is by no
means exhaustive.

If A is a one-parameter set, either in the discrete or the
continuous sense, then X undergoes a one-parameter mo-
tion, moving from one pose to the next. An example of a
higher-dimensional motion is provided by the Minkowski
sum case above, where X moves by translations: If Y has in-
terior points, then it has dimension three, and X undergoes a
three-dimensional motion, assuming a three-dimensional set
of positions in space. The present paper deals with a full-di-
mensional subset A of the Euclidean motion group, whose
dimension equals six.

Such a set of poses can have the following two interpre-
tations: One is that a pose α is imprecisely defined, and the
amount of uncertainty is specified by a tolerance zone A ,
which is a neighbourhood of α. The other interpretation is
that X undergoes a small unstructured motion, and poses
α

1,α2, . . . have been obtained by measurements or simula-
tion. This collection of poses then is a point cloud-like ob-
ject (a pose cloud), whose shape is that of a 6-dimensional
subset of the Euclidean motion group.

The continous case and the disrete case.

There is a continuous version of the concepts mentioned
above (rigid body, set of poses, swept volume), and also a
discrete one. For computational purposes, the rigid body X
is represented by its boundary as triangle mesh, and the set
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Figure 1: The difference between Boolean union (top) and
envelope (bottom) in the case of a discrete 1-parameter mo-
tion. Differences are in the smoothness of the swept volume’s
boundary ∂A (X) and the computational cost.

A of poses by a pose cloud. The swept volume will be given
by a triangle mesh again. Computationally, there are two ap-
proaches to computing the swept volume, which for the 1-
dimensional case are illustrated by Fig. 1.

If the given poses are α
1,α2, . . . , we can compute the

Boolean union α
1(X)∪α

2(X)∪ . . . . The result is an approx-
imation (e.g., via a triangle mesh) of the volume A (X). As
Fig. 1 clearly shows, the smoothness of the volume com-
puted in this way often does not adequately reproduce the
smoothness of the volume A (X). Boolean union not only re-
sults in insufficient smoothness, also its computational cost
is high. It is therefore often important to be able to find can-
didates for the boundary points of A (X) without having to
resort to Boolean set operations. Thus one is led to consider
the envelope of a moving surface (the boundary of X) with
respect to a smooth motion. This approach works well if both
the body X and the set of poses A are at least piecewise
smooth. The present paper approaches the computation of
A (X) via envelopes.

The relation to tolerance analysis

The concept of tolerance zone which represents an impre-
cisely defined object [Req83, HV95, Hof01] has been used
in a geometric context e.g. in [POP∗00] and [WKP00],
where geometric constructions occurring in Computer-
Aided geometric design are analyzed from the toleranc-
ing viewpoint. Tolerance zones for motions are studied in
[SW05] from an abstract point of view. There is also re-
lated work on geometric transformations in the 2D case
[FMR00, FMR01, FP02].

Within the tolerance analysis context, the present paper
solves the worst case tolerancing problem of computing a
bounding volume for the position α(X) of a rigid body X ,
where the pose α is only known to be contained in some set
A . X itself may already be the tolerance zone of a point.

Applications: Computing bounding volumes

The sequential nature of time does not allow genuine multi-
parameter motions to take place in the real world. However,
there are situations where a rigid body executes a one-pa-
rameter motion of a complicated, chaotic, or unknown na-
ture, and nevertheless one is interested in a bounding volume
which contains all possible positions α(X).

In that case measurements or simulation may provide a
collection of poses which more or less densely covers a cer-
tain subset A of the Euclidean motion group. The latter has
dimension six, so the dimension of A can be any of 0, . . . ,6.
In this paper we are not concerned with the issue of estimat-
ing that dimension. We consider the full-dimensional case
and are aware of the fact that pose clouds can be “thin” and
thus represent lower-dimensional shapes.

Overview.

We first present elementary Euclidean kinematics in Sec. 2:
poses, velocities, and infinitesimal motions. Because we
later need them for theoretical investigations, also the matrix
exponential function and logarithm are introduced. Sec. 3
deals with tolerance zones A of poses, i.e., full-dimensional
subsets of the Euclidean motion group, and with the ques-
tion what happens if a rigid body X assumes all poses in A .
We consider the abstract question of outward normal vectors
of tolerance zones and derive a theoretical result on the ori-
ented envelope of a rigid body X with respect to A . Sec. 4
deals with pose clouds, their support planes, and the actual
computation of the swept volume, in part using the matrix
logarithm. In Sec. 4.3 we show how to avoid the matrix
logarithm in computations. We further consider a smooth-
ing process which takes the tolerancing side conditions into
account. Numerical examples (Sec. 6) conclude the paper.

2. The Euclidean motion group.

In Sec. 2 we present facts about kinematics and its rela-
tions to line geometry which can be found e.g. in [BR79]
or [PW01].

The position of a rigid body X in 3-dimensional Euclidean
space is given by an orthogonal matrix A and a translation
vector a. We write α = (A,a) ∈ R3×3+3 to indicate such a
position. If X assumes position α, it is moved to α(X), which
means that x ∈ X is transformed to the point y = Ax + a.
We do not consider orientation-reversing poses, so we for-
bid detA =−1 and require detA = 1. The Euclidean motion
group SE3 is the set of such poses. It is a six-dimensional
surface in the space R3×3+3 of matrix/vector pairs.

We further use the following property of skew-symmetric
matrices: For any skew-symmetric 3 by 3 matrix V , there is
a vector c such that V x = c× x for all x. The corresponding
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notation is as follows:

c = (c1,c2,c3), V =

 0 −c3 c2
c3 0 −c1
−c2 c1 0

⇐⇒ {c = axis(V ),

V = Skew(c).

2.1. Smooth motions and their velocities.

With the real parameter t as time, a smooth motion α(t) =
(A(t),a(t)) consists of a matrix-valued smooth function A(t)
and a vector-valued smooth function a(t) such that α(t) is
a pose in SE3 for all t. The trajectory of the point x under
this smooth motion is the curve α(t) · x = A(t)x + a(t). The
smooth motion itself can be seen as a curve lying in SE3.

The velocity vector of the point x is the derivative

α̇(t) · x =
d
dt

(A(t)x + a(t)) = Ȧ(t)x + ȧ(t), (1)

but we also employ the velocity with respect to the coordi-
nate system attached to X . This means the vector vt(x) such
that At(t)vt(x) equals the velocity vector of x:

vt(x) = A(t)−1Ȧ(t)x + A(t)−1ȧ(t). (2)

Because the matrix A(t)−1Ȧ(t) is skew-symmetric, we can
define two vectors d, d̄ by

vt(x) = d(t)× x + d̄(t), where (3)

d̄(t) = A(t)−1ȧ(t), d(t) = axis(A(t)−1Ȧ(t)). (4)

It is convenient to identify poses and their derivatives with
block matrices as follows:

α(t)≡
[

1 0
a(t) A(t)

]
, α̇(t)≡

[
0 0

ȧ(t) Ȧ(t)

]
. (5)

Now that poses are matrices, we can multiply and invert
them. It is elementary that (A,a) · (B,b) = (AB,Ab + a) and
(A,a)−1 = (A−1,−A−1a), with A−1 = AT . Further, the vec-
tors d(t), d̄(t) of (3) fulfill the relation[

0 0
d̄(t) Skew(d(t))

]
= α(t)−1

α̇(t). (6)

Observe that the vectors d, d̄ do not change if α and α̇ are
replaced by βα and βα̇ for any pose β.

2.2. Velocities and the tangent spaces of SE3.

Any surface M has a tangent space in each of its points. It
consists of the derivative vectors of curves in the surface
which pass through that point. For the surface SE3, points
are poses, and curves are smooth motions. A time-dependent
pose α(t), either seen as a matrix/vector pair, or as a block
matrix in the sense of (5), has a derivative α̇(t), which either
is seen as a matrix/vector pair, or as a block matrix according
to (5). The derivative α̇ = (Ȧ, ȧ) is called an infinitesimal mo-
tion attached to the pose α = (A,a). For each pose α, there is
a six-dimensional space of infinitesimal motions attached to
α. We use the vectors d, d̄ computed with (6) or (4) as coor-
dinates for infinitesimal motions. Thus the six-dimensional

abstract tangent space of SE3 at a given pose is identified
with the space of d, d̄’s.

Recall that a straight line parallel to the vector l which
passes through the point x is assigned the Plücker coordi-
nates l, l̄ with l̄ = x× l. These coordinates have the property
that l̄ does not depend on the choice of x on the line, and the
line is recovered from the coordinates l, l̄ as the solution set
of the three linear equations l̄ = x× l in the variable x. Any
pair l, l̄ with 〈l, l̄〉 = 0 and l 6= 0 occurs as Plücker coordi-
nates of a line in Euclidean three-space.

If a body X in three-space has a smooth boundary, we can
select a boundary point x and consider an outward normal
vector n there. The line orthogonal to the boundary in the
point x (the surface normal) has the Plücker coordinates n, n̄
with n̄ = x×n according to the previous paragraph. Choose
a pose α = (A,a). Then the outward normal vector of α(X) at
the boundary point Ax + a is given by An. We are interested
in infinitesimal motions attached to the pose α which move
x towards the inside of α(X).

The infinitesimal motion α̇ does not move x towards the
outside α(X), if and only if the velocity vector α̇ · x of (1)
does not point towards the outside of α(X). With the normal
vector n, this relation is expressed by

〈Ȧx + ȧ,An〉 ≤ 0. (7)

When using coordinate vectors d, d̄ for the infinitesimal mo-
tion, and the Plücker coordinates n, n̄ for the surface normal,
this is equivalent to

〈d, n̄〉+ 〈d̄,n〉 ≤ 0. (8)

(as follows from 〈Ȧx + ȧ,An〉 = 〈A−1Ȧx + A−1a,n〉 = 〈d×
x + d̄,n〉.)

Remark: The velocity vector of x is tangent to the boundary
of α(X) if and only if 〈d, n̄〉+ 〈d̄,n〉 = 0 holds. This is the
condition familiar from kinematics that the line with Plücker
coordinates n, n̄ is a path normal of the infinitesimal motion
α̇.

2.3. Straightening SE3.

A parametrization of the surface SE3 is given by the matrix
exponential function: A pose depends on (v, v̄) ∈ R3+3 via

α(v, v̄) = exp
[

0 0
v̄ Skew(v)

]
=
[

1 0
a(v, v̄) A(v, v̄)

]
. (9)

We use the notation α = exp(v, v̄), (v, v̄) = logα. For the ac-
tual computation “exp” and “log” see the appendix. It is well
known that “exp” maps the domain defined by ‖v‖ < π dif-
feomorphically onto the set of poses whose rotation angle is
less than π.

For measuring the distortion when taking the logarithm
we use the Frobenius norm of a matrix defined by ‖M‖2 :=
tr(MT M). If α = (A,a) is a pose and β̇ with coordinates
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Figure 2: Schematic illustration of a tolerance zone A in
SE3, poses (C,c) and (E,0), and the matrix logarithm.

d, d̄ is an infinitesimal motion, the block matrices which
represent α and β have the norms ‖β̇‖2 = 2‖d‖2 + ‖d̄‖2,
‖α‖2 = 4 +‖a‖2. Near the identity pose (E,0), we have the
approximate identity

exp(v, v̄)≈ (E + Skew(v), v̄), (10)

which is made more precise below. This means that near the
identity we may use v, v̄ as coordinates for poses, and we may
use the matrix logarithm (at least theoretically) for flattening
SE3 and analyzing small subsets of it.

The above approximation is more precisely expressed by
the inequality

‖exp(v, v̄)− (E + Skew(v), v̄)‖ ≤ g(R), (11)

where g(t) = et −1− t, R2 = 2‖v‖2 +‖v̄‖2,

as shown in the appendix. The function g(t) has g(0) =
ġ(0) = 0, so the approximation is very good if both v, v̄ are
small. For bigger v, v̄, this inequality gives only little infor-
mation, because g(t) grows rapidly.

The following well known property of the logarithm is an
easy consequence of the previous inequality:

Proposition 1 If α(t) is a smooth one-parameter motion
which passes through the identity pose (E,0) for t = 0 and
has the tangent vector (i.e., infinitesimal motion) with coor-
dinates d, d̄ there, then also the curve logα(t) in R6 has the
tangent vector (d, d̄) ∈ R6 at t = 0.

For straightening a piece of SE3 around a pose α, we use

log
α

(β) := log(α
−1

β). (12)

(12) is a way to represent poses near α by vectors in R3+3.
A domain where log

α
can be unambiguously defined is e.g.

the set of poses β where the rotation angle between α and β

is less than π. The mapping log
α

is schematically illustrated
by Fig. 2.

3. Tolerance zones.

It is an aim of this paper to deal with discrete “pose clouds”.
Like in the case of R3, where point clouds represent solids
or surfaces, pose clouds represent six-dimensional solids in
SE3. We first have a look at the continuous case, i.e., the
case of a domain with smooth boundary inside SE3. Later
we consider pose clouds which represent such solids.

X A ′(X) A ′′(X)

(a) (b) (c)

Figure 3: From left to right: The sets X, A ′(X), and A ′′(X)
for different non-smooth tolerance zones. The diameters of
A ′ and A ′′ are 0.4 and 0.8, respectively.

Suppose that A is such a set of poses in SE3. We assume
that A is the closure of its interior (topological properties
refer to the manifold SE3, not to ambient space R3×3+3) and
is compact.

3.1. Swept volumes.

The swept volume A (X) of a rigid body X which assumes
every pose in the set A is defined as the union of all α(X)
as α ranges in A . Such volumes are illustrated in Fig. 3.
We are interested in the boundary ∂A (X). The following el-
ementary statement, which is a first step in this direction,
uses the boundaries ∂X and ∂A of the bodies X and A .

Proposition 2 For a point x ∈ X and a pose α ∈ A , the
point α · x is contained in the boundary ∂A (X) of the swept
volume only if x is a boundary point of X and the pose α is a
boundary pose of A .

As has been remarked in the introduction, the computing
of Minkowski sums could be seen as a special case of this
paper, if all motions are translations. Prop. 2 has a counter-
part in the Minkowski sum context: If x ∈ X and y ∈ Y , then
x + y is a boundary point of X +Y only if both x ∈ ∂X and
y ∈ ∂Y .

Proof: (i) If x is not a boundary point of X , then neither is
α ·x a boundary point of α(X), regardless of α. It follows that
α · x is no boundary point of A (X). (ii) If α is in A , but not
in the boundary ∂A , then small translations in all directions
will change α such that it is still contained in A . It follows
that for any x, α · x can still be translated in all directions
without leaving α(X). Thus it is no boundary point of the
swept volume. �

3.2. Tangent spaces of tolerance zones

The boundary surface ∂A of the tolerance zone A has five-
dimensional tangent spaces. The tangent space at the pose
α is a subspace of the six-dimensional space of infinitesi-
mal motions attached to α. Fortunately our introduction of
coordinates d, d̄ for infinitesimal motions by (3) identifies
the space of infinitesimal motions attached to a pose α with
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the vector space R3+3 of pairs d, d̄, so a five-dimensional
subspace is determined by one linear relation between the
six coordinates of d, d̄: We are numbering the coordinates of
d, d̄ such that d = (d1,d2,d3) and d̄ = (d4,d5,d6). The coef-
ficients in the linear relation are numbered in an unorthodox
way:

n4d1 + n5d2 + n6d3 + n1d4 + n2d5 + n3d6 = 0. (13)

We collect the coefficients ni in two vectors n, n̄ such that
n = (n1,n2,n3) and n̄ = (n4,n5,n6). Then (13) reads

〈n̄,d〉+ 〈n, d̄〉= 0. (14)

3.3. Flattening tolerance zones in SE3.

The reason why we apply mappings like the logarithm to
poses is that a vector space is a friendly environment with re-
gard to computing tangent spaces and their linear equations.
Moreover, the logarithm has the following nice property:

Proposition 3 The equation of the boundary’s tangent space
is the same for α in A and for 0 in log

α
(A ).

Proof: The coordinates d, d̄ for an infinitesimal motion β̇

attached to α do not change if we multiply both β̇ and α

with the same pose from the left. Thus A has at α the same
tangent space equation as B := α

−1 ·A has at α
−1 ·α.

By Prop. 1, taking the logarithm does not change the co-
ordinates of tangent vectors. So if the identity pose happens
to be a boundary pose of B, then log

α
(A ) = log(B) has in

(0,0) the same tangent vectors as B has in (E,0). �

3.4. Envelopes.

Sec. 3.4 contains the main theoretical results of this paper.
We extend the concept of normal vector pointing outwards
which is well known in the context of smoothly bounded
solids to tolerance zones. We define the oriented envelope
of a rigid body with respect to a tolerance zone and show
that the boundary of the swept volume is contained in this
envelope. By the passage to so-called outer part, equality is
achieved. This is the basis of our algorithms given later —
we compute the boundary of the swept volume via comput-
ing the oriented envelope.

The well known Minkowski sum case

if X and Y are bodies in R3 with a smooth boundary, then
boundary points x∈ ∂X and y∈ ∂Y can contribute to a bound-
ary point x + y of the Minkowski sum X + Y only if the
tangent spaces of X at x and of Y at y are parallel. This is
the so-called envelope condition. If it is possible to query
Y for boundary points whose tangent plane has a given ori-
entation, computation of the Minkowski sum’s boundary is
two-dimensional in nature: For a sample of boundary points
x1,x2, . . . of X , we search for corresponding points in Y and
thus get a surface-shaped collection of points. It is called the

envelope of the boundary ∂X with respect to the translations
defined by the boundary ∂Y . The actual boundary of X +Y
is contained in that surface. Another name for the envelope
is convolution surface of the boundaries ∂X and ∂Y .

Without much effort it is possible to refine the envelope
condition: Each boundary point of either of X and Y is given
a normal vector which points towards the outside. Then x +
y is a boundary point of X +Y only if the outward normal
vectors associated with the points x and y coincide. Again,
for a sample x1,x2, . . . of boundary points in X we can query
the boundary of Y for points yi, j such that xi and yi, j has the
same normal vector. The boundary of the Minkowski sum is
contained in the oriented envelope of X with respect to Y ,
which is the surface which contains all sums xi + yi, j. The
envelope usually is twice as big as the oriented envelope.

It is the purpose of the following sections to generalize
these concepts to sets of poses.

Outward normal vectors.

In general, the vector n is an outward normal vector of
a solid in a boundary point, if for all vectors v which do
not point toward the outside of X in that point, we have
〈n,x〉 ≤ 0. For a tolerance zone A (which is not a solid in
a vector space) we do the following: In view of Prop. 3, the
tangent space of A at a boundary pose α occurs also as tan-
gent space of log

α
A . When grouping the coefficients in the

linear equation of this tangent space as in (14), (n̄,n) is a nor-
mal vector of log

α
A . By multiplying both n and n̄ with −1

if necessary, we can make the vector (n̄,n) point outward,
and we say it is an outward normal vector of A . The fact
that (n̄,n) points outward means that for all vectors (d, d̄)
pointing inwards, we have

d1n3 + d2n4 + d3n5 + d4n1 + d5n2 + d6n3 ≤ 0. (15)

As the boundary of the swept volume is two-dimensional,
and the boundary of a tolerance zone has dimension five,
only a small part (in fact, a two-dimensional one) can be
expected to contribute to the boundary of the swept volume.
With the solid X , this is different: Its boundary already has
the right dimension, so we can expect that a substantial part
of ∂X contributes to ∂A (X). Below follows a nice geometric
relation between normal vectors of A and those poses which
contribute to the swept volume’s boundary.

Oriented Envelopes.

Def. 1 defines the concept of oriented envelope of a solid
with respect to a full-dimensional set A of poses (its com-
putation is the topic of Sec. 4). The purpose of this definition
is to find a set which is not much larger than the boundary of
the swept volume we are looking for.

Definition 1 Suppose that x is a boundary point of X with
outward normal vector n. If (n̄,n) with n̄ = x× n is an out-
ward normal vector of the tolerance zone A at the boundary
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pose β, then β ·x is a point of the oriented envelope of X with
respect to A .

Proposition 4 The boundary of the swept volume A (X) is
contained in the oriented envelope of X with respect to A .

Proof: We assume that x, n and β are as in Def. 1. The solid
β(X) is contained in the swept volume A (X) and touches
∂A (X) from the inside in the point β · x. Any smooth one-
parameter motion α(t) which starts with α(0) = β and has
α(t) ∈ A for all t moves X inside the swept volume. So
the velocity vector α̇ · x at t = 0 points towards the inside of
A (X), and therefore towards the inside of β(X). If we use
coordinate vectors d, d̄ for the infinitesimal motion α̇, this
fact is expressed by the inequality (8). This is the same in-
equality as (15) which says that (n̄,n) is an outward normal
vector. �

The outer boundary of a solid.

In the context of this paper we are not interested in any inte-
rior holes the compact solids X and A (X) may have. We
therefore employ the concept of outer boundary: For any
compact set Y , the difference set Rn \Y has exactly one
unbounded component (the outside of Y ). The part of the
boundary of Y which is adjacent to the outside of Y is called
the outer boundary of Y . If Y is a surface, then ∂

outY exists,
but we call it outer part of Y in order not to apply the word
“boundary” to something which is boundary-shaped already.

The operation of computing the outer part of a surface is
e.g. built in software which handles triangle meshes. It con-
sists of the trimming away of interior surface components.

Proposition 5 If X is a solid and A is a tolerance zone,
then the outer boundary of the swept volume is the same as
the outer part of the oriented envelope.

Proof: The implication ∂X ⊂ Y ⊂ X =⇒ ∂
outX = ∂

outY is
obvious from the definition of ∂

out. With Y as the oriented
envelope, the result follows from Prop. 4. �

If we specialize this result to the case of Minkowski sums,
we get the statement that ∂

out(X +Y ) is the same as the outer
part of of the convolution surface of ∂X and ∂Y .

All normal vectors occur.

If M is a compact smooth surface in Euclidean space, it is
easy to show that every unit vector n occurs as an outward
normal vector in some point x (choose the point x in M where
〈x,n〉 is maximal). With tolerance zones in SE3, such simple
arguments are not available, as the meaning of ‘normal vec-
tor’ is different and depends on the coordinates we have in-
troduced for infinitesimal motions. There is however the fol-
lowing property of tolerance zones of simple shape, whose
proof (given in the appendix) uses a topological argument.

Proposition 6 Assume that the tolerance zone A is smooth,
has the topology of a ball, and is contained in a subset of
SE3 where the mapping log

α
is well defined, for some α.

Then for every unit vector (n̄,n) ∈ R3+3 there is β ∈ ∂A
such that (n̄,n) is an outward normal vector at the pose β.

4. Point clouds and envelope computation.

We now consider pose clouds in SE3, which are still denoted
by A . The poses contained in A are denoted by the symbols
α

1, α
2 and so on. Alg. 2 given below employs the matrix log-

arithm, which means higher computational complexity than
necessary. Sec. 4.3 shows how to get rid of logarithms.

4.1. Normal vectors of point clouds.

The vector n is called an outward normal vector of a convex
point cloud x1, . . . , xr in a vertex xi0 , if 〈xi0 ,n〉 ≥ 〈xi,n〉 for
all i. This means that the entire cloud is contained in the
halfspace with equation 〈n,x〉 ≤ 〈n,xi0〉. This halfspace is
bounded by a support plane of the cloud. Of course, if the
point cloud is dense and approximates a smooth surface, a
normal vector defined in this way approximates the normal
vector in the sense of differential geometry. For a given point
cloud and normal vector n, there is always a vertex where
this vector is an outward normal vector.

For a non-convex point cloud A this is no longer true.
However, if we choose n from a uniform sample of points
in the unit sphere and compute corresponding half-spaces
which contain A , then the intersection of those half-spaces
approximates A ’s convex hull. The domain associated with
the cloud in this way is not smaller than the domain repre-
sented by the cloud itself, and it is close to it if A happens
to have convex shape. We collect the instructions for com-
puting this approximate convex hull together with the points
where given vectors are outward normal vectors in the fol-
lowing algorithm:

Algorithm 1 Suppose x1, . . . ,xr is a point cloud, and
n1, . . . ,ns is a point cloud representing the surface of the unit
sphere. Compute all values 〈x j,ni〉 and for each i, choose
an index j(i) such that 〈x j(i),ni〉 ≥ 〈x j,ni〉 for all j. Then
the vertex x j(i) has ni as an outward normal vector, and the
intersection of the half-spaces 〈x,ni〉 ≤ 〈x j(i),ni〉 is an ap-
proximate convex hull of the point cloud. ♦

4.2. Normal vectors of pose clouds.

We cannot apply Alg. 1 to a pose cloud A directly. But by
definition, (n̄,n) is an outward normal vector at the boundary
pose α, if it is an outward normal vector of log

α
A at the ori-

gin of the coordinate system. This property can be used for
testing if given n̄,n and α fulfill the normal vector condition.
Searching for α when only n̄,n are given, is done in a way
similar to Alg. 1, using the fact that the matrix logarithm has
low distortion for small pose clouds.

Suppose that a rigid body is triangulated, with vertices xi

and outward normal vectors ni at xi. We compute Plücker
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(a) (b)

Figure 4: (a): Triangle mesh representing the boundary of
an ellipsoid X. (b): The boundary of a swept volume A (X).

coordinates ni, n̄i with n̄i = xi× ni. For each i, we want to
find a pose α

j(i) of the given pose cloud where (n̄i,ni) is an
outward normal vector. Similar to Alg. 1, we do not search
the entire pose cloud, but a convex hull-like object associ-
ated with the pose cloud. If A represents a tolerance zone,
this operation means convexification and thus enlarging the
tolerance zone, i.e., an error on the safe side. We propose the
algorithm below, which does the following: We take any log-
arithm of A and look for a pose where the given vector is a
normal vector. This is only an approximate answer, however.
So we now take the logarithm with respect to the pose thus
found, and repeat the process until it becomes stationary.

Algorithm 2 Suppose a pose cloud α
1, . . . ,αr and vectors

n̄,n are given. Compute poses where (n̄,n) is an outward
normal vector of the pose cloud as follows:

1. Let N = 0 and choose an index i0 with 1≤ i0 ≤ r.
2. Compute the point cloud V = log

α
iN (A ), which consists

of ((v1, v̄1), . . . (vr, v̄r)). By construction, (viN , v̄iN ) = 0.
3. Find imax such that 〈n, v̄i〉+〈n̄,vi〉 is maximal for i = imax.
4. Let iN+1 = imax, increment N.
5. If the sequence of indices computed has become periodic

with period k (i.e., iN = iN−k), terminate with the output
iN−k, . . . , iN−1. Otherwise continue with 2. ♦

If Alg. 2 terminates with a unique index iN , we have found
a pose α

iN where (n̄,n) is an outward normal vector. If the al-
gorithm terminates with a periodic sequence iN = iN+k with
k > 1, there are k candidates for that pose. Which to choose,
is the topic of Sec. 4.4 below. Before that, we given an ele-
mentary interpretation of Alg. 2.

4.3. An elementary interpretation.

In the proof of Prop. 4 we encountered the following situa-
tion: A pose β in A and a boundary point x of X with out-
ward normal vector n have the property that β · x is a bound-
ary point of the swept volume A (X). Then necessarily β(X)
touches the boundary of A (X) from the inside. Any velocity
vector α̇ · x attached to β which points towards the inside of
A must fulfill

〈α̇ · x,Bn〉 ≤ 0 (β = (B,b)). (16)

As explained in that proof, this expresses the fact that any
one-parameter motion inside A which starts in β assigns a

velocity vector to x which points towards the inside of the
swept volume. The inequality (16) also expresses the fact
that (n× x,n) is an outward normal vector of A .

Now A = α
1, . . . ,αr is a pose cloud. Assume that β =

α
i0 . All difference vectors α

i − β are vectors attached to β

pointing towards the inside of A . The denser A , the better
the set of difference vectors approximates the set of vectors
pointing towards the inside.

It is easy to set up an algorithm which for given x finds a
boundary pose β such that (16) is fulfilled. In view of the dis-
cussion above, this is in principle the same as Alg. 2, which
finds a pose such that (x× n,n) is a normal vector of A at
that pose. It goes as follows: First, (16) is rewritten as

〈Bn,(Ai−B)x +(ai−b)〉 ≤ 0 (i = 1, . . . ,r). (17)

This is equivalent to 〈n,B−1(Ai −B)x + B−1(ai − b)〉 ≤ 0,
and in view of β

−1
α

i = (B−1Ai,B−1(ai−b)) also equivalent
to

〈n,β−1
α

i · x〉 ≤ 〈n,x〉 (i = 1, . . . ,r). (18)

Thus we have the following procedure for finding a pose
which for a given boundary point of X contributes to the
oriented envelope:

Algorithm 3 Suppose a pose cloud α
1, . . . ,αr and a bound-

ary point x ∈ ∂X with an outward normal vector n are given.

1. Let N = 0 and choose an index i0 with 1≤ i0 ≤ r.
2. Find imax such that i 7→ 〈(α

iN )−1
α

i ·x,n〉 attains its maxi-
mum for i = imax.

3. Let iN+1 = imax and increment N. Terminate if the se-
quence of iN ’s becomes constant or periodic, otherwise
start again with 2. ♦

Alg. 3 can be used as a substitute for Alg. 2 in all later algo-
rithms (Alg. 4 and Alg. 5). It is an entire order of magnitude
faster and numerical experience shows that it indeed finds
the same indices as Alg. 2.

4.4. Making the result unique

As the purpose of Alg. 2 and Alg. 3 is to compute, for a given
point x ∈ ∂X , a pose α such that α · x is a boundary point of
the swept volume, it is not difficult to decide which of the k
candidates suggested by Alg. 2 or Alg. 3 is the right one:

Algorithm 4 Suppose a pose cloud α
1, . . . ,αr and vectors

n, n̄ = x×n are given. We want to compute a pose α
i where

(n̄,n) is an outward normal vector of A .

1. Compute indices iN−k, . . . , iN−1 with Alg. 2 or Alg. 3.
2. Compute a mean normal vector of the bodies α

iN− j (X) in
the points α

iN− j · x by letting nmean = ∑
k
j=1 AiN− j n.

3. Choose i ∈ {iN−k, . . . , iN−1} such that 〈αi · x,nmean〉 is
maximal, i.e., x is moved as far as possible in direction
nmean. ♦
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(a) (b)

(c) (d) (e)

Figure 5: Swept volumes of the Stanford dragon corresponding to cases (a)–(e) of Sec. 6.1.

The following algorithm computes a discrete version of
the oriented envelope of a triangulated rigid body X with
respect to a pose cloud A .

Algorithm 5 Suppose that ∂X is given as a triangle mesh
with vertices x j and outward unit normal vectors n j. Further,
a pose cloud A is given. For all x j, use Alg. 4 to compute
an index i( j) from x j, n j and A . Then the point α

i( j) ·x j is a
vertex of the oriented envelope of X with respect to A . The
connectivity of the triangulation of the oriented envelope is
the same as the one of ∂X . ♦

According to Prop. 5, the outer part of the oriented enve-
lope equals the boundary of the swept volume. A tame ex-
ample, where the swept volume is bounded by the oriented
envelope is illustrated in Fig. 4.

5. Trimming and smoothing.

The result of the algorithms above usually has self-intersec-
tions, especially if the rigid body X we started with is not
convex (cf. Fig. 7). Fortunately computing the outer part of
a surface is a built in feature of various software packages,
and we will not consider that problem here.

Another topic is smoothness of the swept volume’s
boundary. High-dimensional point clouds must have much
more points than three-dimensional ones if they are to repre-
sent a smooth object faithfully. We cannot expect that pose
clouds have this property. Numerical experience shows that
smoothing ∂A (X) is often necessary. In the spirit of toler-
ance analysis, we must not make A (X) smaller by smooth-

ing, so we suggest the simple procedure below. It depends on
the fact that the normal vectors in a boundary point Ax + a
of the swept volume is given by An, if n is the normal vector
of X at x:

Algorithm 6 Assume a triangle mesh with vertices yi and
normal vectors ñi in the vertices.

1. For all i store the neighbours of the vertex yi in the set Ci.
2. Consider the forces Fi = ∑ j∈Ci

y j−yi
‖y j−yi‖ exerted on yi from

its neighbours.
3. Vertices yi where 〈Fi, ñi〉 > 0 are moved into an equilib-

rium position: Consider Fi as a function of yi and choose
d such that 〈Fi(yi +dñi), ñi〉= 0. Move yi to yi +dñi. ♦

Sharp edges in the data

Rounding off sharp edges in a triangulated data set X with
tubular surfaces of very small radius or even zero radius has
the effect that the normal vector does not abruptly change
from one face to the next. This procedure has been applied
to the examples of Sec. 6.2.

6. Numerical examples.

We experienced computation times of 10−5 seconds per ver-
tex and pose in computing the oriented envelope, without
trimming and smoothing. Depending on the size of the pose
cloud, up to 7 % of points with non-unique index in Alg. 2
and Alg. 3 were observed.
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(a) (b) (c)

Figure 6: (a) Car part (courtesy AVL List GmbH). (b) Swept volume for a pose cloud representing vibration. (c) Difference
between original (dark) and swept volume (light).

Figure 7: Part surface (cf. Fig. 6) and the oriented envelope.
Here trimming is necessary.

6.1. Pose clouds of varying smoothness

Fig. 5 shows ∂A (X) where X is the well known Stanford
dragon, and the pose cloud A = α

1, . . . ,αr is chosen such
that α

i = exp(di, d̄i) is as follows: In cases (a)–(c) we let
r = 200 and choose (di, d̄i) randomly such that (a) ‖di‖2 +
‖d̄i‖2 ≤ 0.2, or (b) 0.1≤ ‖di‖2 +‖d̄i‖2 ≤ 0.2, or (c) ‖di‖ ≤
0.2, ‖d̄i‖ ≤ 0.2. In case (d) we let r = 26 and take (di, d̄i) as
the vertices of the cube 0.2 · [0,1]6. In case (e), we let r = 202

and choose both di and d̄i as one of 20 evenly distributed
points on a sphere of radius 0.2 in R3.

6.2. Swept volumes of vibrating parts.

Fig. 6.a shows the evenly sampled surface of a car part X ,
which assumes all poses in some cloud A . The motion of
the part, i.e., the poses in A , could for example be given
by simulating vibration. The result of the action of A on X
is shown in Fig. 6.b and Fig. 6.c. A detail of the oriented
envelope is shown in Fig. 7 (the pose cloud A used in the
figure does not come from an actual simulation).

7. Conclusion

We have shown how to compute the swept volume of a solid
given by a triangle mesh under the action of a full-dimen-
sional set of poses, which can be thought of either as tol-

erance zone of an imprecisely defined pose, or as a set of
poses obtained by measurements or simulation. The algo-
rithms are based on geometric properties of normal vectors
of pose clouds and oriented envelopes. Thus the problem
which a priori is difficult and requires searching in high di-
mensions, is reduced to dimension two.

Appendix: The matrix exponential and logarithm.

The matrix exponential function is defined by the power se-
ries exp(M) = ∑k≥0 Mk/k!, and “log” is its local inverse
such that log(E) = 0. It is well known from linear algebra
that for all poses α = (A,a) there is a pose β with

βαβ
−1 =

[
1 0
ã Ã

]
, where Ã =

 cosφ −sinφ 0
sinφ cosφ 0

0 0 1

, ã =

 0
0

a3

.
Together with log(β

−1
αβ) = β

−1(logα)β we can now com-
pute logα for any pose α:

log
[

1 0
ã Ã

]
=
[

0 0
ã S̃

]
, with S̃ =

 0 −φ 0
φ 0 0
0 0 0

.
“log” is only locally unique, just as the arcsin and arccos
functions. Obviously “log” can be unambiguously defined
in the neighbourhood of the identity defined by −π< φ< π.

As to the difference between a matrix and its exponen-
tial expressed by (11), we note that the Frobenius norm
‖M‖ = (tr(MT M))1/2 is multiplicative in the sense that
‖M ·N‖≤‖M‖·‖N‖ for all M and N. The power series of the
exponential function then yields the following easy estimate:
‖exp(M)− (En +M)‖= ‖∑k≥2 Mk/k!‖ ≤∑k≥2 ‖M‖k/k! =
g(‖M‖), where g(t) = et−1−t. For the special case of block
matrices for infinitesimal motions as in (5), the previous in-
equality leads to (11).

Appendix: Every normal vector actually occurs.

The proof of Prop. 6 uses the concept of Brouwer degree of
a mapping, its homotopy invariance and the following facts:
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the degree of a diffeomorphism equals±1, and the degree of
a mapping which is not onto equals zero [Mil65].

Proof: (of Prop. 6) Normal vectors of A do not change if
we multiply A with a pose β from the left. Thus we can
without loss of generality assume that α = (E,0) and log

α
=

log. We consider the mapping ν0 which assigns to a pose
its outward unit normal vector. It is well known that there
is a smooth isotopy of log(∂A ) to a sphere, which without
loss of generality can be made arbitrarily small and close to
(0,0) ∈ R3+3. By applying “exp” we get a smooth isotopy
from ∂A to a surface M1, which is the exponential of a small
sphere. With (11) the normal vectors of M1 are arbitrarily
close to the normal vectors of a sphere, so the mapping ν1
which assigns to each pose in M1 the outward unit normal
vector is 1-1 and onto. It follows that deg(ν1) = deg(ν0) =
±1, so ν0 is onto. �
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