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Abstract
We show that a simple modification of the power crust algorithm for surface reconstruction produces correct
outputs in presence of noise. This is proved using a fairly realistic noise model. Our theoretical results are related
to the problem of computing a stable subset of the medial axis. We demostrate the effectiveness of our algorithm
with a number of experimental results.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Surface Reconstruction,
Medial Axis, Noisy samples

1. Introduction

Surface reconstruction is an important problem in geometric
modeling. It has received a lot of attention in the computer
graphics community in recent years because of the develop-
ment of laser scanner technology and its wide applications
in areas such as reverse engineering, product design, medi-
cal appliance design and archeology, among others.

Different approaches have been taken to the problem, in-
cluding the work of Hoppe, DeRose et al which popular-
ized laser range scanning as a graphics tool [HDD∗92], the
rolling ball technique of Bernardini et al [BMR∗99], the vol-
umetric approach of Curless et al [CL96] used in the Digital
Michelangelo project [LPC∗00], and the radial basis func-
tion method of Beatson et al. [CBC∗01].

The algorithms [ABK98, ACDL00, BC02, ACK01a] uses
the Voronoi diagram of the input set of point samples to
produce a polyhedral output surface. A fair amount of the-
ory was developed along with these algorithms, which was
used to provide guarantees on the quality of the output under
the assumption that the input sampling is everywhere suffi-
ciently dense. The theory relates surface reconstruction to
the problem of medial axis estimation in interesting ways,
and shows that the Voronoi diagram and Delaunay triangu-
lation of a point set sampled from a two-dimensional surface
have various special properties. Some strengths of the sam-
pling model used are that the required sampling density can
vary over the surface with the local level of detail, and that

over-sampling, in arbitrary ways, is allowed. One drawback
is that it assumes that the sample is free of noise.

When noise is considered as well, the quality of the out-
put is related to both the density and to the noise level of
the sample. A small number of recent results have begun to
explore the space of what it is possible to prove under vari-
ous noisy sampling assumptions. Dey and Goswami [DG04]
proposed an algorithm for which they could provide many
of the usual theoretical guarantees, using a model in which
both the sampling density and the noise level can vary with
the local level of detail, but which gives up the arbitrary over-
sampling property. A real noisy input, however, might well
have arbitrary over-sampling but the sampling density and
noise level usually varies unpredictably, independent of the
local level of detail.

In this paper, we show that similar results can be achieved
given bounds on the minimum sampling density and maxi-
mum noise level, but allowing arbitrary over-sampling.

Related Work

Most of the algorithms using the Voronoi diagram and De-
launay triangulation of the samples, for which a variety of
theoretical guarantees can be provided, require the input to
be noise-free [AB99, ACDL00, ACK01b, BC02]. In prac-
tice some of these algorithms are more sensitive to noise than
others. The recent algorithm of Dey and Goswami [DG04]
extends much of the theory developed in the noise-free case
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Figure 1: A two dimensional example of the power crust al-
gorithm. a) An object and its medial axis. b) The voronoi di-
agram and its poles, the blue points corresponding to poles
and the circles corresponding to polar balls. c) The set of
inner and outer polar balls. d) The power diagram of the set
of polar balls. The algorithms labels the cells of this power
diagram inner or outer. e) The set of faces in the power dia-
gram which separate inner from outer cells.

to inputs with noise. We do the same with a less restrictive
sampling model, as described in more detail in Section 2.2.

Both our algorithm and that of Dey and Goswami are ex-
tensions of the power crust algorithm proposed by Amenta,
Choi and Kolluri [ACK01b]. This algorithm is illustrated
in Figure 1. Given an input sample P of points on a sur-
face S, it selects from the Voronoi diagram of P a set V of
Voronoi vertices, the poles, which approximate the medial
axis transform of S. It then uses the power diagram (a kind
of weighted Voronoi diagram) of the set of Delauanay balls
centered at V (the polar balls) to recover a polyhedral sur-
face representation.

Voronoi-based surface reconstruction techniques in gen-
eral are closely related to Voronoi-based algorithms for me-
dial axis estimation (in fact the power crust code is probably
more often used for the latter problem). Yet another noisy
sampling model was used by Chazal and Lieutier [CL05] in
a recent paper on medial axis estimation: their sampling re-
quirement is simply that the Hausdorff distance between the

point sample and the surface itself is bounded by some con-
stant r. Notice that this allows for arbitrary over-sampling,
but does not allow the sampling density to vary over the sur-
face according to the local level of detail. Chazal and Lieu-
tier proved, drawing on more general results, that a subset of
the Voronoi diagram of P approaches a subset of the medial
axis of S as r → 0, and that both converge to the entire me-
dial axis. It is tempting to apply Chazal and Lieutier’s result
directly to the surface reconstruction problem, by using the
power crust approach to produce a polyhedral surface from
their approximate medial axis. But this is not as straightfor-
ward as it might seem: their medial axis estimation includes
Voronoi edges and two-faces as well as vertices, while the
analysis of the power crust relays on having an approxima-
tion of the medial axis by Voronoi vertices. Also, the subset
of the medial axis approximated by Chazal and Lieuter is not
guaranteed to be homotopy equivalent to the complete me-
dial axis, or to the object, since the sampling is not required
to be dense enough to capture the smallest topological fea-
ture.

Recently similar techniques have been used to analyze
a particular smooth surface determined by a noisy sets of
samples [Kol05], a variant of the MLS surface definition of
Levin [Lev03]. In this case arbitrary over-sampling seems
to be ruled out, since the surface locally averages the input
samples and malicious over-sampling could influence the lo-
cal averages. There is also a recent algorithm for curve re-
construction from a noisy sample [CFG∗03] with theoretical
guarantees, for which the sampling model has the interest-
ing property that the quality of the output improves with in-
creased sampling density, even when the noise level remains
constant. The sampling model used is not particularly realis-
tic, but the property seems quite relevant to practice.

2. Geometric Definitions and Sampling Assumptions

2.1. Defnitions and Notation

We will use the following notation. For any set X ⊂ R3,
o
X ,

Xc and ∂X denote respectively the interior of X , the comple-
ment of X and the boundary of X . Given a point x and a set
Y we denote by d(x,Y ) = infy∈Y d(x,y). Given any two set
X and Y we denote by d̃H(X ,Y ) = supx∈X d(x,Y ) the one-
sided Hausdorff distance from X to Y and by dH(X ,Y ) =
max{d̃H(X ,Y ), d̃H(Y,X)} the Hausdorff distance between X
and Y . We denote by Bc,ρ a ball with center c and radius ρ.

We will consider two-dimensional, compact, and C2 man-
ifolds without boundary, and we will call such a manifold a
smooth surface. Let S be a smooth surface. We will assume
that S is contained in an open, bounded domain Ω (eg, a big
open ball). The surface S divides Ω into two open solids,
the inside (inner region) and the outside (outer region) of S,
which are disconnected.

The medial axis M of a surface S is the closure of the set
of points in Ω that have at least two distinct nearest points
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on S. Note that the set M is divided into two parts, the inner
and outer medial axis, belonging to the inner or outer region
of the surface S, respectively. The ball Bm,ρm centered at a
medial axis point m with radius ρm = d(m,S) will be called
a medial ball. It is easy to see that a medial ball is maximal

in the sense that there is no ball B with
o
B ∩ S = ∅ which

contains Bm,ρm .

The medial axis M is a bounded set, since in our definition
it is contained in the bounded domain Ω. So there exits an
upper bound ∆0 for the radius of the medial balls.

2.2. Sampling and Noise Models

There are at least two good approaches to defining sampling
and noise models. First, we can begin with a model which
we believe roughly describes the characteristics of reason-
able input data sets, and then show that our algorithm works
correctly on data that fits the model. The second approach
would be to begin with the algorithm, and describe the data
sets for which the algorithm is correct as broadly as possi-
ble, and then argue that this broad class of possible inputs
includes reasonable input data sets (possibly among others).
This is the approach taken in the analysis of many of the
Voronoi-based surface reconstruction algorithms, as follows.

For a point x∈ S, we define lfs(x) = d(x,M). This lfs func-
tion is used to determine the required sampling density; it is
small in regions of high curvature or where two patches of
surface pass close together, and larger away from such re-
gions of fine detail.

A finite set of points P is a r-sample of the surface S if P ⊂
S and if for any x ∈ S there is a point p ∈ P with d(x, p) ≤
r lfs(x).

The points of a noisy sample P for S lie near but not on the
surface. Let P̃ be the projection of the set P onto S, taking
each point p∈ P to its closest point p̃∈ S. Dey and Goswami
in [DG04] introduced the definition of a noisy (k,r)-sample:

Definition 1 Noisy (k,r)-sample. A finite set of points P is a
noisy (k,r)-sample if the following conditions hold:

1. P̃ is a r-sample of S.
2. For any p ∈ P; d(p, p̃)≤ c1 r lfs( p̃) for some constant c1.
3. For any p ∈ P; d(p,q) ≥ c2 r lfs( p̃), where q is the kth

nearest sample to p, for some constant c2.

Here the first condition requires the sample to be dense
enough, the second condition bounds the noise level, and the
third condition requires that the sample is nowhere too dense
(by requiring the kth nearest sample to be far enough away).
The third condition does not seem strictly necessary, and one
of the contributions of this paper is to show that indeed it is
not, at least for many of the geometric results used in the
analysis. We will adopt a definition which we call a noisy
r-sample, essentially only using conditions i) and ii):

Definition 2 Noisy r-sample. A finite set of points P is a
noisy r-sample if the following two conditions hold:

1. P̃ is a r-sample of S.
2. For any p ∈ P, d(p, p̃)≤ k1 r lfs( p̃), for some constant k1.

We define lfs(S) = minx∈S lfs(x) for the surface as a
whole. Assuming S is C2 we have lfs(S) > 0 [APR02].
We also define the maximum local feature size ∆1 =
maxx∈S lfs(x) and we have ∆1 ≤ ∆0 (recall that ∆0 is the
radius of the largest medial ball).

3. Geometric constructions and the algorithm

To avoid to dealing with infinite Voronoi cells, we add to the
sample set P a set Z of eight points, the vertices of a large
box containing Ω.

The concept of poles was defined by Amenta and Bern
[ACK01b] as follows:

Definition 3 The poles pi, po of a sample p ∈ P, are the
two vertices of its Voronoi cell farthest from p, one on either
side of the surface. The Voronoi balls Bpi,ρpi

, Bpo,ρpo
are the

polar balls with radii ρpi = d(pi, p) and ρpo = d(po, p) re-
spectively.

Notice that given a noisy sample set not all Voronoi cells
are long and skinny, as they are in the noise-free case.

A polar ball Bv,ρv is classified as an inner (outer) polar ball
if its center is inside the inner (outer) region of R3 \ S. We
denote by PI and PO the set of all inner and outer polar balls,
respectively.

Algorithm

Our algorithm consists of a very simple modification to the
power crust algorithm: we discard any poles such that the
radius of the associated polar ball is smaller than lfs(S)

c where
c > 1 is a constant.

This can be summarized as follows.

Algorithm 3.1 Power Crust
1. Compute the Delaunay Diagram of P∪Z.
2. Determine the set P of polar balls.
3. Delete from P any ball of radius < lfs(S)

c , producing P
′.

4. Compute the power diagram of P
′

5. Label the balls in P
′ as outer balls or inner balls, resulting in

the sets BO and BI .
6. Determine the faces in Pow(BO ∪BI) separating inner from
outer cells.

We discuss the labeling in step five in the full version
of the paper [MAVdF05]. It is done using exactly the same
method as in the original power crust algorithms, but to show
that it remains correct in the noisy case we need to prove a
few more lemmas.
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Analysis Overview

Most of our paper is concerned with the proof that this
simple modification produces an output polyhedral surface
which is correct, topologically and geometrically, given a
noisy r-sample. Some of the lemmas are true for constant
r independent of S, The lemmas 6-9 and Theorems 1 and 2
requires r = O(

lfs(S)
∆1

).

We prove that a subset of the medial axis can be well ap-
proximated by the set of poles, this is stated in Lemma 6.
As a consequence of this fact we prove in Lemma 8 that the
boundary of the union of the set of big inner (outer) polar
balls (see Equations 1 and 2 ) is close to the sampled sur-
face, in the sense of Hausdorff distance. We use this fact in
turn to show that the Hausdorff distance between the power
crust and the sampled surface is O( 4

√
r) (Theorem 1) and

that the power crust is homeomorphic to the original surface
S (Theorem 2).

4. Union of polar balls

Given a constant c > 1 we define the following two polar
ball subsets:

BI = { Bc,ρc ∈ PI : ρc ≥ lfs(S)

c
} (1)

BO = { Bc,ρc ∈ PO : ρc ≥ lfs(S)

c
} (2)

The sets BI and BO are the sets of balls retained in our mod-
ified power crust algorithm. Their respective boundary sets
are: SI = ∂(

⋃

B∈BI
B) and SO = ∂(

⋃

B∈BO
B). Our goal will

be to prove that the boundary sets SI and SO are close to
the surface S. Moreover, we will prove that a subset of the
two-dimensional faces of the power diagram of BI ∪BO is
homeomorphic to the surface S.

Our proofs will also use another pair of subsets of the po-
lar balls. We denote by B′

I and B′
O the set of inner and outer

polar balls where each ball contains a medial axis point. That
is,

B
′
I = { Bc,ρc ∈ PI : Bc,ρc ∩M 6= ∅ } (3)

B
′
O = { Bc,ρc ∈ PO : Bc,ρc ∩M 6= ∅ } (4)

The following lemma proves that B′
I ⊂ BI and B′

O ⊂ BO
respectively.

Lemma 1 B′
I ⊂ BI and B′

O ⊂ BO, for c > 2 and r < c−2
k1c .

Proof Take a ball Bx,ρ ∈ B′
I (Bx,ρ ∈ BO). There exists a

sample p on ∂Bx,ρ and there exists an inner (outer) medial
axis point m inside Bx,ρ. Then we have that d( p̃, p)+ 2ρ ≥
d( p̃, p)+d(p,m) ≥ d( p̃,m) ≥ lfs( p̃), and consequently ρ ≥
lfs(p̃)−d(p̃,p)

2 ≥ 1−k1·r
2 · lfs( p̃). Taking r ≤ c−2

k1c we get that
ρ ≥ lfs( p̃)/c ≥ lfs(S)/c.

The next lemma is a consequence of the sampling require-
ments and will be used for later proofs.

Lemma 2 Given P a noisy r-sample of S, let D be a ball

with
o
D∩P = ∅ and D∩ S 6= ∅, let x be a point in D∩ S. If

B(x,ρx) ⊂ D then ρx ≤ r(1+2k1)lfs(x).

Proof By sampling condition 1 of Definition 2. there exists
a sample q such that d(x, q̃) ≤ r lfs(x). Using the fact that lfs
is a one-Lipschitz function we have that lfs(q̃) ≤ d(q̃,x) +
lfs(x) ≤ r lfs(x)+ lfs(x) = (1+ r)lfs(x).
By the sampling condition 2 and the previous equation we
get d(x,q) ≤ d(x, q̃)+ d(q̃,q) ≤ r lfs(x)+ k1 r lfs(q̃) ≤ (r +

2k1r)lfs(x). Since
o
D∩P = ∅ one deduces that

o
B(x,ρx)∩P =

∅, hence ρx ≤ d(x,q) ≤ r(1+2k1)lfs(x).

Also we have the following lemma from Amenta and Bern
[AB99] which estimates the angle between the normals to
the surface at two close points.

Lemma 3 For any two points p and q on S with d(p,q) ≤
r min{lfs(p), lfs(q)}, for any r ≤ 1

3 , the angle between the
normals to S at p and q is at most r

1−3r .

A central idea in Voronoi-based surface reconstruction is
that the Voronoi cells of a dense enough noise-free sam-
ple are long, skinny and perpendicular to the surface. This
is not true for all Voronoi cells when there is noise, but
the following lemma shows that it is true for large enough
Voronoi cells. Specifically, given a sample point p and a
point x ∈ Vor(p) we bound the angle between the vector ~xp
and the surface normal ~n p̃ at the projection of the sample
p onto S. The lemma states that when x is far away from p,
then this angle has to be small. In the noise-free case, “small"
meant O(r); here we achieve a bound of only O(

√
r).

Lemma 4 Let p ∈ P be a sample such that there exists a
point x on the inner (outer) region of the Voronoi cell of p
with distance ρx between x and p satisfying the inequality
ρx ≥ lfs(p̃)

c1
for some constant c1. Then the angle between the

vector ~xp and the oriented outward (inward) surface normal
~n p̃ is O(

√
r).

Proof Denote by Bm,ρm the outer (inner) medial ball tangent
to the surface S at p̃. Let Bx,ρx be the ball centered at x with
radius ρx = d(x, p). Since x is in the Voronoi cell of p we

have
o
Bx,ρx ∩P = ∅.

The angle between the vectors ~xp and ~n p̃ is the sum
∠(t,x, p)+∠(t,m, p), where the segment pt is perpendicu-
lar to xm, see figure 2. Our aim will be to find upper bounds
for the angles ∠(t,x, p) and ∠(t,m, p), respectively. Since
d(x, t) < d(x, p) = ρx, we have that t ∈ Bx,ρx , and the fol-
lowing two situations are possible: either t ∈ Bm,ρm ∩Bx,ρx

or t ∈ Bc
m,ρm ∩Bx,ρx .

First case: t ∈ Bm,ρm ∩Bx,ρx , see figure 2 left. Since t ∈ Bm,ρm

we have that t is on the outer (inner) region of Ω\S and the
ray lx containing x and t intersects the surface at the point ts
lying between the points x and t, therefore ts ∈Bx,ρx since the
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Figure 2: Left: Illustration of Lemma 4, a fundamental result describing the shape of the Voronoi cells. When there exists a point
x in Vor(p) such that d(x, p) ≥ lfs(p̃)

c then the angle between the segment ~xp and the normal ~n p̃ is a O(
√

r). Center: FIgures
used in the proof of Lemma 4. t ∈ Bm,ρm ∩Bx,ρx . Right t ∈ Bc

m,ρm ∩Bx,ρx

segment [x, t] ⊂ Bx,ρx . Moreover, the ray lx intersects ∂Bx,ρx

at the point bx, see figure 2. Using that ts ∈ Bx,ρx we have, for
small enough r, the following inequality that will be useful
later:

lfs(ts) ≤ d(ts, p̃)+ lfs( p̃) ≤ ρx +d(x, p)+d(p, p̃)+ lfs( p̃)

≤ 2ρx +(1+ r · k1)lfs( p̃) ≤ (2+2c1)ρx = kc ρx (5)

Because the points ts and bx are inside the ball Bx,ρx we have
that Bts,d(ts,bx) ⊂ Bx,ρx . Since Bx,ρx is empty of samples (be-
cause ρx is the distance of x to its closest point in P), we have
that Bts,d(ts,bx) is also empty of samples. Consequently, by
Lemma 2, we obtain d(ts,bx) ≤ O(r) lfs(ts). From this last
equation together with equation 5 and the fact that t ∈ [bx, ts]
we obtain the following two inequalities:

d(t,bx) ≤ d(ts,bx) ≤ O(r)lfs(ts) ≤ O(r)ρx (6)

d(t, ts) ≤ d(ts,bx) ≤ O(r)lfs(ts) ≤ O(r)ρx (7)

Consequently, by 6 we have d(t,x) = ρx − d(t,bx) ≥ (1−
O(r))ρx, hence

d(p, t) =
√

d(p,x)2 −d(x, t)2 = O(
√

r)ρx (8)

so, the angle ∠(t,x, p) is bounded by

∠(t,x, p) = arcsin
(

d(p, t)
ρx

)

= O(
√

r) (9)

On the other hand, since t ∈ Bm,ρm , we have that lfs(ts) <
d(ts, t)+d(t,m) ≤ O(r)lfs(ts)+ρm, thus obtaining lfs(ts) <

ρm
1−O(r) . Because the points m, t, ts are collinear, t ∈ Bm,ρm

and ts /∈
o
Bm,ρm . So we obtain the following lower bound for

the distance between t and m:

d(t,m) ≥ ρm −d(t, ts) ≥ ρm −O(r)lfs(ts) > (1−O(r))ρm

.
Since lfs( p̃) < ρm, and using the sampling conditions, we
get that d(p,m) < d(m, p̃)+d( p̃, p)≤ (1+O(r))ρm, conse-
quently

d(p, t) =
√

d(p,m)2 −d(t,m)2 = O(
√

r)ρm (10)

We have that ρm = d(m, p̃) ≤ d(m, p) + d(p, p̃), so using
that lfs( p̃) < ρm we have d(m, p) ≥ ρm − d( p̃, p) ≥ (1 −
O(r))ρm. From this equation and Equation 10 we can bound
the angle ∠(t,m, p) as follows:

∠(t,m, p) = arcsin
(

d(p, t)
d(m, p)

)

= O(
√

r) (11)

Therefore, from 9 and 11 we have that our target angle
∠(t,x, p)+∠(t,m, p) is O(

√
r).

Second case: t ∈ Bc
m ∩ Bx,ρx (Note that this case implies

that Bm,ρm ∩ Bx,ρx = ∅). Since t /∈ Bm,ρm and d(p,m) ≥
d(t,m) we obtain that p /∈ Bm,ρm , consequently we have
that d(t,∂Bm,ρm)≤ d(p,∂Bm,ρm) = d(p, p̃)≤O(r)lfs( p̃), see
Figure 2 right. From this inequality and using the fact that
t ∈ Bx,ρx we get

d(t,x) ≥ ρx −d(t,∂Bm,ρm) ≥ ρx −O(r)lfs( p̃) (12)

Since lfs( p̃) ≤ d( p̃, p) + d(p,x) ≤ O(r)lfs( p̃) + ρx we get
lfs( p̃) ≤ ρx

1−O(r) . Consequently Equation 12 can be rewrit-
ten in terms of ρx, that is d(t,x) ≥ ρx −O(r)lfs( p̃) ≥ (1−
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O(r))ρx. We deduce the following upper bound for the dis-
tance between p and t

d(p, t) =
√

d(p,x)2 −d(t,x)2 = O(
√

r)ρx

Therefore, we have ∠(t,x, p) = arcsin
(

d(p,t)
d(x,p)

)

≤
arcsin

(

O(
√

r)ρx
ρx

)

= O(
√

r).

On the other hand, since t /∈ Bm,ρm we get d(t,m) >
ρm. d(p,m) ≤ d(p, p̃)+ d( p̃,m) ≤ O(r)lfs( p̃)+ ρm = (1 +
O(r))ρm, and hence

d(p, t) =
√

d(p,m)2 −d(t,m)2 = O(
√

r)ρm

and the angle ∠(t,m, p) = arcsin
(

d(p,t)
d(p,m)

)

≤
arcsin

(

O(
√

r)ρm
ρm

)

= O(
√

r). Thus we conclude that the

angle ∠(t,x, p)+∠(t,m, p) is O(
√

r).

As a consequence of this lemma, we have that the inner and

outer parts of the medial axis M are inside the sets
⋃

B∈BI

o
B

and
⋃

B∈BO

o
B respectively, this is stated in the next lemma.

Lemma 5 Given an inner (outer) medial axis point m, then
there exists an inner (outer) polar ball B ∈ BI (B ∈ BO) such

that m ∈
o
B.

Proof There exists a sample p such that m is inside its
Voronoi cell. Denote by q the inner (outer) pole of p. Then
by the definition of local feature size we have d(m, p̃) ≥
lfs( p̃). By the triangle inequality we have d(m, p) +
d(p, p̃)≥ d(m, p̃), so we have d(m, p)≥ d(m, p̃)−d(p, p̃)≥
lfs( p̃) − r k1 lfs( p̃). Taking r ≤ 1

2k1
we get d(m, p) ≥

lfs(p̃)
2 . This fact along with Lemma 4 implies that the an-

gle ∠( ~mp,~n p̃) = O(
√

r), using the same argument. Since
d(q, p) ≥ d(m, p) we obtain ∠(~qp,~n p̃) = O(

√
r). Hence we

obtain ∠(~qp, ~mp) = O(
√

r).
We take r small enough such that ∠(~qp, ~mp) ≤ π

4 . Since
d(m, p) ≤ d(q, p) we find that m is inside the interior of
the inner (outer) polar ball Bq,d(q,p). Hence, we have that
Bq,d(q.p) ∈ B′

I (Bq,d(q,p) ∈ B′
O). By Lemma 1, B′

I ⊂ BI

(B′
O ⊂ BO), completing the proof.

From now on assure that r = O(lfs(S)/∆1). We will show
that the medial axis points m with angle ∠qmx1 sufficiently
large are well approximated by poles. The point q is the clos-
est sample to m and x1 is the closest sample of the closest
surface point to m.

Lemma 6 Let m be a inner (outer) medial axis point such that
m ∈ Vor(q) for some sample q and let p be the inner (outer)
pole of Vor(q). Let x̃ ∈ S be the closest point to m on S and x1
the closest sample to x̃. Then we have |d(m,x1)−d(m,q)| ≤
O(r) and if the angle ∠x1mq >

√
r, then d(m, p) = O(

√
r)

and |d(m, x̃)−d(p,q)| ≤ O(
√

r)

Proof See lemma 6 in the full version of the paper
[MAVdF05]

Using this fact, lemma 6, one can derives that the bound-
aries SI and SO of the union of balls

⋃

B∈BI
B and

⋃

B∈BO
B

are close to the surface S. This is stated in lemma 8, to prove
this lemma a technical lemma 7 is first introduced.

Lemma 7 Let Bc1,ρ1 and Bc2,ρ2 be two balls with Bc1,ρ1 ∩
Bc2,ρ2 6= ∅ and Bc2,ρ2 6⊂Bc1,ρ1 . Let ε < ρi, i = 1,2 be such that
d(c1,c2)≤ ε and |ρ1−ρ2| ≤ ε. Let x2 be a point on ∂Bc2,ρ2 \
Bc1,ρ1 and {x1} = [c2,x2]∩∂Bc1,ρ1 . Then d(x1,x2) ≤ 2ε.

Proof We have d(x1,x2) = ρ2 −d(c2,x1). By the triangular
inequality we have d(c2,x1) ≥ d(c1,x1)− d(c2,c1) = ρ1 −
d(c2,c1). From these two inequalities we obtain d(x1,x2) ≤
ρ2 −ρ1 +d(c2,c1) ≤ |ρ2 −ρ1|+d(c2,c1) ≤ 2ε

Lemma 8 dH(SI ,S) ≤ O( 4
√

r) and dH(SO,S) ≤ O( 4
√

r).

Proof We show that dH(SI ,S)≤O( 4
√

r); the argument for SO
is identical. We begin by showing that d̃H(SI ,S) ≤ O( 4

√
r).

Consider any point x ∈ SI . First assume that x is on the out-
side of S. Let Bc,ρc be a polar ball in BI such that x ∈ ∂Bc,ρc .
Then the segment [c,x] from the center of the polar ball to
x intersects S in a point s. Since the ball Bs,d(s,x) is inside
the polar ball Bc,ρ, Lemma 2 implies that d(x,S) ≤ d(x,s) =
O(r) and we are done.
So let us assume that x ∈ SI is in the inner region of S. Let
x̃ ∈ S be the closest point to x on S, and let mx̃ be the center
of the inner medial axis ball Bmx̃,ρx̃ tangent to S at x̃. Then
we have that x is inside the segment [x̃,mx̃]; otherwise the

ball Bx,d(x,x̃) with
o
Bx,d(x,x̃)∩S = ∅ contains Bmx̃,ρx̃ which is a

contradiction due to the ball Bmx̃,ρx̃ is maximal.
The medial axis point mx̃ belongs to the Voronoi cell
of some sample point q, let p and Bp,ρp be the in-
ner pole of q and its polar ball respectively. The first
part of lemma 6 states that the distances d(mx̃,x1) and
d(mx̃,q) where x1 is the closest sample to x̃ are very
close, that is |d(mx̃,x1) − d(mx̃,q)| ≤ O(r). Suppose that
the angle ∠qmx1 ≤ √

r, this implies that d(x1,q) is small.
Since d(mx̃,q) ≤ d(mx̃,x1), then there exists a point q1
in the segment mx̃x1 such that d(mx̃,q1) = d(mx̃,q) and
d(x1,q1) = |d(mx̃,x1) − d(mx̃,q)| ≤ O(r). Therefore, us-
ing that ∠x1mq ≤ √

r we have d(q,x1) ≤ d(q,q1) +
d(q1,x1) ≤ 2sin(∠x1mq/2)d(m,q) + O(r) ≤ O(

√
r) and

consequently d(x̃,q) ≤ d(x̃,x1) + d(x1,q) ≤ O(r)lfs(x̃) +
O(

√
r) = O(

√
r).

On the other hand, the lemma 4 implies that ∠pqm = O(
√

r),
from this fact and using that lfs(S)/2 ≤ lfs(q̃)/2 ≤ lfs(q̃)−
d(q, q̃) ≤ d(m,q) ≤ d(p,q) we have for r small enough that
mx̃ ∈ Bp,ρp and consequently Bp,ρp ∈B′

I ⊂BI . The point x̃ /∈
Bp,ρp because, otherwise x ∈ Bp,ρp which is a contradiction
with x ∈ SI . Therefore, there exists x2 = [x̃,mx̃]∩∂Bp,ρp and
x∈ [x̃,x2]. From the fact that d(x̃,q)≤O(

√
r) and q∈ ∂Bp,ρp

we get that d(x̃,x) ≤ d(x̃,x2) ≤
√

d(x̃,q)2 +2ρpd(x̃,q) =
O( 4

√
r) and we are done.

Now we consider the case ∠qmx1 >
√

r. The lemma 6
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implies d(m, p) ≤ O(
√

r) and |ρx̃ − ρp| = O(
√

r). Since
d(m, p) ≤ O(

√
r), then for r small enough mx̃ belongs to

Bp,ρp and consequently Bp,ρp ∈ B′
I ⊂ BI . Recall that x̃ ∈ S

and that x ∈ [x̃,mx̃]. If x̃ is inside
o
Bp,ρp , then [x̃,mx̃] ⊂

o
Bp,ρp ,

so that x ∈
o
Bp,ρp . But this contradicts the fact that x ∈ SI .

Hence it must be the case that x̃ is on ∂Bmx̃,ρx̃ \
o
Bp,ρp .

Let x2 = [mx̃, x̃]∩ ∂Bp,ρp (this intersection point is unique).
We have that x ∈ [x2, x̃]; otherwise, x ∈ (mx̃,x2), the portion

of the segment inside
o
Bp,ρp , which again is a contradiction

with the fact that x ∈ SI and Bp,ρp ∈ BI . Now applying
Lemma 7, we have that d(x2, x̃) ≤ 2O(

√
r) and d(x, x̃) ≤

d(x2, x̃) ≤ O(
√

r), so we have proved that d̃H(SI ,S) ≤
O(

√
r).

Now we will prove that d̃H(S,SI) ≤ O(
√

r). Let x be an
arbitrary point on S and let Bm and Bm′ be the inner and
outer medial balls tangent to S at x respectively. The segment
[m,m′] is orthogonal to S at x.
Now we will establish that there exists a point x1 on SI ∩
(m,m′). Suppose not; then SI ∩ (m,m′) = ∅, and there ex-
ists a ball Bc,ρ ∈ BI such that m′ ∈ Bc,ρ. Since c and m′

are on opposite sides of S, then the segment [c,m′] inter-
sects S at a point s, so we have that m′ ∈ Bs,d(s,∂Bc,ρ) ⊂ Bc,ρ
with Bs,d(s,∂Bc,ρ) empty of samples. From Lemma 2 we have
d(s,∂Bc,ρ) = O(r)lfs(s) < d(s,m′), which implies that m′ /∈
Bs,d(s,∂Bc,ρ), obtaining a contradiction we the fact that the
segment [s,m′] is contained in Bs,d(s,∂Bc,ρ).
We can conclude there exists a point x1 on SI ∩ (m,m′).
Since the closest point to x1 on S is the point x (the segment
[x1,x] is orthogonal to the surface at x), we have d(x,x1) =
d(x1,S) ≤ d̃H(SI ,S) ≤ O( 4

√
r). Hence d(x,SI) ≤ O( 4

√
r) and

consequently d̃H(S,SI) ≤ O( 4
√

r).

5. Power Crust

The power diagram of a set of balls B is the weighted
Voronoi diagram which assigns an unweighted point x to the
cell of the ball B ∈ B which minimizes the power distance
dpow(x,B). The power distance between a point and a ball
dpow(x,Bc,ρ) = d(x,c)2−ρ2. We denote it by Pow(BI ∪BO).
In the next two theorem we will prove that Pow(BI ∪BO) is
a polyhedral surface homeomorphic and close to the original
surface S.

Taking ε < lfs(S) we denote by Nε = {x ∈ R3 : d(x, x̃) ≤
ε} a tubular neighborhood around S. The boundary of Nε is
Sε

⋃

S−ε where S±ε = {x ∈R3 : x = x̃±εnx̃} are two offset
surfaces. When dH(SI ,S) < ε and dH(SO,S) < ε (Lemma 8),
the boundary SI (SO) of the sets

⋃

B∈BI
B (

⋃

B∈BO
B) is in-

side the set Nε and consequently the sets Sε and S−ε are in-
side the interior of the sets

⋃

B∈BO
B and

⋃

B∈BI
B respec-

tively.

Theorem 1 If dH(SI ,S) ≤ ε and dH(SO,S) ≤ ε then the
Hausdorff distance between Pow(BI ∪BO) and S is smaller
than 2ε.

Proof Let I(S−2ε) be the part of Ω\S−2ε inside the interior
part of S and let O(S2ε) be the part of Ω\ S2ε inside the ex-
terior of S. Hence, we have Ω\N2ε = I(S−2ε)∪O(S2ε) with
I(S−2ε)∩O(S2ε) = ∅. From the conditions dH(SI ,S)≤ ε and
dH(SO,S) ≤ ε we can deduce that O(S2ε) ⊂ (

⋃

B∈BO
B) and

I(S−2ε) ⊂ (
⋃

B∈BI
B). Also one has (

⋃

B∈BI
B)∩O(S2ε) = ∅

and (
⋃

B∈BO
B)∩ I(S−2ε) = ∅.

First we will prove that d̃H(Pow(BI ∪BO),S) ≤ 2ε. This is
equivalent to proving that Pow(BI ∪BO) ⊂ N2ε. Let f be a
face of Pow(BI ∪BO) separating the cell of the ball B1 ∈ BI
from the cell of the ball B2 ∈BO and let x be a point on f . Be-
cause dpow(x,B2) = dpow(x,B1) we know that dpow(x,B2)
and dpow(x,B1) have the same sign, implying that when it is
negative then x ∈ B1∩B2 and otherwise x /∈ ⋃

B∈BI
⋃

BO
B. In

the first case because x is simultaneously in (
⋃

B∈BI
B) and

(
⋃

B∈BO
B) then from the previous observation at the begin-

ning of the lemma one deduces that x ∈ N2ε.
The second cases we have x /∈ ⋃

B∈BI
⋃

BO
B, but due to

O(S2ε)⊂ (
⋃

B∈BO
B) and I(S−2ε)⊂ (

⋃

B∈BI
B) then we have

that x ∈ N2ε.
Now we will prove that d̃H(S,Pow(BI ∪BO)) ≤ 2ε. Given
a point x ∈ S the interval [x + 2εnx̃,x − 2εnx̃] has bound-
ary points x + 2εnx̃ and x̃ − 2εn−ε in the interior of the
set

⋃

B∈BI
B and

⋃

B∈BO
B respectively, hence we have that

x̃+2εnx̃ is in the power cell of some ball in BO and x̃−2εnx̃
is in the power cell of some ball in BI , therefore moving a
point along the interval [x̃ + 2εnx̃, x̃− 2εnx̃] it will meet at a
face of the power crust at some point, otherwise it will stay
forever in outer power cells which is a contradiction with the
fact that x̃−2εnx̃ belongs to some inner power cell.

From the above theorem and the fact that dH(SI ,S) =
O( 4

√
r) and dH(SO,S) = O( 4

√
r) we can deduce that

dH(Pow(BI ∪BO),S) = O( 4
√

r).

Now we extend the lemma [23] of Amenta, Choi and Kol-
luri [ACK01b] to a more general setting in which the point
u does not need to be on the surface.

Lemma 9 Given a point u and a ball Bc,ρ ∈ BI (Bc,ρ ∈ BO)
such that d(u,∂Bc,ρ) ≤ O(ε) and u ∈ Nε, then the angle be-
tween the vector ~cu and the outward (inward) normal ~nũ is
O(

√
ε).

Proof See lemma 9 in the full version of the paper
[MAVdF05]

Define by fI(x) = minB∈BI dpow(x,B) and fO(x) =
minB∈BO dpow(x,B) the functions which return the minimum
power distance from x to the sets BI and BO respectively.
Based in this two function the following lemma 2 from
Amenta, Choi and Kolluri [ACK01b] is also valid under our
sampling assumption and for our particular polar ball sets
BI and BO. We show functions fI and fO are strictly mono-
tonic and have a single intersection point along the segment
[x̃ + 2εnx̃, x̃− 2εnx̃] since fI(x̃ + 2εnx̃) fO(x̃ + 2εnx̃) < 0 and
fI(x̃−2εnx̃) fO(x̃−2εnx̃) < 0.
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Figure 3: Bunny and hip-bone models. The vertices of the hip-bone model were randomly perturbed using Gaussian noise,
while noisy points were added to the vertex set of the bunny model to increase the density. The bumpy but topologically correct
outputs shown here were produced by applying our modified power crust algorithm to the noisy point clouds.

Figure 4: View from inside of the hip model. On the left, our proposed method. The feature inside the red circle is the inside
view of the small hole in the middle of the hip which can be seen in Figure 3. On the right, the original power crust algorithm,
which has some artifacts on the interior.

Theorem 2 The power crust of BI
⋃

BO is a polyhedral sur-
face homeomorphic to S.

Proof From the Lemma 8 we have that dH(SI ,S) =
O( 4

√
r) and dH(SI ,S) = O( 4

√
r) and from theorem 1 we

have dH(Pow(BI ∪ BO),S) = O( 4
√

r). We will take ε =
2dH(Pow(BI ∪BO),S) which is smaller than lfs(S) for small
r. Given a point x̃ ∈ S we have [x̃ − εnx̃, x̃ + εnx̃] ⊂ Nε.
Let d : Pow(BI ∪BO) → S the function that given a point
x ∈ Pow(BI ∪BO) assigns the closest point d(x) ∈ S. Due to
the previous lemma we have Pow(BI ∪BO) ( Nε and since
the set of points where the distance function is undefined is
the medial axis then the distance function is well defined on
the power crust.

We will prove it is a homeomorphism. Because the power
crust is a compact set (it is a finite union of compact sets
in this case faces) then we only need to prove that d(·)
is a continuous, one-to-one and onto mapping. The conti-
nuity follows because the distance function to any set is
an one-Lipschitz function. The onto condition follows from
dH(Pow(BI ∪BO),S) ≤ ε, that is for any point x̃ ∈ S there
exists at least a power crust point in [x̃− εnx̃, x̃ + εnx̃] and
given a point in [x̃− εnx̃, x̃ + εnx̃] with ε ≤ lfs(S) its closest
point on S is x̃.
The one-to-one condition. Suppose that it is false, it im-
plies that there are two points x1 and x2 on Pow(BI ∪BO)
such that d(x1) = d(x2) or equivalent x̃1 = x̃2 where x1
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B. Mederos & N. Amenta & L. Velho & L. H de Figueiredo / Surface Reconstruction from Noisy Point Clouds

Figure 5: Reconstruction of the dragon model perturbed with Gaussian noise. The perturbed point cloud is shown on the left.

and x2 belong to [x̃1 − εnx̃1 , x̃1 + εnx̃1 ]. Given a point x ∈
[x̃1 − εnx̃1 , x̃1 + εnx̃1 ] let Bcx,ρx ∈ BI be a ball which satisfies
dpow(x,Bcx,ρx) = fI(x). Let Bx̃1−εnx̃1

∈ BI be a ball which
contains the point x̃1 − εnx̃1 then we have dpow(x,Bcx,ρx) ≤
dpow(x,Bx̃1−εnx̃1

) ≤ (ρ + d(x,∂Bx̃1−εnx̃1
))2 − ρ2 = O(ε2)

where ρ is the radius of the ball Bx̃1−εnx̃1
. From this fact

dpow(x,Bcx,ρx) < O(ε2) we obtain that d(x,∂Bcx,ρx) ≤ O(ε),
so applying the lemma 9 to the point x we obtain that the
angle between the outward normal nx̃ and the vector ~cxx
is O(

√
ε) and consequently for small enough r we obtain

that this angle is smaller than π/2. This means that when
we move the point x from x̃1 − εnx̃1 to x̃1 + εnx̃1 along the
segment [x̃1 − εnx̃1 , x̃1 + εnx̃1 ] we have that the function fI is
strictly decreasing. The same argument shows that the func-
tion fO is strictly increasing.
A power crust points x is characterized by the following
equality fI(x) = fO(x). Using that fI(x̃1 ± εnx̃1) · fO(x̃1 ∓
εnx̃1) < 0 and the functions fI and fO are strictly decreasing
and increasing respectively along the interval [x̃1−εnx̃1 , x̃1 +
εnx̃1 ] then there exist an unique point x3 on [x̃1 − εnx̃1 , x̃1 +
εnx̃1 ] such that fI(x3) = fO(x3). From this we conclude that
x1 = x2 = x3 and the function d(·) is one-to-one.

6. Implementation and Experiments

Since we do not know lfs(S) for a given input surface, we
choose the size of the balls to eliminate by trial and error in
each case.

Our experiments were done using an in-house implemen-
tation of the power crust algorithm, due to Ravi Kolluri.
This code uses Jonathan Shewchuk’s currently unreleased
pyramid code for Delaunay triangulation. Filtering the po-

lar balls required adding exactly eleven lines of code to the
power crust implementation.

We tested the algorithm with several data sets, produced
by taking polyhedral models and adding noise. The results
are shown in Figures 3, 4 and 5. The bunny and the dragon
were taken from the Stanford 3D scanning repository, and
the hip-bone is from the Cyberware Web site. For the Stan-
ford bunny we added four new samples per vertex respec-
tively, each perturbed with Gaussian noise. For the hip-bone
and the dragon models, which are already fairly large, we
just perturbed the input samples. The bunny point set con-
sisted of 179,736 points and the reconstruction was com-
puted in less than a minute. The hip-bone set contained
397,625 points and the reconstruction required about 3 min-
utes, while the dragon point set contained 875,290 and re-
quired about 10 minutes. Experiments were done on a Pen-
tium 4, 2.4GHz, with 1Gb of memory.

In each reconstruction we chose the constant δ used to
filter the polar balls based on the noise level, with δ being
four times the variance of the Gaussian. The noise level in
turn was chosen to be less than the smallest feature of the
input model, for instance to avoid filling in the hole in the
hip-bone or connecting the neck of the dragon to its back.
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