
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2012)
P. Kry and J. Lee (Editors)

Controlling Liquids Using Meshes

Karthik Raveendran1 Nils Thuerey2 Chris Wojtan3 Greg Turk1

1Georgia Tech
2Scanline VFX

3IST Austria

Abstract

We present an approach for artist-directed animation of liquids using multiple levels of control over the simulation,
ranging from the overall tracking of desired shapes to highly detailed secondary effects such as dripping streams,
separating sheets of fluid, surface waves and ripples. The first portion of our technique is a volume preserving
morph that allows the animator to produce a plausible fluid-like motion from a sparse set of control meshes. By
rasterizing the resulting control meshes onto the simulation grid, the mesh velocities act as boundary conditions
during the projection step of the fluid simulation. We can then blend this motion together with uncontrolled fluid
velocities to achieve a more relaxed control over the fluid that captures natural inertial effects. Our method can
produce highly detailed liquid surfaces with control over sub-grid details by using a mesh-based surface tracker
on top of a coarse grid-based fluid simulation. We can create ripples and waves on the fluid surface attracting the
surface mesh to the control mesh with spring-like forces and also by running a wave simulation over the surface
mesh. Our video results demonstrate how our control scheme can be used to create animated characters and
shapes that are made of water.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism—Animation Simulation and Modeling [I.6.8]: Types of Simulation—Animation.

1. Introduction
Over the last decade, advances in fluid simulation and ren-
dering have helped animators synthesize photorealistic shots
for movies that would have been virtually impossible to cre-
ate by hand. Current techniques can efficiently simulate a
wide gamut of fluid behavior, ranging from small scale ef-
fects such as swirling and splashing of a glass of water,
to massive natural phenomena such as flooding rivers and
crashing ocean waves. Despite the advent of these compu-
tational methods, fluid simulation in movie production still
involves a large degree of trial and error. One of the main
reasons for this is the highly non-linear and dynamic nature
of water, which can cause it to quickly deviate from the ini-
tial conditions prescribed by the animator.

This task is further complicated by more artistic design
goals such as creatures or shapes made of water (as seen
in numerous movies like the Chronicles of Narnia: Prince
Caspian or Avatar: The Last Airbender). In these cases
particularly, it is not adequate to merely force water to
form these shapes; we also desire the dynamic effects that

we typically associate with water such as splashes, drip-
ping streams, surface waves and ripples. Certain existing

Figure 1: A dancer made of water.

c© The Eurographics Association 2012.

DOI: 10.2312/SCA/SCA12/255-264

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/SCA/SCA12/255-264

Raveendran et al. / Controlling Liquids Using Meshes

techniques for fluid control can successfully track desired
shapes, but either tend to provide minimal control over sec-
ondary motions or sacrifice them altogether. On the other
side of the coin, recent methods [NCZ∗09, NB11, HMK11]
have aimed to loosely guide the output of higher resolution
simulations to that of lower resolution versions which are
frequently used in pre-visualization. These have primarily
been intended for use in the simulation of realistic scenar-
ios.

In this paper, we focus on a stronger form of control
with an emphasis on the liquid surface and favor artistic
goals over more naturalistic phenomena. We propose a new
method for creating high quality fluid animations that pro-
vides the animator with multiple levels of control over the
simulation while meeting the basic design goals for the bulk
motion of the liquid. Our method takes in a dense sequence
of control meshes as its input. This animated mesh sequence
can either be directly provided by the animator or can be
generated from a sparse set of user-defined input meshes
using our volume-preserving morphing technique. The an-
imator can then run the simulator and adjust some simple
dials that select the drippiness or looseness of the water sur-
rounding the target shape. In addition, the animator can add
specific surface details such as bumps or introduce surface
waves to create a more dynamic look while still matching
the motion prescribed by the given control meshes.

The key contributions of our paper are as follows:

• Volume-preserving morphing: We introduce an optimiza-
tion framework that produces a dense sequence of con-
trol meshes from a sparse set of user defined meshes. Our
morphs preserve volume and support positional and ve-
locity constraints.

• Eulerian control: We compute control forces on the grid
using the velocity of the control meshes as boundary con-
ditions on the pressure solve. This allows us to not only re-
produce the bulk flow from the keyframes, but also allow
for natural inertial effects such as dripping or separating
sheets of water from a fast moving shape.

• Mesh-based details: We can generate highly detailed wa-
ter surfaces and effects (such as ripples and gravity waves)
by using a mesh-based representation of the surface that
is attracted to the user-provided control meshes.

Our proposed scheme clearly divides control over the ba-
sic underlying motion from that of secondary effects of the
fluid and this makes it intuitive for the animator to fine-
tune specific aspects of the animation. Unlike previous ap-
proaches to this problem, we can control details of the liquid
surface at scales smaller than a single grid cell. This free-
dom allows us to obtain high fidelity effects at reasonable
grid resolutions.

2. Related Work
Foster and Metaxas [FM97] introduced the notion of fluid
control to computer graphics through the use of embedded
controllers. Since then, a number of researchers have ad-

dressed the challenge of making fluids closely track a set
of user-defined target shapes. [FL04], [HK04] and [SY05a]
proposed methods that control smoke to form and follow
moving target shapes. [SY05b] introduced a new technique
for liquids with free surfaces where a proportional derivative
(PD) controller was used to track rapidly changing targets.
Our work shares certain similarities with these control meth-
ods in that it also uses Neumann boundary conditions on an
Eulerian grid as a means of applying control forces. How-
ever, due to the construction of our boundary conditions, we
can achieve close tracking without the need for a carefully
tuned PD-controller.

[REN∗04] and [TKPR06] take a different approach to this
problem by using control particles to adjust velocities, vis-
cosity and other properties of the liquid. These techniques
avoid aliasing artifacts on the grid by using this form of
Lagrangian control. Higher level objectives are harder to
achieve because these methods require the artist to translate
the desired visual behaviors into specific physical quantities.
Instead of using a particle levelset as in [REN∗04], we use
a Lagrangian surface tracking technique with a coarse Eule-
rian simulation to handle fine details.

[MTPS04] proposed a novel method of dealing with
keyframed control of fluids. They treat a fluid simulation as
a composition of functions and minimize an objective func-
tion to solve for the control forces. For reasons of efficiency,
they applied the adjoint method to compute derivatives from
the simulation with respect to each control parameter. How-
ever, this technique still requires the calculation and storage
of these derivatives for the entire simulation at each timestep
and as a consequence, it is computationally expensive. This
makes it impractical for use at high grid resolutions that are
necessary for capturing details.

A more recent class of methods ([NCZ∗09, NB11,
HMK11]) has aimed to make higher resolution simulations
loosely match the behavior of their lower resolution counter-
parts with the same initial conditions. These are intended for
creating production quality output while allowing the artists
to prototype using faster, low resolution simulations and are
targeted at naturalistic scenarios. Our work shares certain
commonalities with [NB11] in terms of the potential flow so-
lution that used to compute interior velocities, however our
focus is to generate more supernatural phenomena such as
creatures made of water and in particular, on highly detailed
yet controllable liquid surfaces.

Our fluid simulator draws upon some of the tools that are
commonly used for animating fluids in graphics. We per-
form fluid simulation using an Eulerian framework on a stag-
gered MAC grid, as was introduced to graphics by [FM96].
We enforce fluid incompressibility by solving a Poisson
equation, as in [Sta99]. Details of these techniques can be
found in [Bri08]. For fine surface details, we make use
of a mesh-based surface tracker, as in [WTGT10], and we
carry out wave dynamics on surfaces using the methods
of [TWGT10].

Researchers have proposed various solutions to the prob-

c© The Eurographics Association 2012.

256

Raveendran et al. / Controlling Liquids Using Meshes

lem of volume-preserving deformation such as [HML99,
AB97, vFTS06]. Similarly, morphing is a well studied prob-
lem in computer graphics (see [Ale02] for a survey of recent
approaches). However, to our knowledge, there has been
no work that specifically addresses the issue of volume-
preserving morphing. It is important to recognize that de-
formation and morphing (and hence volume-preserving vari-
ants of these) are not the same. Deformation is like an ini-
tial value problem, where an initial shape is modified by the
user’s guidance. Morphing is more like a boundary value
problem, in which both the initial shape and the target shape
are exactly specified by the user. Except in extremely sim-
ple cases, it is not possible for an artist to use deformation
tools alone to reach a specific target shape. In this work, we
present a new algorithm for efficiently morphing between
two shapes while preserving volume. We use this to gener-
ate keyframes for fluid animations.

3. Algorithm Overview
The input to our fluid control system is a set of per-frame
control meshes that are provided by the animator. These
could either be generated from a sparser set of triangle
meshes using the morphing algorithm described in Section
4 or could be provided independently by the animator. The
only condition imposed on these control meshes is that they
must maintain vertex correspondences and topology.

In order to obtain secondary motions, we incorporate
these control meshes into a fluid simulator. To compute the
Eulerian control forces, the surface of the control mesh for
each timestep is rasterized onto the simulation grid and its
velocities (computed using finite differences between suc-
cessive frames) are transferred onto the cell faces of the fluid
grid. By setting these velocities as boundary conditions in
the Poisson equation, we can closely track our desired shape
or blend it with an unforced velocity field to achieve a looser
form of control. We describe the details of this in Section 5.

To add surface details, we use a coarse grid-based fluid
simulation that is coupled with a Lagrangian surface tracker
(as described in [WTGT10]). This surface tracker makes use
of a surface mesh in order to represent the fluid surface.
Control forces are computed on both the grid and the surface
mesh and this helps us achieve much higher detail than pre-
vious methods without incurring a significant computational
overhead. The pressure projection step from Section 5 pro-
duces a divergence-free velocity field. We advect the surface
mesh through this divergence-free field and handle all of the
topological changes needed to maintain the surface mesh.
Finally we compute control forces on the surface mesh ver-
tices to produce a variety of effects ranging from tracking
of sub-grid details to the generation of surface waves (see
Section 6)

4. Volume-Preserving Morphing
Morphing is a effective way of producing an animation from
a sparse set of user defined control shapes. In a typical use
case, the artist provides a set of triangulated meshes (say

poses for a character or deformations of a 3D model) at dif-
ferent instants of time, as well as correspondences between
vertices. The morpher then performs some form of interpo-
lation between each pair of corresponding vertices and pro-
duces a set of in-between shapes. If these shapes were made
of water, then they must preserve their volume through the
morph since water is incompressible. However, most com-
monly used morphing techniques do not guarantee this prop-
erty. In this section, we describe a novel technique for per-
forming volume-conserving morphs between shapes.

The input to our morpher is a set of control meshes K
defined by closed, manifold, connected triangulated meshes
at user specified instants of time t: K = {Kt}. We require
that vertex correspondences and connectivity of the mesh
are preserved between these shapes. The user also needs to
specify the number of in-between frames T to be generated
between each pair of given meshes. Since the connectivity
of the mesh is assumed to be fixed, each in-between frame
Mt is fully defined by the positions of the V vertices of the
mesh, xt

i where t is the instant of time and i is the vertex
number.

The goal of the morphing algorithm is to produce a motion
that is as smooth as possible while conserving volume. This
amounts to minimizing the following objective function:

F =
T

∑
t=1

V

∑
i=1
‖vt+1

i − vt
i‖

2
(1)

where vt
i =

xt+1
i − xt

i
∆t

subject to the volume constraint:

Volume(Mt) = constant, ∀t ∈ T (2)

By taking the derivative of Equation 2 with respect to time
and by applying the Divergence theorem, we obtain a trans-
formed constraint that is purely defined using quantities on
the surface of the mesh:

F

∑
i=1

v f
t
i ·n

t
iSi = 0, ∀t ∈ T (3)

where v f
t
i =

∑
3
j=1 vt

j

3

Here, v f
t
i , nt

i and Si denote the velocity, normal and area
of the triangular face fi respectively. We compute veloci-
ties using forward differences between vertex positions. Un-
fortunately, the divergence constraint in Equation 3 is non-
linear because nt

i and Si depend on the vertices of the tri-
angle. Further, our optimization is fairly high dimensional
with T × 3V variables and this makes it extremely difficult
to obtain a global minimizer.

In order to make this computation tractable, we linearize

c© The Eurographics Association 2012.

257

Raveendran et al. / Controlling Liquids Using Meshes

Figure 2: Input meshes to our volume-preserving morpher. The final simulation sequence that uses the morpher output is shown
in Figure 6.

Equation 3 by approximating the normal and area at time
t by interpolating between the known quantities at the the
start and end control meshes defined by the user. We use a
simple linear interpolation for the area of the triangle, but for
the normal, we perform a spherical interpolation between the
quaternion representations of the start and end normals. This
makes the equation linear in velocities, and consequently, in
vertex positions. In practice, this approximation for the nor-
mals turns out to be a good starting point and can be adjusted
over multiple iterations.

We can introduce a Lagrange multiplier λt per constraint,
and obtain a new objective function that needs to be mini-
mized with respect to xt

i and maximized with respect to λt :

Fnew =
T

∑
t=1

V

∑
i=1
‖vt+1

i − vt
i‖

2
+

T

∑
t=1

λt

(
F

∑
i=1

v f
t
i ·n

t
iSi

)
(4)

By taking the partial derivatives with respect to each free
variable and setting them to zero, we obtain a system of
linear equations in xt

i and λt , with a total of T × (3V + 1)
variables. This results in a sparse symmetric indefinite linear
system (Equation 5) that is well studied in linear algebra.

[
A B

BT 0

][
x
λ

]
=

[
p
q

]
(5)

There are many ways to solve this linear system such as
LU or LDL factorizations of the matrix ([GVL96]), null
space methods that eliminate the constraints ([GHN01]) or
approaches that rely on the range space ([GMSW87]). We
use a range-space method in this paper by computing the
Schur complement of the matrix. The Schur complement
transforms the problem of solving a (m+ n)× (m+ n) sys-
tem into one that requires inverting two smaller matrices
(m×m and n× n). This is particularly useful when one of
the smaller matrices has some property (such as sparsity or
symmetric positive definiteness) that permits the fast com-
putation of a inverse.

The solution to our linear system can be computed as fol-

lows: [
A B

BT 0

][
x
λ

]
=

[
p
q

]
(6)

λ =
(

BT A−1B
)−1(

BT A−1p−q
)

(7)

x = A−1 (p−Bλ) (8)

We need to compute the inverse of the matrix A in or-
der to proceed with the Schur complement solve. If the el-
ements of the vector x are ordered sequentially in time, we
obtain a symmetric five-band stencil due to the forward dif-
ference discretization. This causes A to be sparse, symmetric
and positive definite. We compute the Cholesky decomposi-
tion of A using the Cholesky-Banachiwicz algorithm. This
yields a lower triangular matrix L that has the same sparsity
and structure as the matrix A and can be computed in O(n)
instead of the typical O(n2) since there are exactly three non-
zero elements per row in the decomposition. We further ob-
serve that L is block diagonal and this can be exploited to
compute its inverse (Linv) efficiently by inverting all unique
T × T blocks of L using a LU decomposition and copying
these to other identical blocks in the matrix.

It is interesting to note that A is completely determined by
the number of vertices of the input shapes and the number of
in-between frames. As a result, the inverse of A can be pre-
computed and reused for a variety of morph targets as long
as the number of vertices is kept fixed. Once we have the in-
verse, we can compute the Lagrange multipliers that enforce
the constraints and then solve a T ×T system using LU de-
composition to obtain our inbetween positions x. Typically,
the number of inbetween frames (T) ranges from 30 to 60
and this does not prove to be a computational bottleneck.

Our basic implementation (without using optimized
BLAS libraries) can solve large systems (1,000,000 free
variables) in less than 30 seconds without any numerical in-
stabilities. In contrast, an iterative solver such as GMRES
did not converge on a solution in a majority of our test cases,
while direct LU decomposition became prohibitively expen-
sive for such large matrices.

Note that the normals and triangle areas resulting from
this solve may differ from our predicted versions used to
construct the linear system. In such cases, we compute a

c© The Eurographics Association 2012.

258

Raveendran et al. / Controlling Liquids Using Meshes

Figure 3: Comparison of linear interpolation (top) with our
volume preserving morph (bottom). There is a volume gain
of more than 50% in the middle shape for the linear morph.

new set of normals and areas from the previous solution
and repeat the process until convergence. In practice, this
converges using one or two iterations for our test cases in-
cluding those involving large rotations. These iterations are
extremely inexpensive because the matrix A does not de-
pend on the normals or the triangle area and this allows us to
reuse its inverse computed at the beginning of the solve. We
can also incorporate additional positional or velocity con-
straints while maintaining volume by introducing more La-
grange multpliers.

We opted to constrain the total divergence at each frame
to be equal to zero. In other words, we chose to constrain
the derivative of the volume with respect to time, instead of
constraining the volume directly. The main reason behind
this is that the convergence of the iterative process is much
faster with the weaker derivative constraint while a direct
volume constraint produces significant oscillations. Our re-
sults did not improve when we used the even weaker, second
derivative of volume as a constraint and instead, this caused
a noticeable loss in volume.

Figure 3 shows a 2D scenario where our volume conserv-
ing morph manages to maintain the original volume while a
simple linear interpolation causes an expansion of over 50%.
Our morphing technique offers an easy way for animators to
produce a smooth deformation between shapes while con-
serving volume without the use of a skeleton or a charac-
ter rig. Further, it offers control over the shape by letting
the user specify target velocities or positions for parts of the

shape through the course of the morph. The biggest bene-
fit is that we can use the resulting velocity field (from fi-
nite differences between corresponding vertices) directly in-
side a fluid simulator and track the animation perfectly since
these velocities are not modified by the pressure projection
step. This allows the animator to focus on creating the ba-
sic motion independent of the simulator. The bunny defor-
mation sequence in Figure 2 shows the results of using our
mesh morphing for a 3D animation, and Figure 6 shows us-
ing these control meshes together with fluid simulation. Note
that it is indeed possible to use this formulation to morph be-
tween shapes that differ in volume by interpolating the quan-
tity over the inbetween frames and accounting for the change
on the right hand side of equation 3. In general, animations
that mostly conserve volume tend to look more natural than
those that do not.

5. Eulerian Control
The primary reason for using a simulation instead of proce-
durally animating the provided shapes is to obtain secondary
motions that increase the naturalness of the scene. However,
any algorithm for fluid control must at the very least, pro-
duce results that match the user specified shapes. This no-
tion is not strictly restricted to the geometry of the output
but also extends to other aspects of the motion such as the
velocity and acceleration. For instance, we would expect to
see fast moving water in regions of a rapidly deforming or
translating target. This forms the raison d’etre for our grid-
based control force.

Our Eulerian fluid simulator makes use of a staggered
MAC grid, which we shall refer to as the “grid” from this
point on. Our simulator broadly consists of the following
stages: integration of external forces, advection, and finally,
pressure projection. The last step projects the velocities into
the closest divergence-free field and enforces incompress-
ibility. We can then advect our current fluid surface through
this velocity field to obtain a new surface. While it may be
appealing to simply add control forces in the first step of the
simulation, this approach can produce unpredictable results
because the added forces might be significantly altered by
the projection stage. Instead, we enforce our control during
the projection step by specifying boundary velocities along
the control mesh and solve the resulting Poisson equation to
obtain a conforming divergence-free velocity field through
the entire domain.

This formulation works because the elliptic Poisson equa-
tion has the useful property that the solution within an en-
closed region is completely determined by the values speci-
fied along its boundary. Since our target shapes are meshes
that maintain correspondences across frames, we can com-
pute the velocities at the vertices of each control mesh us-
ing a simple forward difference. We set directly set these as
Neumann boundary conditions and obtain new velocities ev-
erywhere in the domain that respect these control velocities.
The sole restriction here is that the flux through this bound-
ary (i.e. the net amount of fluid flowing through this sur-
face) must be zero in order to preserve volume. If the meshes

c© The Eurographics Association 2012.

259

Raveendran et al. / Controlling Liquids Using Meshes

change in volume, we account for this by modifying the di-
vergence on the right hand side of the Poisson equation.

In terms of implementation, we need to rasterize veloci-
ties from the control mesh onto the face of the simulation
grid. We first rasterize the mesh onto the grid and ensure
that the rasterized shape is connected by closing any small
air pockets that might have been formed due to a mismatch
in resolutions between the control mesh and the grid. While
the velocity field defined on the vertices of the input mesh
may have zero divergence, the rasterized field may not obey
this property and needs to be corrected. We do this by com-
puting the divergence along the rasterized boundary and dis-
tributing it evenly amongst the cells on the surface. We use
a standard discretization of the Poisson equation and assign
these rasterized boundary velocities as Neumann conditions.
We solve the linear system using the preconditioned conju-
gate gradient method [Bri08].

5.1. Relaxed Control
Using the technique outlined above, the motion of the fluid
will track the user defined control meshes closely. However,
it is often desirable to have a less constrained motion of wa-
ter that retains more of its inertia or momentum. We call this
relaxed control. To do this, we perform an additional pres-
sure projection step without enforcing the boundary condi-
tions from the rasterized control mesh. Let Fu denote the
force required to project out the divergent component from
the intermediate velocity field u∗ without any boundary con-
ditions imposed by the control shape. The normal pressure
projection required to enforce the rasterized control veloci-
ties results in force Fv . Note that each of these results in a
divergence-free velocity field and by linearly blending these,
we obtain a new velocity field that also has zero divergence
(Equation 9).

u∗+(1−α)Fu +αFv = (1−α)u+αv = urelaxed (9)

These relaxed control forces may not track the shape per-
fectly, but they can produce plausible secondary effects such
as sheets tearing off a fast moving arm or more subtle slosh-
ing that are consequences of the artist prescribed motion.
There exists a distinction between a typical feedback con-
trol scheme and our relaxed control method. In the former,
animators tune the value of various gains in order to closely
match the shape and velocities of the target and the ideal
value for each of these is unknown and varies with time due
to the dynamic nature of the simulation. However, in our
method, the blending coefficient determines the balance be-
tween exact tracking and natural motion and this makes for a
more intuitive dial for controlling the animation. We demon-
strate results of this relaxed control in the dancing sequence
of Figure 1 and in our video.

5.2. Volume Refilling
When the control is relaxed to a large degree, water tends to
spill out from the control shapes and this typically leads to
voids inside the target shape that may be undesirable. We de-
tect the loss of volume by supersampling all grid cells inside
the rasterized target shape and checking if they are empty.
We then modify the divergence of all cells in the interior of
the rasterized target to compensate for the lost volume dur-
ing the pressure projection. This is similar to the approach
described in [KLL∗07] except that we can accurately com-
pute the volume loss because we know the desired volume of
the target. This leads to natural refilling of the shape without
resorting to stiff spring-like forces.

6. Mesh-based Details
The control scheme described thus far operates solely on the
grid despite using control meshes as input. If this scheme
alone was used to produce controlled fluid effects, it would
require a high resolution grid in order to produce detailed
fluid surfaces. Recent work by [TWGT10, WTGT10] has
shown the benefits of using a mesh-based Lagrangian sur-
face tracking technique coupled with a relatively coarse Eu-
lerian simulation and in particular, these methods can pro-
duce impressive sub-grid surface details and motions. In the
context of fluid control, such a mesh-based surface repre-
sentation is attractive because simulation on a low resolu-
tion grid is significantly cheaper (the asymptotic complexity
of the Eulerian simulation being O(n4) where n is the grid
resolution along one dimension). Consequently, artists can
perform multiple iterations to perfect the bulk motion which
is imparted by the grid before fine-tuning surface details.

In this section, we describe how we make use of just
such a mesh-based surface tracker to give us more fine de-
tails and more control of the fluid surface. We will refer
to this new mesh as the surface mesh, which is advected
by the grid velocities and represents the fine details of the
fluid surface. This new mesh should not be confused with

Figure 4: Distance based cutoffs for the mesh attraction
force. The user-supplied control mesh is red, and the surface
mesh is in blue.

c© The Eurographics Association 2012.

260

Raveendran et al. / Controlling Liquids Using Meshes

the user-supplied control meshes. We will describe how
this surface mesh allows us an additional layer of control
above the previously described grid-based method to form
fine details such as bumps, spikes and wrinkles, create sur-
face waves and ripples and control the level of drippiness of
water around the shape.

Prior to applying any control force on the surface mesh,
we advect the surface through the velocity field produced
by the grid based simulation. This velocity field includes
the Eulerian control forces that help move the fluid sur-
face towards the target. Next, we handle topological changes
by performing operations on the mesh as described in
[WTGT10].

6.1. Capturing Fine Details
The first form of mesh-based control aims to attract the cur-
rent surface mesh towards the control mesh and match fine
details that cannot be captured on the grid. For each vertex
of the current surface mesh, we find the closest point on the
control mesh. In our implementation, we use a kd-tree as a
spatial data structure and insert all points of the control mesh
into the tree. We can then query the tree to find the nearest
point for a given point on the surface mesh. Next, we apply
a positional update using a damped spring equation to pull
the surface point closer to the control mesh. The user can
adjust the strength of these springs to determine the speed at
which the surface is attracted to the control mesh. However,
a naive application of such a spring based force can suppress
dynamics near the surface and also prevent the natural sep-
aration of water that is far away from the control mesh. We
introduce tunable distance based parameters that limit the
application of this mesh attraction force (see Figure 4). The
control force only acts in the shaded regions and the transi-
tions can be further smoothed by using a linear or quadratic
falloff. Using this control technique, we can form sub-grid
details such as wrinkles on a forehead, as can be seen in the
right image of Figure 5.

6.2. Control Over Thin Sheets
One of the benefits of using a Lagrangian surface tracker
is the preservation of thin sheets of water. We defined thin
sheets as structures that are nearly flat and that are thinner
than a grid cell. Thin sheets do not breakup naturally since
they are unaffected by surface tension forces and can persist
for long periods of time in the simulation until they are per-
turbed due to interaction with other fluid. These sheets can
be used to impart a specific look to the animation. For in-
stance, long trailing sheets can indicate high velocities and
drippiness, and sheets that quickly break up can be used to
preserve detail around important regions of the control mesh.

We can selectively decide to cause a thin sheet to tear,
if this is desired for a given animation. To do this, we first
identify vertices of the surface mesh that lie on thin sheets
as those that lie in a thickened shell that is outside the range
of the mesh attraction force and inside a grid cell that is not

entirely surrounded by fluid (i.e. at least two of its neighbors
along an axis must be air cells). Next, we apply several it-
erations of smoothing (using mean curvature flow) on only
these vertices. This causes a natural tearing of the sheet start-
ing at the minimum distance set by the artist (since vertices
below this threshold are being pulled towards the target by
the attraction forces). By altering the distance of application
and the frequency of this smoothing step, these sheets can be
detached at will. For instance, in the dancer animation, we
run the thin sheet tearing step once in every five simulation
steps. This allows for a more drippy look and creates highly
detailed structures that tear off from the arms and torso and
are flung away due to their large velocities.

6.3. Surface Waves
The previously described control helps the animator track
specific details, but does not introduce any additional dy-
namics on the surface mesh. It is well known that surface
waves such as gravity and capillary waves play an impor-
tant role in creating realistic visual effects at small scales.
Capillary waves are a result of surface tension forces that
try to minimize the area of the liquid surface while retain-
ing its volume. Due to this, these waves are unlikely to track
our control meshes. This inspires us to introduce surface dy-
namics via waves that are compatible with the underlying
animation given by the artist. In order to obtain well behaved
waves on our liquid surface that can co-exist with our other
control forces, we need to alter the standard linearized two-
dimensional wave equation:

∂
2h

∂t2 = c2

(
∂

2h
∂x2 +

∂
2h

∂y2

)
(10)

In this equation, c defines the wave speed, while h refers
to the current height of the wave at that point on the sur-
face. The right hand side is the curvature of the scalar field h,
while the left hand side of the equation is the acceleration at
this point which is proportional to this curvature. Intuitively,
curvature can be viewed as a measure of the difference of the
scalar value at the current point compared to the scalar val-
ues at neighboring points. If we set h to be equal to the dis-
tance from a point on the surface mesh to the closest point on
the control mesh, then the acceleration experienced by that
point on the surface will be determined by its displacement
from the control mesh relative to its neighbors. To illustrate
the effects of this equation, consider a water surface that is
parallel to the control mesh. The points on this surface will
not experience any wave forces because they are equidistant
from the control shape. Now, if the control mesh were to
develop a slight furrow, this would change the relative dis-
tances and spawn a wave that will eventually settle down
once the sheet takes the shape of the control surface.

Note that this sheet does not need to exactly settle down
on the control mesh for it to not experience any force - a par-
allel displacement will also result in zero curvature. How-

c© The Eurographics Association 2012.

261

Raveendran et al. / Controlling Liquids Using Meshes

Figure 5: Different effects can be achieved by varying the control parameters (from left to right): tight tracking, drippy with
relaxed control, drippy with waves.

ever, we can limit the magnitude of such a displacement by
using the mesh attraction forces described in the previous
section. Specifically, by tuning the minInnerDistance and
minOuterDistance (see Figure 4), we can determine how far
surface may move away from the control mesh before be-
ing pulled back. These vertices that move beyond the inner
distance thresholds are damped and act as a damped bound-
ary conditions in the wave equation solve. Further, if certain
vertices have a high velocity component that is normal to the
surface, they can quickly move beyond the influence of both
wave and attraction forces. Hence, this setup does not pre-
clude the possibility of liquids sheets detaching themselves
from the main body of water and allows for waves to co-exist
with our other control techniques.

We use the approach defined in [TWGT10] and solve
this equation using the Implicit Newmark time integration
scheme. This amounts to solve the following sparse linear
system (where h is a vector of the heights of all surface
points, and L is the matrix representation of the Laplacian
operator on h):

(
I− ∆t2

4
c2L

)
hn+1 =

(
I +

∆t2

4
c2L

)
hn +∆thn

t (11)

hn
t = 0.5∆t

(
hn−1

tt +hn
tt

)
(12)

We update the vertex positions of the surface mesh by dis-
placing them along their normals by the new height values
obtained by solving the above equation. We do not include
vertices that are beyond the inner distance thresholds while
solving this equation.

In some cases it may be desirable to prevent waves in user
defined regions to preserve features. We allow the user to
specify vertices that must be preserved exactly by painting
weights on the mesh. A weight of 1 implies that the vertex
is unaffected by the wave equation and is pulled towards the
control mesh using the mesh attraction force. A weight of 0
indicates that the point is moved solely by the wave equation.
We then run the diffusion equation on the mesh for several it-
erations to spread these weights. The final displacement of a
vertex is a linear blend (using this diffused weight) between
the position predicted by the wave equation and the position

determined by the attractive forces. This approximates non-
reflecting boundary conditions reasonably and preserves de-
tails where desired. We used this approach to preserve the
details of the mouth and eyes for the animation of Figure 5.

7. Results
Please watch the accompanying video to see the sequences
that are described in this section. All of our fluid simulations
were run on 8 cores of a dual processor Intel Xeon with 2.4
GHz CPU’s and 6 GB of memory. Our control scheme typ-
ically adds an overhead of 15% - 30% to the computational
cost of a regular fluid simulation. Most of the sequences av-
eraged under 10 seconds per frame at a grid resolution of
1003. Note that the average edge length of a triangle in our
surface mesh is typically less than one-third that of a grid
cell. In some cases, this can lead to the preservation of cer-
tain sub-grid details such as creases. These may be removed
by the application of the wave equation or smoothing on the
surface.

The liquid bunny sequence of Figure 6 demonstrates our
volume preserving morpher. In this sequence, a bunny is
pulled out of a pool of water, it is deformed by twisting,
stretching, and squashing, and then it is dropped back into
the pool. For this sequence, we provided only a coarse se-
quence of control meshes for the various bunny shapes. Our
volume preserving morpher then created the per-frame con-
trol meshes that were used for the sequence. The relaxed
control parameter was set to α = 0.5 for this scene in or-
der to allow water to easily drip out of the deforming bunny.
The pool of water in this example is not controlled at all, yet
it interacts gracefully with the moving bunny.

In our video, we show a breakdown of some of the ele-
ments of the morphing bunny sequence. We first go through
the morphs, without any fluid simulation. Note that we added
velocity constraints to the stretch and squash sequences. This
is especially important at the end of the squash sequence
when we release control of the fluid and the momentum of
the fluid creates a large splash. We also show examples of
using different α (blending) values with the bunny, showing
various degrees of relaxed control.

Figure 1 shows our water dancer example. The control

c© The Eurographics Association 2012.

262

Raveendran et al. / Controlling Liquids Using Meshes

Figure 6: Water bending: A bunny is pulled out of a pool of water, twisted, stretched, squashed, and is then dropped back
into the pool. The control meshes for this sequence were sparse, and the per-frame control meshes were generated using our
volume-preserving morpher.

meshes for this sequence were already given per-frame, so
our morpher was not used. These meshes are from the multi-
view silhouette approach to mesh animation by Vlasic et
al. [VBMP08]. Note that these input meshes do not con-
serve volume through the course of the animation, but our
divergence correction managed to deal with this without in-
troducing noticeable artifacts. This sequence, like that of the
bunny, shows that the fluid closely tracks the control mesh,
yet fluid is still allowed to escape in natural drips and sheets.
This sequence also demonstrates the benefit of attracting the
fluid surface to the control mesh. Even though this simula-
tion was run at a resolution of 1003, the attraction of the fluid
surface to the control mesh preserves many of the fine details
of the control mesh.

In the accompanying video, we demonstrate surface
waves in several variations of the head animation sequence
shown in Figure 5. Like the dancer sequence, the control
mesh for this sequence was provided on a per-frame basis,
and in this case the meshes were produced by the single-view
reconstruction method of Li et al. [LAGP09]. Our first se-
quence of the head shows an expression change from smile
to frown, in zero gravity. The motion of the jaw produces
ripples on the cheeks and across other portions of the face,
and these ripples are purely due to our solution of the wave
equation on the fluid surface mesh. This demonstrates that
our control waves can track targets without resorting to any
grid based force. Other sequences include gravity and use an
animation of the head shaking back and forth. We demon-
strate the effects of relaxed control (using a blend factor of
0.25) as well as those of mesh-based attraction and surface
waves in Figure 5. A variety of behaviours ranging from
tight tracking to drippy shapes with dynamic surface waves
can be achieved by using a combination of these control pa-
rameters. Finally, we demonstrate how our control technique
responds to external forces when a fast moving bunny col-
lides with the animated head. In this example, we did not
enable waves and used a blend factor of 0.2 for the relaxed
control.

8. Limitations

There are a few limitations to our mesh-based approach to
fluid control. If our volume preserving morpher is to be used,
the input meshes must have the same vertex connectivity.
We note that there are several published approaches for tak-
ing two existing meshes and creating vertex correspondences
between them [LDSS99, KS04, SAPH04]. If our morpher is
not required, then each control mesh can have a distinct con-
nectivity from the others. In this case, we would also require
per-vertex velocities to be provided.

A second limitation of our approach is that our control
mesh sequences cannot move too fast. High velocities do not
automatically destabilize the fluid simulation, but they can
cause abrupt changes in wave heights as well as topological
changes that may manifest themselves as surface artifacts or
aliasing. The solution is to take smaller timesteps and lin-
early interpolate between the keyframes to obtain additional
inbetween frames. This comes at the cost of introducing ar-
tifacts due to the interpolation.

9. Conclusion and Future Work

We have presented a system for controlling the motion of
fluids, with a particular emphasis on creating and tracking
specific shapes. The unifying theme of our approach is the
control mesh that the animator provides in order to guide
the fluid motion. If only a sparse set of such control meshes
are given, then our system uses a volume preserving morph
to provide a dense set of meshes. For a given time step, the
control mesh is rasterized onto a grid, and this rasterization
provides velocities that act as boundary conditions during
the pressure projection step of fluid simulation. The fluid
can strictly follow the control mesh, or the control can be
more relaxed if the animator chooses. Finally, surface waves
can be generated by attracting the fluid surface to the con-
trol mesh and also by solving the wave equation on the fluid
surface.

c© The Eurographics Association 2012.

263

Raveendran et al. / Controlling Liquids Using Meshes

There are several avenues for future work. One possibility
is to use our control techniques for fluid simulation methods
other than Eulerian grids, such as those methods that repre-
sent the fluid as tetrahedral elements. Also, since we have
an explicit mesh for tracking the fluid surface, we could use
this mesh to carry along foam and other materials on the
fluid surface. Finally, our examples demonstrate the creation
of moving 3D shapes in fluids, which can be used for film
effects. We think that our method can also be used to create
more subtle fluid control effects such as changing the shape
of a breaking wave, but we have not yet tried this.

10. Acknowledgments

This work was partially funded by NSF grants CCF-0811485
and IIS-1130934. We would like to thank Scanline VFX for
additional funding. We would like to thank Jie Tan as well
as our anonymous reviewers for their useful suggestions and
feedback.

References

[AB97] AUBERT F., BECHMANN D.: Volume-preserving space
deformation. Computers and Graphics 21, 5 (1997), 625 – 639.
3

[Ale02] ALEXA M.: Recent advances in mesh morphing. Com-
puter Graphics Forum 21, 2 (2002), 173–196. 3

[Bri08] BRIDSON R.: Fluid Simulation for Computer Graphics.
A. K. Peters, 2008. 2, 6

[FL04] FATTAL R., LISCHINSKI D.: Target-driven smoke anima-
tion. ACM Trans. Graph. 23 (August 2004), 441–448. 2

[FM96] FOSTER N., METAXAS D.: Realistic animation of liq-
uids. Graphical models and image processing 58, 5 (1996), 471–
483. 2

[FM97] FOSTER N., METAXAS D.: Controlling fluid animation.
In Proceedings of the 1997 Conference on Computer Graphics
International (1997), CGI ’97, pp. 178–188. 2

[GHN01] GOULD N. I. M., HRIBAR M. E., NOCEDAL J.: On
the solution of equality constrained quadratic programming prob-
lems arising in optimization. SIAM J. Sci. Comput. 23, 4 (Apr.
2001), 1376–1395. 4

[GMSW87] GILL P. E., MURRAY W., SAUNDERS M. A.,
WRIGHT M. H.: A Schur-Complement Method for Sparse
Quadratic Programming. Tech. Rep. SOL 87-12, Stanford Uni-
versity, Systems Optimization Laboratory, December 1987. 4

[GVL96] GOLUB G. H., VAN LOAN C. F.: Matrix Computations
(Johns Hopkins Studies in Mathematical Sciences)(3rd Edition),
3rd ed. The Johns Hopkins University Press, Oct. 1996. 4

[HK04] HONG J.-M., KIM C.-H.: Controlling fluid animation
with geometric potential. Computer Animation and Virtual
Worlds 15, 3-4 (2004), 147–157. 2

[HMK11] HUANG R., MELEK Z., KEYSER J.: Preview-
based sampling for controlling gaseous simulations. In ACM
SIGGRAPH/Eurographics Symposium on Computer Animation
(2011), ACM, pp. 177–186. 2

[HML99] HIROTA G., MAHESHWARI R., LIN M. C.: Fast
volume-preserving free form deformation using multi-level op-
timization. In Proc. Symposium on Solid Modeling and Applica-
tions (1999), ACM Press, pp. 234–245. 3

[KLL∗07] KIM B., LIU Y., LLAMAS I., JIAO X., ROSSIGNAC
J.: Simulation of bubbles in foam with the volume control
method. In ACM SIGGRAPH 2007 papers (New York, NY, USA,
2007), SIGGRAPH ’07, ACM. 6

[KS04] KRAEVOY V., SHEFFER A.: Cross-parameterization and
compatible remeshing of 3d models. In ACM Transactions on
Graphics (TOG) (2004), vol. 23, ACM, pp. 861–869. 9

[LAGP09] LI H., ADAMS B., GUIBAS L., PAULY M.: Robust
single-view geometry and motion reconstruction. ACM Transac-
tions on Graphics (TOG) 28, 5 (2009), 175. 9

[LDSS99] LEE A., DOBKIN D., SWELDENS W., SCHRÖDER P.:
Multiresolution mesh morphing. In Proceedings of SIGGRAPH
(1999), vol. 99, pp. 343–350. 9

[MTPS04] MCNAMARA A., TREUILLE A., POPOVIĆ Z., STAM
J.: Fluid control using the adjoint method. ACM Trans. Graph.
23 (August 2004), 449–456. 2

[NB11] NIELSEN M. B., BRIDSON R.: Guide shapes for high
resolution naturalistic liquid simulation. In ACM SIGGRAPH
2011 papers (2011), SIGGRAPH ’11, pp. 83:1–83:8. 2

[NCZ∗09] NIELSEN M. B., CHRISTENSEN B. B., ZAFAR N. B.,
ROBLE D., MUSETH K.: Guiding of smoke animations through
variational coupling of simulations at different resolutions. In
ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation (2009), pp. 217–226. 2

[REN∗04] RASMUSSEN N., ENRIGHT D., NGUYEN D.,
MARINO S., SUMNER N., GEIGER W., HOON S., FED-
KIW R.: Directable photorealistic liquids. In ACM
SIGGRAPH/Eurographics symposium on Computer animation
(2004), SCA ’04, pp. 193–202. 2

[SAPH04] SCHREINER J., ASIRVATHAM A., PRAUN E., HOPPE
H.: Inter-surface mapping. In ACM Transactions on Graphics
(TOG) (2004), vol. 23, ACM, pp. 870–877. 9

[Sta99] STAM J.: Stable fluids. In Proceedings of the 26th
annual conference on Computer graphics and interactive tech-
niques (1999), pp. 121–128. 2

[SY05a] SHI L., YU Y.: Controllable smoke animation with guid-
ing objects. ACM Transactions on Graphics 24 (January 2005),
140–164. 2

[SY05b] SHI L., YU Y.: Taming liquids for rapidly changing
targets. In ACM SIGGRAPH/Eurographics symposium on Com-
puter animation (2005), SCA ’05, ACM, pp. 229–236. 2

[TKPR06] THÜREY N., KEISER R., PAULY M., RÜDE
U.: Detail-preserving fluid control. In ACM SIG-
GRAPH/Eurographics symposium on Computer animation
(2006), pp. 7–12. 2

[TWGT10] THÜREY N., WOJTAN C., GROSS M., TURK G.: A
multiscale approach to mesh-based surface tension flows. ACM
Transactions on Graphics 29 (July 2010), 48:1–48:10. 2, 6, 8

[VBMP08] VLASIC D., BARAN I., MATUSIK W., POPOVIĆ J.:
Articulated mesh animation from multi-view silhouettes. In ACM
Transactions on Graphics (TOG) (2008), vol. 27, ACM, p. 97. 9

[vFTS06] VON FUNCK W., THEISEL H., SEIDEL H.-P.: Vector
field based shape deformations. ACM Trans. Graph 25 (2006),
1118–1125. 3

[WTGT10] WOJTAN C., THÜREY N., GROSS M., TURK G.:
Physics-inspired topology changes for thin fluid features. ACM
Transactions on Graphics 29 (July 2010), 50:1–50:8. 2, 3, 6, 7

c© The Eurographics Association 2012.

264

