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Figure 1: Our method adapts keyframed and motion captured characters to rough terrain, simulated rubble, and steep slopes,
allows a cartwheeling character to traverse high steps, and causes a walking character to balance on shifting platforms.

Abstract

Artist-created animated characters can exhibit stylized, engaging behavior, but require considerable effort to con-
struct, while interactive applications require numerous motions and variations to create a dynamic, believable
character. This paper describes a method for generating some of these variations automatically: given a stream
of poses, our method simulates plausible responses to physical disturbances and environmental variations. Our
quasi-physical simulation accounts for the dynamics of the character and surrounding objects, but does not require
the motion to be physically valid, making it suitable for both realistic and stylized, cartoony motions. It further
does not require any preprocessing, allowing it to run as an online filter that transforms the output of any real-time
animation system. Our prototype runs at 50 Hz, on bipeds and quadrupeds with over 50 degrees of freedom, and
generates plausible variations for walking, running, hopping, crawling, rolling, cartwheeling, and other motions.

Categories and Subject Descriptors (according to ACM
CCS): I.3.6 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

Games and virtual worlds require engaging animated charac-
ters. Many of the most compelling, engaging, and endearing
characters are hand-animated by professional artists, who
imbue their motions with rich, expressive personality with-
out the constraints of physical realism. However, dynamic
surroundings and physical interactions can create scenarios
where premade motions are no longer suitable: a character
might be pushed by a large force, or, as shown in Figure 1,
might be required to walk on simulated rubble. A motion
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library consisting entirely of compelling, hand-created mo-
tions that covers the space of all possible reactions to such
scenarios would be prohibitively time consuming to create.

Physical simulation offers the promise of adapting virtual
characters to an infinite variety of situations by using their
equations of motion to predict plausible reactions. However,
this requires controllers that can reproduce the desired mo-
tions, since kinematic animations alone do not provide the
necessary feedback laws to simulate the motion and stabilize
it in the presence of disturbances. Constructing robust con-
trol schemes for arbitrary activities remains an open prob-
lem. Furthermore, stylized cartoony motions, which are not
physically valid, cannot be reproduced in a physical simu-
lation with any set of torques. To handle such motions, we
require simulations that are physically plausible, but not nec-
essarily physically valid, so that any input motion can be
simulated while retaining its original character [BHW96].
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In this paper, we propose a quasi-physical simulation
method that enriches the motions of virtual characters with
plausible responses and adaptations. In the absence of per-
turbations, the input motion remains unchanged, even if it is
stylized and non-physical. In the presence of disturbances,
the simulation resolves unexpected contacts, adjusts foot
placement, and deflects joints affected by external forces and
collisions. These adjustments make use of the character’s
equations of motion, but are allowed to violate physics in or-
der to follow non-physical reference animations and prevent
undesired failure, such as falls. This allows our approach to
preserve the potentially non-physical flavor of the original
motion while still simulating appropriate responses.

All processing is performed online as the reference frames
are supplied by a motion clip or kinematic controller. This
allows our method to be seamlessly integrated into existing
animation pipelines, and makes it compatible with all prior
kinematic controllers, including those that generate motions
dynamically or without regard for physical validity. Such
kinematic controllers could leverage graphs and optimal
control [TLP07], move trees [Joh09], or even human push
response demonstrations [AFO05]. In our prototype, we use
a simple kinematic controller that responds to changes in the
character’s velocity. When combined with such controllers,
the quasi-physical simulation produces “unconscious” phys-
ical responses and simple adaptations, while the controller is
responsible for any “conscious” or “intelligent” responses.
In this way, we can leverage the substantial existing litera-
ture on kinematic control to produce characters that appear
both intelligent and physically plausible.

Relaxing the equations of motion also allows us to enforce
goal constraints that ensure that the character moves in the
desired direction and does not fall, regardless of how unsta-
ble or unbalanced the reference motion might be. This pro-
vides the content creator the freedom to use any reference
motion or kinematic controller, without the need to author
additional logic to handle failure cases. The constraint can
be deactivated to allow the character to lose balance, but the
crucial difference is that the content author has control over
the character’s reliability. Such guarantees of reliability are
required for many interactive applications, but are generally
lacking in fully physical control schemes.

We also integrate our proposed quasi-physical simulation
directly into an existing rigid body simulation engine to en-
able two-way interactions between the character and sim-
ulated objects, while still following non-physical, stylized
motions perfectly in the absence of perturbations. Preserv-
ing the character of the original motion while enabling two-
way coupling has proven exceptionally challenging for prior
methods that utilize non-physical forces, since it requires
specifying the forces directly for use in a fully physical sim-
ulation [WJM06]. We address this problem by directly in-
corporating the quasi-physical objective into the equations
of motion of the character. The new equations of motion

maximize the quasi-physical objective implicitly as part of
the rigid body simulation, and remove the need to construct
and tune feeedback policies such as PD servos.

The main contribution of this paper is a real-time method
for augmenting any kinematic animation with physically-
based responses to external perturbations and variation in the
environment. Our method does not enforce or require physi-
cal consistency on either the input or output motion, making
it suitable even for cartoony, artist-animated characters. Us-
ing a novel reformulation of the equations of motion, our
method can be integrated with existing rigid body simula-
tors to simulate quasi-physical characters that interact with
simulated dynamic objects. Because our quasi-physical sim-
ulation is an online post-process compatible with any kine-
matic animation method, the reference motions need not be
available in advance for pre-processing. Since our method
can follow even non-physical motions, the style of the refer-
ence motion is preserved. Furthermore, because the method
admits goal constraints, the designer need not handle failure
cases, such as standing up after a fall, unless a fall is inten-
tionally allowed to occur.

1.1. Related Work

Previous methods for animating responses to perturbations
and environmental variation can be broadly categorized as
either fully physical, fully kinematic, or hybrid. Consid-
erable recent progress has been made on fully physical
methods that can automatically simulate specific behaviors
without input animation data [YLvdP07, WP10, WFH10,
MdLH10,dLMH10]. While such methods can produce good
results, they limit the degree of stylistic expression to those
motions that can be produced by the controller. In this work,
we instead address the problem of adding physical responses
to characters that exhibit an artist-specified behavior, rather
than creating the behavior from scratch. A number of phys-
ical methods follow motion capture data within a physi-
cal simulation. However, most such methods often require
the motion to be known in advance to construct a control
policy [SvdP05, dSAP08], or to make the reference mo-
tion physically consistent [SKL07, LYvdP∗10]. Those that
do not require preprocessing either deal with statically bal-
anced tasks [MZS09], or use task-specific control or balance
laws [LKL10].

Fully physical methods are always susceptible to failure
under large disturbances, which our method avoids by us-
ing non-physical forces. In many applications, even physi-
cally correct but undesired failures can frustrate the user and
place undue burden on the content creator, who must pre-
vent conditions that lead to failure, or create additional logic
to handle them. Although simulation is often used in modern
games for animating unactuated (e.g. dead or unconscious)
characters, these limitations have slowed broader adaption
of physically valid methods for character animation. In ad-
dition, although our approach sacrifices physical validity, it
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can operate directly on non-physical kinematic motion data,
without any preprocessing. Our method can also handle a
much broader range of input motions than fully physical
methods, since the use of non-physical forces allows us to
follow even stylized “cartoon” motions. No fully physical
method can possibly follow a reference motion that is itself
inherently nonphysical.

Kinematic methods reassemble and procedurally modify
example animations to accomplish a desired task. However,
such methods are limited in their ability to respond to pertur-
bations. Kinematic methods that can synthesize perturbation
responses generally require a substantial number of exam-
ple clips showing good recoveries [AFO05, YL10]. In con-
trast, our method can produce plausible responses from even
a single unperturbed example clip by using the character’s
equations of motion.

Finally, several methods have been developed that attempt
to find a compromise between accurate simulation and kine-
matic control. Such methods selectively apply simulation
either to a subset of the character’s joints [OTH02, YL08,
vWZR09], or during specific time intervals [ZMcCF05].
Since the character is partially controlled in a fully kinematic
manner, such methods necessarily limit the range of possible
responses. For example, methods that kinematically animate
the lower body cannot exhibit lower body responses to un-
expected physical contacts. On the other hand, methods that
switch to fully physical control in response to perturbations
still require physically valid reference motions and elabo-
rate feedback policies. With our method, the entire character
is aware of physically perturbations at all times, enabling a
range of responses that is comparable to fully physical meth-
ods, while the non-physical, stylized aesthetic of the refer-
ence motions is faithfully preserved.

To follow non-physical reference motions and enforce
goal constraints, our technique applies minimal forces to
the unactuated root of the character. The use of subtle non-
physical forces has been proposed as a reasonable model for
producing visually plausible animations when some param-
eters of the physical model are not fully known [BHW96].
Our work strives to bring this idea to character animation,
in order to combine the generality of physics with the re-
liability and flexibility of kinematic techniques. Minimiza-
tion of root forces has previously been applied as an in-
termediate stage in controller training [VL95], and several
prior methods have proposed applying forces to the root
to simplify control [WJM06, Hor08]. However, without ex-
plicit minimization of these forces, the character can appear
“marionette-like” and non-physical even under small per-
turbations. Furthermore, such previous methods still supply
torques to a conventional rigid body simulator. This requires
carefully tuned feedback policies, and the reference motions
are usually not reproduced accurately, even in the absence of
perturbations.

1.2. Overview

The quasi-physical simulation accepts as input the previous,
current, and next desired pose for the character, as well as
the environment and any external forces, and computes the
next pose for the character by solving an optimization prob-
lem that adapts the character to its surroundings. The desired
poses may be taken directly from an animation clip, or pro-
duced dynamically by a kinematic controller. The simulated
pose exhibits physics-based responses to pushes and pulls,
adjusts the feet to walk on terrains of varying height, and
interacts with other simulated objects. The motion gener-
ated by the quasi-physical simulation also obeys a goal con-
straint. In our prototype, this constraint forces the character’s
center of mass to follow a desired trajectory. Games often
specify the path of either the root or the center of mass di-
rectly, using an animation module to generate full-body ani-
mations for the desired trajectory [Joh09]. This makes center
of mass motion a natural goal constraint, although other goal
constraints are also supported.

The quasi-physical simulation is able to follow non-
physical reference motions and always satisfy the goal con-
straint by applying non-physical forces on the character’s
root. To ensure that motions remain plausible, the simula-
tion minimizes the difference between the current root forces
and those observed in the reference motion. This means
that if the reference motion is physical, the root forces are
minimized, but if it is non-physical, quasi-physics can still
track the motion accurately. The result is that quasi-physics
produces physically plausible behavior when disturbances
are small, and ensures that the goal constraints are satisfied
when they are large.

In a static environment, the quasi-physical simulation can
be performed directly by solving a quadratic program. How-
ever, if a rigid body simulator is already used to animate
dynamic objects, we can integrate quasi-physical simulation
into it directly by including the quasi-physical objective in
the character’s equations of motion. This allows us to use
an existing rigid body contact solver to enable two-way cou-
pling between the character and simulated objects, while still
allowing the character to follow the reference motion and
maintain the guarantees afforded by the goal constraint. Un-
like traditional physical animation methods, this approach
does not require us to construct a feedback policy that com-
putes appropriate joint torques. Instead, the optimal torques
are produced automatically by the existing contact solver.

2. Quasi-Physical Control

We call our approach “quasi-physical,” because it uses the
character’s equations of motion, but permits small non-
physical forces to be applied at the character’s root in order
to follow non-physical reference motions and prevent unde-
sired motions (such as falling). Actuation of the root is es-
sential for tracking non-physical motions, but excessive root
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actuation can result in visual artifacts, making the character
look like a marionette held up by invisible strings. The key
to our approach is the explicit minimization of unnecessary
root actuation, which makes the non-physical forces unnoti-
cable to a casual observer unless very large perturbations are
applied. Since the soft root unactuation makes any acceler-
ation feasible, we can also impose hard goal constraints to
guide the character. Quasi-physical control takes the form of
a constrained optimization that computes compatible joint
accelerations aaak and joint torques τττk:

(aaak,τττk) = arg min
aaak ,τττk

E(τττk,aaak) (1)

s.t.GGG(aaak) = 0 (2)

DDD(aaak) = τττk. (3)

Equations 2 and 3 enforce the goal constraints and equa-
tions of motion. The objective is defined as the sum of
three quadratic terms: the torque term Eτ(τττk), the pose term
Ep(aaak), and the end-effector term Ee(aaak). Intuitively, these
terms can be thought of as enforcing physicality, tracking the
reference motion, and adapting to the environment, respec-
tively.

2.1. Equations of Motion

We represent a character as a kinematic tree consisting of
rigid links and revolute joints. The root of the kinematic tree,
conventionally taken to be the pelvis, is “attached” to the
world with a six degree of freedom joint. When this joint
is unactuated, the kinematic tree is said to have a floating
base [Fea07]. The pose of the character at time step k may be
described by a vector qqqk, each entry of which is the current
angle of a joint, with the first three entries giving the position
of the root in Cartesian coordinates.

The velocities of the character’s joints are computed with
finite differences, according to

vvvk =
qqqk−qqqk−1

∆t
. (4)

The accelerations of the joints are related to the current, pre-
vious, and next pose according to

aaak =
qqqk+1−2qqqk +qqqk−1

∆t2 . (5)

These finite difference equations correspond to a semi-
implicit integration step, which is often used in real time
simulators:

vvvk+1 = vvvk +∆taaak

qqqk+1 = qqqk +∆tvvvk+1.

To be physically consistent, the character’s accelerations aaak
and torques τττk must respect the equations of motion DDD(aaak)=
τττk:

MMM(qqqk)aaak +hhh(qqqk,vvvk) = JJJT
e fff e + JJJT

c fff c + τττk, (6)

where MMM(qqqk) is the pose-dependent mass matrix, which

can be computed with the Composite Rigid Body algo-
rithm [Fea07], the inertial term hhh(qqqk,vvvk) accounts for Corio-
lis, centripetal, and gravitational forces, computed with Re-
cursive Newton-Euler [Fea07], fff c represents contact forces,
and fff e represents perturbation forces, such as pushes and
pulls. The Jacobians JJJc and JJJe transform the forces into
body coordinates. The masses of the individual links are es-
timated, for simplicity, to be proportional to their lengths,
though the user can specify link masses directly.

In a rigid body simulation, the equations of motion can be
solved for aaak when τττk is known [Fea07], while many con-
trol methods optimize an objective in terms of τττk, subject
to the consraints imposed by the equations of motion. Since
the character’s root is unactuated, physically consistent con-
trollers also fix the first six entries of τττk to zero. Our for-
mulation instead strives minimize the impact of these forces
without eliminating them entirely.

2.2. Goal Constraint

The goal constraint offers a general method for guiding the
character. Its particular form will often depend on the ap-
plication, and many variations are possible. Our prototype
guides the character by controlling the horizontal trajectory
of its center of mass. This constraint ensures that the hori-
zontal position of the center of mass at the next time step,
denoted oook+1, matches the desired position ooo?k+1. To express
the constraint in terms of joint accelerations, we use Equa-
tion 5 to expand oook+1 and rewrite its acceleration using the
center of mass Jacobian JJJc:

GGG(aaak) = 2oook−oook−1 +∆t2(JJJcaaak + J̇JJcvvvk)−ooo?k+1 = 0.

The Jacobian JJJc is computed as the mass-weighted sum
of the Jacobians of the joints, and J̇JJcvvvk is the mass-weighted
sum of joint accelerations under zero actuation, which is ob-
tained as a by-product of the Recursive Newton-Euler algo-
rithm and sometimes referred to as velocity-product accel-
eration [Fea07]. This is just one of many possible goal con-
straint choices, and other constraints can be formulated in a
similar fashion, by expressing the constraint as a function of
joint angles and differentiating to derive a linear equation.

2.3. Torque Objective

The torque objective term Eτ(τττk) penalizes both root actua-
tion and large joint forces. Root forces should be penalized
to avoid non-physically actuating the root, which can give
the character the appearance of a marionette. Gently penal-
izing the other torques helps the character appear compliant
under perturbations. The torque term minimizes the differ-
ence between the current torques and a vector τττ

?
k of desired

joint torques, according to a scaling matrix WWW τ that corre-
sponds to the inverse “strength” of each joint:

Eτ(τττk) = ‖τττk− τττ
?
k‖

2
WWW τ

.
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For non-root joints i, we found that setting WWW τ(i) to the
inverse of the mass that is rooted at that joint generally pro-
duced good results. For example, the stance foot would have
a weight equal to the inverse of the total mass m, since it
must support the whole body, while the weight on the wrist
would be the inverse of the hand’s mass. The user can of
course modify these weights to favor some joints over oth-
ers. For example, we found it useful to increase the strength
of spine joints by a factor of 2 to 4, since the trunk is stronger
than limbs of similar length.

To favor actuated joints over non-actuated root joints, the
root joints are weighted higher. In our implementation, we
set WWW τ(iu) = 500/m for root joints iu = {1, ..,6}. We found
this value to work well for both realistic, motion-captured
reference motions, and for non-realistic, stylized animations.
Higher weights increase realism but decrease the fidelity
with which the reference motion can be followed, while
lower weights create faster disturbance rejection at the cost
of stiffness and lower realism.

Setting τττ
?
k to 0 will minimize all joint forces. However,

non-physical reference motions contain intentional actuation
of the root, and removing such actuation can obliterate non-
physical detail. We therefore estimate the torques needed to
follow the reference motion in the absence of perturbations
by solving a small optimization for τττ

?
k , using the reference

pose, velocities, and accelerations qqq?k , vvv?k , and aaa?k , which are
obtained with Equations 4 and 5:

min
τττ?k ,λλλ
‖τττ?k1,..,6‖

2

s.t.MMM(qqq?k)aaa
?
k +hhh(qqq?k ,vvv

?
k)− JJJT

c VVV cλλλ = τττ
?
k

λλλ≥ 0.

the first six entries of τττ
?
k , denoted τττ

?
k1,..,6, are the root torques.

The contact forces are represented by the polygonal friction
cone VVV cλλλ, which is discussed in more detail in Section 3.
Although contacts exhibit nonlinear complementarity con-
straints, these constraints do not appear in this optimization
since the accelerations are fixed. Instead, we need only re-
place VVV c with a single basis vector in the case of sliding con-
tacts, or, as in our prototype, simply exclude such contacts
from consideration under the assumption that only fixed con-
tacts exert significant force in the reference motion. Since
only the first six entries of τττ

?
k appear in the objective, the re-

maining entries can be excluded from the optimization and
recovered in closed form once λλλ is computed, resulting in
a very small and fast quadratic program. With correct ref-
erence torques, the quasi-physical control objective can per-
fectly follow any reference motion in the absence of pertur-
bations, which means that the joint strengths WWW τ provide an
intuitive knob for tweaking the stiffness of perturbation re-
sponses without affecting unperturbed motion.

2.4. Pose Objective

The pose objective term Ep(aaak) tracks a reference motion
generated by a kinematic controller. This term only requires
the kth pose, the previous pose, and the next pose. To track
the reference motion, we minimize the distance between the
current acceleration aaak and a target acceleration computed
according to a PD control rule. Note that PD control is ap-
plied to accelerations rather than forces. The objective term,
which minimizes the difference between aaak and the PD ac-
celeration, is given by

Ep(aaak) = ‖aaak−aaa?k − (vvv?k − vvvk)ωpζp− (qqq?k −qqqk)ω
2
p‖2

WWW p .

where ωp and ζp determine PD gains, and WWW p is a scal-
ing matrix consisting of the fraction of the character’s mass
rooted at each joint. qqq?k , vvv?k , and aaa?k are the reference pose,
velocity, and acceleration at the current time step. We set the
ratio to critical damping, with ζp = 1. The frequency ωp con-
trols how quickly the character returns to the reference mo-
tion. We use ωp = 20 in all examples, though we observed
that a wide range of values produced reasonable results. We
also weigh the objective against the torque term by multiply-
ing all weights by a constant, 2.5 in all examples.

We can obtain the reference pose, velocity, and accelera-
tion from the current, next, and previous reference poses di-
rectly by using the finite difference equations 4 and 5. How-
ever, we can obtain better results by tracking the joint ori-
entations and velocities in world-space rather than parent-
space, as observed by Wrotek et al. [WJM06]. When track-
ing in body coordinates, errors from parent joints propagate
to their children, resulting in artifacts when joints deep in the
kinematic tree (such as the pelvis) deviate from their targets.
To track a joint i in world-space, we compute a parent-space
orientation qqq?k(i) that causes the joint’s world-space orien-
tation to match the kth reference pose as closely as possi-
ble, given the current orientation of its parent. We denote the
world-space rotation matrix of the parent of joint i with pi

0 TTT k,
the parent-space rotation of i with i

piTTT k, and rotations in the
reference poses with pi

0 TTT ?
k and i

piTTT
?
k . The reference world-

space orientation of joint i at frame k is given by pi
0 TTT ?

k
i
piTTT

?
k ,

and we can convert it to parent-space in the current pose
by multiplying it by pi

0 TTT−1
k . We could obtain the targets for

steps k− 1 and k + 1 in the same way, but pi
0 TTT−1

k+1 is not
available. Instead, we use the parent orientations at step k
throughout to obtain the following desired rotations:

RRR?
k−1(i)=

pi
0 TTT−1

k
pi
0 TTT ?

k
i
piTTT

?
k−1

RRR?
k(i)=

pi
0 TTT−1

k
pi
0 TTT ?

k
i
piTTT

?
k

RRR?
k+1(i)=

pi
0 TTT−1

k
pi
0 TTT ?

k
i
piTTT

?
k+1.

From RRR?
k(i), we compute the desired joint orientation qqq?k(i)

by converting RRR?
k(i) into exponential coordinates (also

known as axis-angle) and projecting it onto the axis of joint
i. The target orientation is then clamped to be consistent with
joint limits.
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2.5. End-Effector Objective

The end-effector objective term Ee(aaak) handles joints that
are currently in contact with the environment, as well as
joints that must soon be in contact with the environment ac-
cording to the reference motion. Since the character can only
exert external forces by contacting the environment, spe-
cial handling of contacts ensures that they are established at
the right time and produce a physically plausible animation.
We formulate the end-effector objective as a PD controller
on task-space (Cartesian) end effector accelerations, using
the end-effector Jacobian JJJe to transform accelerations from
body coordinates to task-space:

Ee(aaak) =

‖JJJeaaak + J̇JJevvvk−aaae
?
k − (vvve

?
k − JJJevvvk)ωeζe− (pppe

?
k − pppek)ω

2
e‖2

WWW e

We use pppek, vvvek, and aaaek to denote task-space positions,
velocities, and accelerations of end-effectors, and pppe

?
k , vvve

?
k ,

and aaae
?
k to denote their desired positions, velocities, and ac-

celerations. We set ζe to 1
2 and ωe to 20.

Target Positions. For end-effector target positions pppe
?
k , we

can use the task-space positions of the end-effector joints in
the reference motion and obtain vvve

?
k and aaae

?
k using equations

4 and 5. However, on uneven terrain, end-effector positions
must be adjusted to clear obstacles and land on uneven sur-
faces. In our prototype, we add the height of the terrain at
the end-effector’s location to its height in the reference mo-
tion to obtain height-corrected targets. We further improve
the end-effector target to allow it to clear steps by checking
the height at the position pppek + t`vvvek the end-effector is pre-
dicted to occupy a short amount of time t` in the future. We
use t` = 0.2, or 10 time steps. Prior work has suggested more
complex methods for adjusting foot targets [Joh09, WP10],
which could be substituted for our simple approach.

To prevent contacting feet from slipping excessively, we
offset the targets for joints that are in contact by the differ-
ence between the actual and target positions of the joint at
the time the contact occurs. This causes the target to “stick”
to the position where the contact occurs, but still allows it to
slip if the reference motion has slippage.

While the end-effector is in contact, we can use equations
4 and 5 to get vvve

?
k and aaae

?
k . However, when it is not in contact,

its height can change non-smoothly due to abrupt variations
in the terrain (such as stairs). To prevent the PD controller
from tracking these abrupt variations, we use vvve

?
k and aaae

?
k

directly from the reference motion, without the height offset.

Weights The weight of an end-effector in the diagonal ma-
trix WWW e accounts for the time until the joint will be in con-
tact in the reference motion and the joint’s current height.
The temporal weight encourages joints to contact the envi-
ronment at the right time, while the height weight prevents
joints that are too low to the ground from causing the char-

acter to trip, and prevents contacting joints from penetrat-
ing the environment. Since inter-penetration and foot height
are only relevant in the direction normal to the supporting
surface, we only apply this weight to the normal direction.
When the normal is not vertical, we rotate pppe, vvve, and aaae so
that the vertical axis is aligned with this normal and can be
weighted separately.

The tangent weight is given by 1− th/tm, where th is the
estimated time until the end-effector in the reference motion
comes into contact and tm is the maximum time at which
we begin to track the end-effector (0.3 seconds in our pro-
totype). The normal weight is the sum of the tangent weight
and 1− h/hm, where h is the distance from the end effector
to the environment (clamped to hm), and hm is the maximum
height at which we begin tracking, set to 20 cm. As with the
pose objective, we multiply all weights by a constant value
of 25 to balance them against the torque term.

3. Quasi-Physical Simulation

Quasi-physical simulation requires minimizing the con-
strained control objective in Equation 1 at each frame.
The objective is quadratic and the goal constraints are lin-
ear. However, the equations of motion in Equation 3 pro-
duce a nonlinear constraint, because the relation between
the torques τττk and accelerations aaak depends on the contact
forces. These forces vary nonlinearly with aaak due to comple-
mentarity conditions, which ensure, for example, that fric-
tion always opposes the direction of motion. Expanding the
equations of motion, we can write Equation 1 as

min
aaak ,τττk ,λλλ

E(τττk,aaak)

s.t.GGG(aaak) = 0

MMM(qqqk)aaak +hhh(qqqk,vvvk) = JJJT
e fff e + JJJT

c fff c + τττk

fff i
c ∈VVV i

c, `( fff i
c) = 0 ∀i,

where fff i
c is the contact force for the ith contact, `( fff i

c) rep-
resents the complementarity conditions, and the linear con-
straint fff i

c ∈VVV i
c ensures that the forces lie within a polygonal

friction cone. Further details regarding this contact model
can be found in prior work [AP97]. Prior methods that opti-
mize such objectives for character control generally drop the
nonlinear complementarity conditions `( fff i

c) = 0, turning the
optimization into a quadratic program [dSAP08, dLMH10].
We can perform the same approximation for quasi-physical
simulation, which produces an efficient algorithm that re-
quires only a QP solver. However, because the QP ignores
complementarity conditions, it can produce unrealistic con-
tacts. For example, the frictional force is allowed to accel-
erate the contact forward, rather than just opposing the di-
rection of motion. Furthermore, environments with dynamic
rigid bodies necessitate two-way coupling to ensure that the
character can interact convincingly with simulated objects.
This would require including the equations of motion of all
the rigid bodies in the QP constraints, which is impractical.
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On the other hand, existing rigid body simulators already
handle complementarity conditions and provide for two-
way coupling by solving a linear complementarity problem
(LCP). In the following sections, we describe an alterna-
tive approach to optimizing Equation 1 that leverages such
existing simulators, providing both complementarity condi-
tions and two-way coupling. This approach involves inte-
grating the control objective into the character’s equations
of motion, effectively utilizing a simulator’s existing contact
solver to accomplish quasi-physical control.

3.1. Solving Frictional Contacts

Most current methods for simulating frictional contacts use
complementarity conditions between the contact forces and
accelerations. A detailed treatment of contact handling is
outside the scope of this paper, and we refer the reader
to previous work [AP97]. The method described in this
section will assume that we have access to a rigid body
simulator that resolves contacts using a sequential impulse
solver, sometimes referred to as projected Gauss-Seidel.
Such solvers are used in most modern real-time simulation
packages. Although we discuss contacts in terms of forces
and accelerations, an equivalent formulation can be con-
structed with impulses and velocities.

The solver iteratively applies corrective forces to each
rigid body to resolve violated contact constraints, such as
sliding and intersection. The solver is initialized with the
unconstrained acceleration of each body, and applies correc-
tive forces at each contact in turn until either all contact con-
straints are satisfied, or the maximum number of iterations is
reached. To determine the magnitude of the corrective force,
the solve uses the inverse of the mass matrix of each body.
In the next section, we show how our quasi-physical control
objective can be integrated with such solvers.

3.2. Controlled Equations of Motions

If the contact forces are known, Equations 1-3 become a
quadratic program with equality constraints, and the opti-
mum is simply the solution of a linear system. Using this ob-
servation, we can express the optimum as an analytic linear
function of the contact forces fff c. We first rewrite the objec-
tive as the sum of two quadratic forms: 1

2 aaaT
k QQQaaaaaak +aaaT

k cccaaa +
1
2 τττ

T
k QQQττττττk + τττ

T
k cccτττ. We then note that we can express τττk as

a linear function of aaak and fff c, resulting in a new objective
1
2 aaaT

k QQQaaak + aaaT
k ccc + aaaT

k MMMT QQQτττ fff c, where QQQ = QQQaaa + MMMT QQQτττMMM
and ccc=−cccaaa−MMMT cccτττ−MMMT QQQτττhhh. Writing the linear goal con-
straint as GGGaaak = ggg, we can express optimal accelerations and
corresponding Lagrange multipliers ηηη as the solution to the
following linear system:[

QQQ GGGT

GGG 0

]
︸ ︷︷ ︸

M̄MM

[
aaak
ηηη

]
+

[
−ccc
−ggg

]
︸ ︷︷ ︸

h̄hh

=

[
MMMT QQQτττ fff c
0

]
. (7)

This linear system represents new equations of motion for
the character that account for quasi-physical control. For
any contact force fff c, the equations can be solved to re-
turn the corresponding optimal accelerations. To integrate
our method into a rigid body simulator, we convert Equa-
tion 7 into equations of motion for each rigid link in the
character’s body. This is done by using the Jacobian JJJi that
maps from body coordinates to the spatial coordinates of
each link [Fea07]. Consider a force fff i applied to link i. The
resulting acceleration aaak,i of link i is given by

aaak,i =− [JJJi 0]M̄MM−1h̄hh+[JJJi 0]M̄MM−1
[

MMMT QQQτττJJJT
i fff i

0

]
,

which indicates that the effective inverse mass of link i is

MMM−1
i = [JJJi 0]M̄MM−1

[
MMMT QQQτττJJJT

i
0

]
,

and the initial unconstrained acceleration is

aaa(0)k,i =− [JJJi 0]M̄MM−1h̄hh.

Once per simulation step, we compute the inverse mass and
initial acceleration of each body link, and allow the con-
straint solver to apply appropriate forces to resolve the con-
tacts. When the solver applies a force to link i, we transform
it into body coordinates by multiplying it by MMMT QQQτττJJJT

i and
add it to the current correction fff b. At the end of each solver
iteration, we propagate the accumulated correction to each
of the links. This is done by solving

M̄MM
[

∆aaa
∆ηηη

]
=

[
fff b
0

]
to produce a correction ∆aaa to the accelerations in body coor-
dinates, and then propagating this acceleration correction to
each link using their Jacobians.

4. Results

Animations generated with quasi-physical simulations are
presented in the accompanying video. Our implementation
runs in real time at 50 Hz on a 3.07 GHz Intel Core i7 ma-
chine. The characters used in our evaluation are shown in
Figure 2. Using existing data from the CMU Motion Capture
Database [CMU10], the OSU ACCAD motion capture lab
[OSU10], and the University of Washington motion capture
lab [UW10], we constructed three human characters with
distinct skeletons. We also used a keyframed dog character
from the Unity Locomotion System [Joh09], a keyframed
cartoon diver, and a keyframed dinosaur character. All ref-
erence motions were situated on flat ground. Only the di-
nosaur character was created specifically for this project,
in order to demonstrate that our approach can handle even
highly non-physical motion. A variety of locomotion behav-
iors are demonstrated with each character, including run-
ning, jumping, cartwheeling, and crawling. The parameter-
ized controller used in the video is described in Appendix A.
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Dog
77 DoF

Dino
61 DoF

Diver
83 DoF

UW
55 DoF

OSU
55 DoF

CMU
58 DoF

Figure 2: Characters used in our evaluation. The three hu-
man characters are animated with motion capture from dif-
ferent sources. The dinosaur, diver, and dog characters use
keyframed animations.

The video presents results with both the quadratic pro-
gram solver and the iterative two-way coupling approach,
which we integrated with the open source Bullet physics
engine [Bul12]. The quadratic program solver is used on
all static environments, which do not otherwise require a
rigid body simulator, while the iterative approach is used in
the presence of simulated rigid bodies. We found that the
two methods required slightly different weight parameters
to achieve good results, as shown in Table 1. Since the QP
solver must enforce contacts without the benefit of a physi-
cal simulation, it requires stronger end-effector terms, and a
correspondingly higher weight on the pose term to preserve
accurate tracking. Although the parameters differ across op-
timization methods, the same set of parameters are used for
all motions generated with that optimization scheme.

Pushes. The accompanying video shows the responses pro-
duced by our approach to a variety of perturbations. We
show how quasi-physics can produce “unconscious” re-
sponses to strong pushes while tracking a single refer-
ence clip. When combined with a kinematic controller that
can change the character’s velocity, quasi-physics produces
plausible responses even to large perturbations.

Terrain. We also demonstrate that quasi-physics can adapt
motions created on flat ground to a variety of terrains. The
evaluation terrains are shown in Figure 3, and include slopes
of up to 35 degrees, steps of up to 50 cm in height, and rough
terrain with height variation of up to 1 meter and slopes up
to 60 degrees. Since the kinematic controller is not aware of

method WWW τ(iu) WWW τ(ia) WWW p(iq) WWW e( jc) ωp, ζp ωe, ζe

QP 500m−1 mr(i)−1 2.5mr(i) 25 20, 1 20, 0.5
iterative 100m−1 mr(i)−1 1.5mr(i) 2.5 15, 2 20, 0.5

Table 1: Summary of objective and PD weights for the
quadratic program (QP) solver and the iterative coupled
solver. Unactuated joints are denoted iu, actuated joints are
denoted ia, all joints are denoted iq, and end effectors are
denoted jc. mr(i) gives the mass rooted at joint i.

14◦

26◦

35◦
33cm

16cm

50cm up to 1m

up to 60◦

Figure 3: Environments used in our evaluation. The environ-
ments contain steep slopes, steps, rough terrain, and simu-
lated rubble.

terrain variations, all responses to changing slope or steps are
produced by the quasi-physical simulation. The end-effector
objective Ee modifies the target positions for the feet to con-
form to the terrain, while the torque term Eτ produces sec-
ondary physical effects, such as swinging the arms when
stepping on large steps or steep slopes.

Importance of Minimization. We compare our method
with a naïve PD controller to demonstrate the importance
of minimizing non-physical root forces. Since the reference
motion has not been made physically consistent, the PD
controller must be allowed to actuate the root in order to
maintain balance. However, PD control of the root does not
explicitly minimize non-physical root actuation, producing
unnatural responses to perturbations. Tuning the gains on
such PD controllers is also difficult and time-consuming, and
gains that work well for one motion may not work for an-
other. We show how a PD controller that can track a walk-
ing motion fails when applied to sideways running, while
the quasi-physical simulation reliably reproduces both mo-
tions without any parameter tuning. Although our naïve PD
controller is not representative of state-of-the-art physical
controllers, its purpose is to show that simply applying root
forces is not sufficient to create robust controllers that appear
natural and can follow any non-physical reference motion.
The quasi-physical simulation appears realistic precisely be-
cause it explicitly penalizes these non-physical forces.

Physicality. We evaluate the effect of the torque term on
the animation by increasing the weight on root force min-
imization WWW τ(iu) by a factor of 5 (to 2500m−1), causing
the simulation to emphasize physicality and heavily penal-
ize non-physical forces. In a comparison with the usual set-
ting of 500m−1, the emphasized physicality produces more
exaggerated responses, as the character struggles to stay bal-
anced. The weight on the root forces acts as a “knob” that
can be used to tweak the magnitude of physical responses.
We also compare the standard quasi-physical simulation to
one in which the torque term is disabled, removing physics
effects. This comparison shows how the full quasi-physical
simulation adds physical detail to the animation that cannot
be obtained without accounting for the equations of motion.

Two-Way Coupling. To demonstrate two-way coupling,
we use the Bullet physics engine to scatter simulated rub-
ble on rough terrain and slopes, as shown in Figure 3. Since
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we integrate our equations of motion into the Bullet contact
solver, our characters exhibit two-way interactions with this
rubble. The characters successfully walk over the rubble or
push it aside, while reacting appropriately to the shifting,
uneven walking conditions.

5. Discussion and Future Work

We presented a method for enriching character animations
with believable responses. Like physical simulation, our
quasi-physical reconstruction produces physically plausible
responses and interacts dynamically with other simulated
objects in the environment. However, unlike methods that
enforce physical consistency, our approach can animate non-
physical characters and provide guarantees on the robust-
ness of the resulting animation in the form of goal con-
straints. Since the proposed method does not require any pre-
processing, it can act as a real-time post-process on top of
any existing kinematic animation method. We demonstrate
this capability by running the quasi-physical reconstruc-
tion on top of a specialized kinematic controller particularly
suited for locomotion in different directions, showing that
quasi-physics compliments the “conscious” responses of the
controller, such as protective steps, with “unconscious” re-
sponses, such as deflection of the limbs.

Our method follows non-physical reference motions and
enforces goal constraints by applying minimal non-physical
forces on the root. Since these forces are penalized, they are
imperceptible to the viewer, except when large perturbations
are applied. Since our method can follow non-physical mo-
tions, we can add physics-based responses even to stylized,
“cartoony” characters that could not previous be used with
physics-based techinques. And since our goal constraints
provide guarantees about the path of the character’s trajec-
tory, the reference animations do not need to be balanced or
stable, and the designer need not be concerned with handling
failure cases such as falling. Our method can be plugged di-
rectly into the constraint solver of an existing physics sim-
ulation package, making it easy to use with current physics
simulators that are often found in interactive applications.

In future work, we hope to explore additional applications
of quasi-physics. The center of mass goal constraint we use
provides an intuitive interface for an application to specify
the high-level behavior of the character, but our method can
also readily admit any other linear goal constraint. For ex-
ample, an application might choose to constrain the position
of a single joint to produce “physically plausible IK,” or ex-
clude some joints from the center of mass computation to
allow them to swing freely. Another exciting avenue for fu-
ture work is to extend quasi-physical simulation to other ob-
jects that might interact with the character. For instance, a
quasi-physical basketball player might use a combination of
non-physical forces on his own root and on the ball to score
a basket as dictated by the application designer, while jointly
minimizing non-physical actuation on all objects.
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Appendix A: Kinematic Locomotion Control

We evaluated our method with a locomotion controller that
responds to changes in the character’s velocity. The con-
troller is built from examples of the desired behavior at
different speeds and in different directions. The clips are
blended at runtime based on the character’s velocity. When
the character is pushed or receives input, the controller pro-
duces an appropriate animation for the new velocity.

Pose Retrieval The locomotion behavior is parameterized
by the parameters θθθ = (vvv,φ), where vvv ∈R2 is the horizontal
velocity of the character, and φ is the fraction of the cur-
rent locomotion cycle that has been completed. The three-
dimensional space of poses is populated by the provided ex-
ample motions, as shown in Figure 4. For each frame in each
example motion, we store the pose, the change in root posi-
tion and orientation from the previous frame, and the rate
of change of θθθ, denoted θ̇θθ = (v̇vv, φ̇). At runtime, the motion

vx

vz

φ

Figure 4: The kinematic controller is parameterized by the
character’s horizontal velocity, denoted vx and vz, as well as
the completed percentage of the locomotion cycle φ.

of the character’s center of mass is controlled by a particle
proxy. The velocity of this particle is used to obtain vvvk be-
fore each frame, which is combined with the current value
of φk to obtain the current parameters θθθk. We retrieve a pose
for θθθk by finding all consecutive pairs of frames where one
frame has φ ≤ φk, and the other has φ ≥ φk. These pairs are
interpolated to obtain a set of frames with φ = φk, and the
entire set is blended with weights given by a Gaussian ker-
nel centered at vvvk. The same interpolation scheme is used to
obtain the rate of change θ̇θθk at θθθk.

User Control The user specifies a desired velocity v̄vv. While
we could simply set vvvk to v̄vv, this may cause an abrupt change
in pose. Instead, we adjust θ̇θθk to produce a controlled rate of
change θ̇θθ

?
k , which will be used to modify the velocity in the

next frame. The controlled velocity v̇vv?k is obtained by apply-
ing a critically damped PD control law to vvvk with frequency
ωv. The controlled velocity v̇vv?k is given by v̇vv?k = v̇vvk +∆tαk,
and αk is updated according to

αk = αk−1 +∆t
(
(vvvk− v̄vv)ω2

v−αk−1ωv

)
.

To account for any mismatch between the velocity of the
particle vvvk and the actual velocity of the retrieved pose (for
example when vvvk lies outside of the convex hull of the exam-
ple poses), φ̇ is also modified to obtain φ̇

?
k = φ̇k ||vvvk||/

∣∣∣∣vvvqqqk

∣∣∣∣,
where vvvqqqk is the actual velocity of pose qqqk. This adjust-
ment changes the playback speed to account for velocity
mismatch. Any remaining discrepancy is handled using the
quasi-physics goal constraint, which ensures that the final
motion has precisely the same velocity as the particle proxy.

Proxy Particle Control After computing the controlled rate
of change θ̇θθ

?
k , we obtain the reference parameters for the

next frame according to θθθ
?
k+1 = θθθk +∆tθ̇θθ

?
k . A force is then

applied to the particle proportional to (vvv?k+1− vvvk) in order
to follow the reference velocity, while still allowing deflec-
tions when the character is pushed. Advancing the particle
one time step, we again obtain vvvk+1 from its velocity, and
directly set φk+1 to φ

?
k+1.
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