
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2010)
M. Otaduy and Z. Popovic (Editors)

Enhancing Fluid Animation with Adaptive, Controllable and

Intermittent Turbulence

Ye Zhao and Zhi Yuan and Fan Chen†

Dept. of Computer Science, Kent State University, Ohio, USA

Abstract

This paper proposes a new scheme for enhancing fluid animation with controllable turbulence. An existing fluid

simulation from ordinary fluid solvers is fluctuated by turbulent variation modeled as a random process of forcing.

The variation is precomputed as a sequence of solenoidal noise vector fields directly in the spectral domain, which

is fast and easy to implement. The spectral generation enables flexible vortex scale and spectrum control follow-

ing a user prescribed energy spectrum, e.g. Kolmogorov’s cascade theory, so that the fields provide fluctuations in

subgrid scales and/or in preferred large octaves. The vector fields are employed as turbulence forces to agitate the

existing flow, where they act as a stimulus of turbulence inside the framework of the Navier-Stokes equations, lead-

ing to natural integration and temporal consistency. The scheme also facilitates adaptive turbulent enhancement

steered by various physical or user-defined properties, such as strain rate, vorticity, distance to objects and scalar

density, in critical local regions. Furthermore, an important feature of turbulent fluid, intermittency, is created by

applying turbulence control during randomly selected temporal periods.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling —Physically Based Modeling; Computer Graphics [I.3.7]: Three-Dimensional Graphics and
Realism —Animation

Keywords: Turbulence, Fluid Simulation, Animation Control, Random Forcing, Intermittency, Kolmogorov

1. Introduction

Fluid simulation, mostly based on numerically solving the
governing Navier-Stokes (NS) equations, has achieved great
success in computer graphics, which has led to astounding
appearances in movies and games of streaming water, flam-
ing fire, propagating smoke, and more. Recently, many re-
searchers have endeavored to introduce turbulence for en-
hancing fluid animations. As stated by Taylor and von Kár-
mán in 1937 (at Royal Aeronautical Society): “Turbulence
is an irregular motion which in general makes its appearance
in fluids, gaseous or liquid”. However, turbulence could also
mean “very hard to predict” due to the very large degree of
freedom with high Reynolds number (Re). Turbulent fluids
exhibit intrinsic fluctuations in a wide range of length and
time scales, featuring stochastic and intermittent dynamics.

Strategy and Related Work Direct numerical simulation

† {zhao,zyuan,fchen}@cs.kent.edu

(DNS) cannot directly model turbulent behavior with a very
large Re due to limited computational resources. Further-
more, fast simulation and interaction are very important for
animation design and control in computer graphics. There-
fore, graphical animations of turbulent fluids typically in-
volve coupling synthetic small-scale (subgrid) noise, mod-
eling chaotic dynamics, to a coarse-grid NS simulator. This
strategy relies on the Reynolds decomposition that breaks
the instantaneous velocity field u into a mean (DNS re-
solved) field U and a rapidly fluctuating component u′.
Based on this, the methodology can be described as

u ⇐ NS(U)⊕ST(u′). (1)

Follow this strategy, several successful approaches [SF93,
RNGF03, KTJG08, NSCL08, SB08, PTSG09] provide vari-
ous implementations for: a fluid solver NS() simulating the
mean flow U, a noise-based procedure ST() synthesizing
and evolving the synthetic fluctuation u′, and an integration

c© The Eurographics Association 2010.

DOI: 10.2312/SCA/SCA10/075-084

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/SCA/SCA10/075-084


Y. Zhao et al. / Enhancing Fluid Animation

model ⊕ coupling them together. Here, NS() is usually im-
plemented as a stable solver on a coarse grid.

In noise synthesis ST(), these methods generate turbu-
lence u′ with random functions at various spatial scales and
frequencies, sometimes referred to as octaves. A chaotic
field was modeled in the frequency domain directly [SF93,
Sta97, RNGF03]. Recently, the curl operation, following
Bridson et al. [BHN07], is used on Perlin noise [NSCL08,
SB08] and wavelet vector noise [KTJG08], or alterna-
tively, vortex particles belonging to different wave num-
bers are randomly seeded according to probabilities pre-
computed by artificial boundary layers [PTSG09]. During
the dynamic noise generation, the energy transport among
octaves is modeled by a simple linear model [SB08], an
advection-reaction-diffusion PDE [NSCL08], locally assem-
bled wavelets [KTJG08] or decay of particles [PTSG09]. As
a common recipe, the celebrated Kolmogorov 1941 theory
(K41) of energy cascade is applied [Fri95]. These methods
are built upon two graphical assumptions: A. The K41 in-
spired energy transport is modeled within the limited grid
resolution in NS() and ST(). In fact, the simulation scale is
much larger than that of the inertial subrange described in
K41 for very high Re flows; B. The energy cascade hap-
pens locally, where the energy is carried by local scalars or
particles. However, the theory actually postulates the spec-
tral statistics of global energy distribution that may not be
spatially localized. Nevertheless, the assumptions, which we
will follow, enable turbulence creation and feedback to the
mean flow in a graphical way, leading to great success in
improving fluid animation techniques.

In integration operation ⊕, there exist two challenges:
one is the magnitude relation between u′ and U, and the
other is the temporal evolution of u′ with respect to U. Early
work [SF93, Sta97, RNGF03] advected gas by u′ and U to-
gether. The velocity magnitude matching is achieved easily
with the graphical assumption B: at a location the kinetic en-
ergy of the smallest resolved scale of U can be used to derive
the kinetic energy of u′ from K41 so that the velocity rela-
tion is determined. In different implementations, Schechter
et al. [SB08] seeded the resolved energy artificially, Kim et
al. [KTJG08] used a locally computed kinetic energy, Narain
et al. [NSCL08] adopted a strain rate related viscosity hy-
pothesis, and Pfaff et al. [PTSG09] created the confined vor-
ticity also following the hypothesis. The strain rate based
method is physically meaningful but not always suitable for
a graphical animator, who for example wants to introduce
boundary effects for a small obstacle not solved by the ex-
isting coarse simulation. In this case, sufficient strain infor-
mation from U cannot be provided. For this reason, Pfaff et
al. [PTSG09] sought solution in a high resolution precom-
putation.

However, it is not very pleasant to address the second
challenge, where the generated fields should temporally
evolve with the large-scale flow. To handle this, small-scale

u′ fields are deliberately managed with texture distortion de-
tection [KTJG08], through an empirical rotation scalar field
[SB08] or by special noise particles [NSCL08]. These ap-
proaches achieve good results while introducing complexity
originating from implementing ⊕ as a simple vector com-
bination outside of the governing NS equations. Pfaff et
al. [PTSG09] instead coupled a stable solver with a vortex
particle system, in which ⊕ is realized as particle forces.
It requires careful management of particles and the wall-
introduced turbulence is the focus.

In this paper, we propose a framework to integrating tur-
bulence to an existing/ongoing flow suitable for graphical
controls. In comparison with direct field addition, our frame-
work avoids the artificial and complex coupling by solving
integration inside the NS solvers.

Our Solution We model fluid fluctuation by a random pro-
cess of adaptive turbulence forcing from a sequence of pre-
computed force fields with scale and spectrum control:

• ST(): In retrospect of K41, Kolmogorov assumed that at
small scales the flow will be statistically homogeneous
and isotropic. Inspired by this, we spectrally synthesize
small-scale homogeneous fields with respect to an energy
spectrum distribution, which follows K41’s − 5

3 law or
user-prescribed ones. A sequence of synthetic fields are
pre-generated and play a role as random forces.

• ⊕: Instead of being combined with U directly, the syn-
thesized fields represent chaotic forcing f perturbing the
resolved mean flow. Thus, ⊕ is realized in a forced NS
simulator (FNS()), inherently leading to smooth feedback
and temporal evolution. Eqn. 1 can be rewritten as

u ⇐ FNS(NS(U),ST(f)). (2)

Moreover, this scheme handles boundaries inside FNS()

where many successful methods exist, releasing ST() from
special operations of previous endeavors.

• NS(): As an independent process from original simulation,
our framework can be combined with a large body of work
on NS solvers (e.g. [Sta99, MCP∗09, FSJ01, MCG03]).

Using random forcing is a standard method in physics
to study and evaluate liberally-developed homogeneous and

isotropic turbulence [CD96, LDM03]. Here we contribute
to explore it in integrating synthetic turbulence with exter-
nal large-scale flows. This approach is different from sim-
ply using a high-resolution fluid simulation. First, the ran-
domness is critical in modeling turbulent dynamics. Second,
the random forcing can represent higher frequency effects
not limited by a given high-resolution grid. Furthermore,
the method receives input from large-scale flows and con-
trols their effect on resultant fields. More important, as a
graphical tool, we practically apply this turbulent forcing
only in necessary local areas and/or in appropriate tempo-
ral periods, which are defined by user-interests, boundaries,
strain and vorticity etc. Furthermore, we can apply random

c© The Eurographics Association 2010.

76



Y. Zhao et al. / Enhancing Fluid Animation

forces with large rotational scales, modeling chaotic fluctu-
ation overlapped with the resolved flow. We therefore not
only model small-scale turbulence but also inject manipula-
tive turbulence in large octaves. To make more realistic fluid
animation, we further model the temporal intermittency by
randomly controlling the turbulence forcing in a heuristic
way. Our effort, to the best of our knowledge, is the first
attempt in graphics to include this important feature of tur-
bulent fluids.

In summary, we implement an adaptive fluid animation
scheme with controllable turbulent behavior, which meets
the demand in many interactive applications. Our contribu-
tions can be summarized as:

• Random turbulence forcing integrates synthetic turbulent
fluctuation with large-scale simulation, with respect to
spatial and temporal consistency;

• Controllable turbulence amplitude includes unresolved
subgrid fluctuation, and/or overlapped large scale chaos;

• Spectral synthesis of turbulence forces enables easy im-
plementation and direct spectral control, following arbi-
trary energy spectrum descriptions. A sequence of small-
scale force fields is independently pre-computed without
extra simulation overhead and can be reused for different
animations;

• Adaptive turbulence takes effect in local areas and/or in
particular time ranges, conditioned by physical or user-
defined features;

• Intermittent turbulence provides more realistic turbulent
fluid animation.

2. Background

A variety of approaches have been published for physically-
based modeling of fluid phenomena. A stable fluid solver is
devised [Sta99] using semi-Lagrangian advection schemes
without time step restrictions, which contributes to the en-
hanced visual impact of fluid animations [Bri08]. Many ap-
proaches are proposed to address the energy loss due to
numerical solution of stable fluids, including feeding ro-
tational forces [FSJ01], coupling Lagrangian vortex par-
ticles [SRF05], substituting of advection with the La-
grangian fluid-implicit-particles (FLIP) [ZB05]. Further-
more, different numerical schemes are introduced includ-
ing higher order advection scheme (BFECC) [KLLR07], en-
forced circulation preservation [ETK∗07] and energy pre-
serving scheme [MCP∗09]. Alternative paths include adap-
tive high-resolution simulation (e.g. [LGF04]), particle flu-
ids (e.g. [MCG03]) and precomputation (e.g. [WST09]).

On the other hand, fluid turbulence described as statisti-
cal fluctuation of velocities has been modeled in a noise-
based way. Flow noise is proposed [PN01] to create fluid-
like textures. Turbulent divergence-free fields are gener-
ated [BHN07] by applying the curl of a potential field.
Divergence-free fields for artistic simulation are calculated

by a fast simulation noise [PT05]. Beyond fluids, fractal
mountains were created in the frequency domain according
to fractal spectrum [Vos85], which can be applied to fluid
turbulence. Forces have also been used in animated fluid
control [FL04, SY05, TKPR06, BP08]. We also refer inter-
ested readers to a good textbook of fluid turbulence [Pop00].

3. Random Forcing

Turbulent flows, which are unrepeatable in details and ir-

regular in both time and space, confound simple attempts
to solve them in the ordinary NS equations. It leads to an
extension of the understanding of fluid velocity as a ran-
dom variable. Based on the Reynolds decomposition , the
Reynolds-Average NS (RANS) equations for incompress-
ible fluid are introduced [Pop00]: ∂U

∂t
+ div(UU) = −∇P +

ν∇2U− div(u′u′), where the divergence (div()) of an ad-
ditional Reynolds stress tensor, u′u′, describes the underly-
ing stochastic turbulent agitation. As an unknown tensor con-
taining the information about the effect of the subgrid scales
on the mean flow, it is typically approximated by heuristic
models (e.g. under Boussinesq’s reasonable hypothesis treat-
ing turbulent stress like viscous stress). Although the mod-
els capture some of the chaotic nature of real turbulence in
small-amplitude disturbances at resolved scales, the models
are essentially deterministic. Hence, they miss the stochastic
effect of random fluctuations at subgrid scales. More gen-
eral attempts model the Reynolds stress effects by a random
process that manifests as random forcing:

∂U

∂t
+div(UU) = −∇P+ν∇2

U+ f. (3)

The turbulence forcing term f is different and does not con-
flict with typical external forces (e.g. buoyancy). It nonethe-
less is a stochastic instrument to inject turbulent energy.
Typically, it is considered as Gaussian random noises that
are white in time [CD96], whose Fourier transform has the
property: f(w, t)f(w,τ) = E(w)δ(t −τ), where w is the wave
number, t and τ are time steps. The overline denotes en-
semble averaging, δ() is the Dirac function, and E(w) rep-
resents input energy. Using Eqn. 3, a sequence of random
f will naturally satisfy temporal coherence of the resultant
turbulence. In this paper we apply synthetic force fields to
drive the velocity fluctuation integrated with the mean flow
in FNS(). However, we do not fully provide a physical so-
lution of RANS. To make the turbulent animation follow-
ing the large-scale flow, we control the mean flow input and
force agitation with a special feedback scheme, which will
be discussed in Sec. 5. Next, we first describe the generation
of solenoidal f fields with spectral modeling.

4. Turbulence Synthesis

We create a divergence-free vector field, v, completely in the
Fourier domain by constructing random functions following

c© The Eurographics Association 2010.

77



Y. Zhao et al. / Enhancing Fluid Animation

(a) µ = 2
√

2, σ = 0.2 (b) µ = 2
√

2, σ = 0.5

Figure 1: Random vector fields generated for a preferred

scale with different deviations.

the frequency domain version of the divergence-free equa-
tion. After an inverse Fourier transform, the resultant field is
strictly band limited with single or multiple vortex scales fol-
lowing a prescribed energy spectrum flexibly controlled by
users. Its strict compliance with a spectrum design is mathe-
matically guaranteed.

4.1. Frequency Domain Generation

The Fourier domain form of the divergence-free equation
div(v) = 0 is:

w · v̂(w) = 0, (4)

where v̂ = (v̂x, v̂y, v̂z) is the Fourier transform of v, and
w = (wx,wy,wz) is the spatial frequency (wave number). We
define the vector as

v̂(w) = R1(w)v1(w)+ R2(w)v2(w), (5)

where R1(w) and R2(w) are two random complex numbers.
Here two unit vectors v1 and v2 are orthogonal to w, and also
orthogonal to each other:

v1(w) = (
wy

√

w2
x +w2

y

,− wx
√

w2
x +w2

y

,0), (6)

v2(w) = (
wxwz

|w|
√

w2
x +w2

y

,
wywz

|w|
√

w2
x +w2

y

,−

√

w2
x +w2

y

|w| ),

where |w| is the magnitude of vector w [Alv99]. The two
random numbers are generated as

R1(w) = Sw · eiα1 sinβ, (7)

R2(w) = Sw · eiα2 cosβ,

where Sw is a spectrum controlling parameter at frequency
w. We utilize three scalar random numbers α1,α2,β ∈
[0,2π]. This solenoidal field generation strategy, based on the
Fourier domain orthogonal projection, has been widely used
in physics, as well as by Stam [SF93, Sta97]. The method
was also applied to create 3D Kolmogorov spectrum fields
which are added to 2D simulations for large-scale smoke
phenomena [RNGF03]. Our method generates small-scale

(a) Kolmogorov energy. (b) Arbritrary energy.

Figure 2: Divergence-free vector fields with two scales. Top:

Spectrum; Bottom: Vector field. µ1 =
√

2, µ2 = 8 and σ1 =
σ2 = 0.7.

force fields in a similar way. As described in Sec. 3, we are
able to supply turbulent randomness that is white in time,
i.e. not necessary to strictly respect temporal continuity and
smoothness, which will be implicitly satisfied by forcing in
FNS(), so that we no longer need to model the 4D Fourier
field as Stam did. This also gives us freedom to explicitly
model intermittency (see Sec. 6). Next, we show how to con-
trol energy input in spectral bands.

4.2. Energy Spectrum Control

The parameter Sw is related to the energy input in a particular
frequency w, which is used to control the total kinetic energy
of the resultant vector field, 1

2 〈v
2〉. Here, 〈 〉 represents sta-

tistically averaging over the domain. The kinetic energy can
be computed in the Fourier domain by integrating 1

2 〈v̂v̂∗〉
in the whole domain Ω, where ∗ denotes complex conju-
gate. This computation is achieved by integrating on each
spherical area, Λ, with a radius |w|: 1

2 〈v̂v̂∗〉= 1
2

∫

Ω v̂v̂∗dΩ =
1
2

∫ +∞
0 (

∮

Λ v̂v̂∗dΛ)d|w| = 1
2

∫ +∞
0 4π|w|2v̂v̂∗d|w|. An en-

ergy input Ew is thus computed at each |w| as Ew =
4π|w|2v̂v̂∗, which determines the total kinetic energy of the
vector field by 1

2 〈v
2〉 =

∫ +∞
0 Ewd|w|. From Eqns. 5, 6 and

7, we get v̂v̂∗ = R1 ·R∗
1 +R2 ·R∗

2 = S2(sinβ2 +cosβ2) = S2.
We thus define Sw by

S
2
w =

Ew

4π|w|2 , (8)

where Ew is a controllable input for the resultant fields.

Single Scale To provide more flexibility, we generate a
single-scale field by

Ew = Cwe
− (|w|−µ)2

2σ2 . (9)

c© The Eurographics Association 2010.

78



Y. Zhao et al. / Enhancing Fluid Animation

The Gaussian function defines an energy spectrum with con-
centration at frequencies that have a magnitude µ and a cor-
responding deviation σ determining the degree of concentra-
tion. For a field size N, a given magnitude µ approximately

models a 3D vortex scale l =
(N/2)

√
3

µ , where
√

3 is the di-

agonal factor, and N/2 comes from the conjugate symmet-
ric implementation in the Fourier domain for achieving in-
verse transform results as real (non-complex) vectors. Fig.
1a shows 2D results using µ = 2

√
2 and σ = 0.2. The nearly

regular vortex size and energy distribution are due to the
small σ = 0.2 which plays a significant role in vortex ap-
pearance. In Fig. 1b, the variation is made significant when
σ = 0.5, due to a loose concentration. The major energy in-
put (i.e. large velocity magnitude visualized by red/yellow
colors) focuses on the vortices with the predefined scale µ.
This example illustrates using the Gaussian function to flexi-
bly control the vortex scale and energy distribution, with 2D
visualization used for clearer representation and better un-
derstanding. However the method works equally well in 3D
cases.

Multiple Scales A multiple-scale field, with two concentra-
tions as an example here, is computed by

Ew = C1we
− (|w|−µ1)2

2σ2
1 +C2we

− (|w|−µ2)2

2σ2
2 . (10)

Fig. 2 shows blended rotational behaviors from the two
scales, where large-scale (µ1) vortices are agitated by the
small scale (µ2). Following K41 that suggests small-scale
vortices holding decreasing kinetic energy with the − 5

3 law,

we define C1w,C2w ∝ |w|− 5
3 (Fig. 2a). In comparison, we

also use an arbitrary C1w = C2w not obeying this physical
rule (Fig. 2b). Consequently, it shows more small-scale tur-
bulence than Fig. 2a (see the brighter µ2 = 8 spectrum ring
in Fig. 2b compared to Fig. 2a). Note that the − 5

3 law in K41
describes a continuous decay in inertial subrange. Here we
use the relation between two discrete scales (within a Gaus-
sian kernel range). Though not physically accurate, it leads
to easy and meaningful control of chaotic fluid behavior.

4.3. Computation

A sequence of force fields is independently pre-computed
with the spectral method. This separation from a mean flow
simulation makes it flexible to control and design turbulent
effects in a post-processing stage. This differs from the pre-
vious methods where they particularly create u′ from U at
each step. Due to the force integration, our method does not
need to generate the force field at each step. In fact, the
generated fields can be reused in a simulation. In our ex-
periments, only 25 pre-computed force fields are randomly
chosen, leading to good turbulent results. Furthermore, the
same sequence of the fields can be repeatedly used in dif-
ferent simulations with different incoming flow fields. Since
the Fourier domain operations are trivial, the computational
complexity is completely bounded by the inverse Fourier

NS() FNS()

ST()

U

f

u

u

qU + (1-q)u

Feedback

Figure 3: Data flow of FNS() computation.

transform. Though fast computing is not demanded as a pre-
computation, the generation still can be completed very fast
with Fast Fourier Transform in O(nlogn) and with GPU ac-
celeration. For example, it costs 450ms and 275ms for a 1283

and 643 grid on an nVidia 8800 GT GPU, respectively.

5. Turbulence Integration

Integration Scheme To integrate pre-computed f to an ex-
isting flow, FNS() executes operations at each step as:

1. Load velocity field from an existing mean flow simula-
tion NS() at critical local regions of the whole simulation
domain;

2. Apply linear interpolation to generate the high-resolution
velocity field U from the mean flow input;

3. Create initial condition of FNS() as qU + (1 − q)u(t),
where u(t) is the instantaneous velocity field from last
simulation step;

4. Run FNS() fluid solver for one step, with the force cou-
pling from a randomly-selected field f;

5. Use the resultant high-resolution flow field u(t + 1) for
density advection and rendering;

6. Goto 1.

Figure 3 shows the data flow of the FNS() computation.
At each step, the initial velocity field consists of two com-
ponents: one is the output instantaneous field (u) from last
simulation step, and another one (U) is acquired from the
mean flow by spatial interpolation. The two components are
added by qU+(1−q)u with a control parameter q, and then
modified by solving the NS equations with the infusion from
a solenoidal force field f. A large q enforces the resultant in-
stantaneous flow strictly regulated by U. On the contrary, a
smaller q will make the turbulence become much significant
diverging from U. Our scheme can be looked as enabling
a feedback control so that the integration provides natural
coupling and control flexibility. In comparison, the previous
methods directly coupling synthesized noise with U act as a
feed-forward control that requires special handling of ST()

and ⊕ as we discussed before. Finally, the resultant velocity
field contributes in its corresponding regions for fluid ren-
dering.

Note that the interpolation might not be needed if an an-
imator plans to add turbulence to the existing flow without
using a high-resolution grid. In this case, f is directly applied
for stimulating synthetic turbulence in existing octaves of U.

c© The Eurographics Association 2010.

79



Y. Zhao et al. / Enhancing Fluid Animation

Besides the Eulerian solver, our method can also be di-
rectly applied to Lagrangian fluid solvers. We conduct an ex-
periment with the state-of-the-art SPH methods (Smoothed
Particle Hydrodynamics), which have been widely explored
in computer graphics due to its programming simplic-
ity, various simulation scales and easy boundary handling
[MCG03]. Together with the typical pressure and viscos-
ity forces, we impose f to each particle, manifesting the
unsolved turbulent behavior. The force coupling strategy
has no difference from Eulerian approaches, which is de-
scribed below. To the best of our knowledge, this is the first
time in graphics applying turbulence enhancement to a pure
Lagrangian solver (Note that though with introduced vor-
tex particles, [PTSG09] still relies mainly on an Eulerian
solver).

Force Coupling A stochastic force f should perform in the
turbulence simulator with respect to the mean flow proper-
ties. We match the force f with U at each location, using
the graphical assumption B as in previous works (see Sec.
1). At first, we make f ·U ≤ 0 by reversing the direction of
f if needed. This guarantees the randomly created turbulent
fluctuation will not reverse U dramatically that leads to un-
natural flow variation effects. Second, we follow the magni-
tude relation |f| ∝ |uf|/δt [OP98], where δt is the turbulence
simulation time step length and uf is the introduced velocity
variation by f. Finally an amplitude relation between uf and
U should be determined: |uf|= pc|U|, where pc is a coupling
parameter. Then we achieve

|f| = |uf|/δt = pc|U|/δt. (11)

pc can be found by applying the velocity cascade relation
among octaves of uf and U [KTJG08]. This approach is fea-
sible but increases complexity. It indeed may not be nec-
essary due to the approximation already produced by the
graphical assumptions. pc can be more conveniently defined
as an empirical control parameter. In general, if a function is
defined as |f|= Ψ(U), Ψ provides a very good tool to control
the turbulence integration, and hence the final fluid effects.
Besides Eqn. 11, we describe flexible approaches of Ψ in
Sec. 6.

6. Conditional and Intermittent Turbulence

Forcing acts as a stimulus for inducing chaotic effects rather
than adding a resultant turbulent field to global flow, leading
to easy implementation of (1) adaptive turbulence only in
necessary spatial areas and temporal periods; and (2) con-
ditional turbulent effects with physical or artificial condi-
tions. We apply turbulence forcing within critical areas in
a large domain running global simulation. The turbulent ef-
fects will propagate out of the selected local regions through
the motion of scalar densities. This approach is very useful
for many applications such as interactive games and emer-
gency training.

Conditional Coupling As discussed in Sec. 5, a function Ψ

is to determine the integration conditions of turbulence. We
have defined Eqn. 11, which couples turbulence in the whole
effective region based on velocity magnitude. Here we pro-
vide several other choices for different animation purposes:

• Strain rate: At each location r, the local strain rate
S(U)2 = ∑∑((∂Ui/∂r j +∂U j/∂ri)/2)2. We define

|f| = Ψ(U) = pc|w1|−1
S(U)/δt, (12)

so that turbulence is initiated at locations with a large rate
of change in U.

• Distance: Obstacles are prone to introduce high strain rate
thus causing boundary-induced turbulence. While small
obstacles may not be fully accounted for in a coarse grid
simulation of U, a fluid animation can define

|f| = Ψ(U) = pcRamp(
D(r)

D0
)|U|/δt, (13)

where D(r) is the shortest distance from r to the obstacles
and D0 is a cutting length. Ramp() defines a smoothly de-
creasing function from one to zero for D(r) < D0, and
otherwise it equals zero. Here we link D(r) to boundary
layer effects, based on an observation that the profile of
shear stress, which leads to turbulence, is a decreasing
curve of the distance to the boundary surface [Pop00].

• Vorticity: Similar to strain rate, turbulence is related to
the vorticity by

|f| = Ψ(U) = pc
|ω|

max(|ω|) H(|ω|− |ω|0)/δt, (14)

where the vorticity ω = ∇×U, H() is the Heaviside step
function, and |ω|0 is a threshold used to control the effects
together with pc.

• Density: Turbulence can be triggered by a function of the
scalar density m of fluid. A simple formula is

|f| = Ψ(U) = pc
m

max(m)
H(m−m0)|U|/δt, (15)

where H() is the Heaviside function and m0 is a threshold.

These examples illustrate that our solution supplies a frame-
work incorporating a variety of turbulence starters, from
physical features to an animator’s discretion, which can be
further improved and extended for controllable and interac-
tive animations.

Intermittency Turbulent fluids show alternations in time
between nearly non-turbulent and chaotic behavior, which
challenges K41’s hypothesis of universality. Many attempts,
including by Kolmogorov himself, have been proposed to
explain and solve the problem. It is extremely hard to present
intermittency physically by DNS. We instead introduce tem-
poral control in forcing integration to animate intermit-
tent fluids. The fluid behaves in non-turbulent or turbulent
dynamics alternately with randomly varied time intervals,
∆tturb and ∆tnon, respectively. We initiate turbulence cou-
pling in intervals of ∆tturb, and otherwise use the large-
scale flow only. The two intervals are computed, when each

c© The Eurographics Association 2010.

80



Y. Zhao et al. / Enhancing Fluid Animation

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Snapshots of turbulence enhancement simulations: (a) Original coarse simulation; (b) Wavelet subgrid turbulence;

(c) Our subgrid turbulence; (d) Add vorticity confinement to (a); (e) Wavelet turbulence to (d); (f) Our turbulence to (d) with

q = 0.8; (g) Our turbulence to (d) with q = 0.2; (h) Our turbulence to (d) with q = 0.1.

time needed, as scalar random values by ∆tturb ∈ [0,Lturb]
and ∆tnon ∈ [0,Lnon], where Lturb and Lnon are used to con-
trol the maximum interval length in time steps. However,
when sometimes ∆tnon = 0, two turbulent periods are con-
catenated. For the whole animation period, the intermittency
factor is γ = Σ(∆tturb)/Σ(∆tturb +∆tnon).

7. Experiments

Exp. 1 First, we describe our method in Fig. 4 in com-
parison to the successful wavelet turbulence enhancement
method [KTJG08]. A basic stable solver [Sta99] generates
very static smoke effects with a coarse 48× 64× 48 simu-
lation (Fig. 4a). Wavelet turbulence adds subgrid turbulence
with a 2x finer grid (Fig. 4b). Our method creates similar
subgrid turbulence in Fig. 4c with µ = 32

√
3 and pc = 0.5.

Our solution looks relatively more realistic since the forc-
ing can impose chaotic behavior even for this very regular
mean flow, while the wavelet approach’s effect is contin-
gent on the original U. We then add the vorticity confine-
ment [FSJ01] to Fig. 4a producing large-scale rotational be-
havior (Fig. 4d). In this case, the wavelet turbulence pro-
vides good small-scale turbulence (Fig. 4e). In comparison,
our method can introduce small-scale turbulence in different
levels with the control parameter q (see Fig. 3). In Fig. 4f,
with q = 0.8 mainly supplying the mean flow component to

FNS(), the enhanced smoke propagates close to the origin
shape of Fig. 4d which is similar to the wavelet result. While
we decrease q = 0.2, turbulence becomes significant in Fig.
4g since more enhanced component feedbacks to FNS() in-
ducing amplification effects. In Fig. 4h, q = 0.1 leads to even
stronger turbulent effects. On a PC CPU (Intel Core2 6300
1.86GHz 4GB), our turbulent enhancement runs in 12982
ms per step, and the wavelet method uses 4048 ms per step,
respectively. We compare these animations side by side in
the supplemental movie to illustrate the dynamic difference.

Exp. 2 Next, we execute our animation using q = 0.2 based
on a simulated laminar smoke past a sphere with a very
coarse grid at 16×32×16. To better illustrate our approach,
no enhancing techniques (e.g. vorticity confinement) are em-
ployed. We use a smoke evolving grid with a resolution
4x denser at 64 × 128 × 64. Turbulence integration is im-
plemented on a local region surrounding the sphere with
a resolution 38 × 76 × 38. Fig. 5 shows snapshots of the
integrated turbulence at different scales: (a) original lami-
nar result; (b) small turbulent variation with a subgrid scale
(µsub = 16

√
3) that approximates the grid scaling factor 4

(pc = 0.3); (c) strong turbulent dynamics with a larger scale
(µl = 1

3 µsub, pc = 0.5); (d) turbulent behavior accommodat-
ing finer details than (c), with two coalesced scales (µl and
µsub) following − 5

3 law (pc = 0.5); (e) reproducing dynam-
ics of (d) with an arbitrary spectrum law where two octaves

c© The Eurographics Association 2010.

81



Y. Zhao et al. / Enhancing Fluid Animation

(a) Original fluid (b) Subgrid scale turbulence (c) Large scale turbulence

(d) Multiple scale turbulence (K41) (e) Multiple scale turbulence (Arbitrary) (f) Density based turbulence

Figure 5: Snapshots of integrating turbulence to a laminar smoke.

(µl and µsub) having an equalized energy spectrum (non-
Kolmogorov), which further reduces the effects of the large
scale one. Fig. 5b-e use Eqn. 11 for force integration. Finally
in Fig. 5f smoke density (Eqn. 15) is used to trigger turbu-
lence. We use σ = 0.5 for the simulations. In the supple-
mental movie, we compare the smoke effects in the different
configurations. We also include multiscale animations using
the vorticity (Eqn. 14) and strain rate (Eqn. 12) based turbu-
lence integration, where chaotic variations appear around the
sphere. On the PC CPU, the experiment uses 48 ms per step
for the global simulation and 956 ms per step for the inter-
polation, integration and forced simulation. The density ad-
vection costs 342 ms. In comparison, a direct 64× 128× 64
simulation consumes 8715 ms that is 6.5 times slower, which
cannot generate the various turbulent results.

Exp. 3 Another experiment is applied with three obstacles
using q = 0.2, as shown in Fig. 6. Here we utilize the dis-
tance based turbulence enhancement condition (Eqn. 13) to

approximate boundary induced chaos. Fig. 6a is the origi-
nal simulation result with a resolution 64× 32× 50. Fig. 6b
presents a turbulent flow by adding turbulence forces to Fig.
6a without any interpolation or subgrid time steps. We use
µ = 12

√
3, σ = 0.7 and pc = 0.5. The 64× 32× 50 simula-

tion (with or without turbulence) runs in 628 ms per frame
on the PC CPU and the added force does not increase no-
ticeable computing overload. In Fig. 6c, we instead run the
global simulation on a 2x coarser grid at 32×16×25 (51 ms
per frame), and apply turbulence integration on an interpo-
lated grid at 64× 32× 50. It shows finer turbulent features
compared with Fig. 6b using a larger µ = 16

√
3. With this

configuration, we also include intermittent turbulent effects
in the supplemental movie using Lturb = 20 and Lnon = 40
steps.

Exp. 4 We also perform SPH based turbulence enhancement.
We use 4096 particles to perform a wave simulation. We fol-
low [MCG03] for implementation details. Fig. 7 shows the

c© The Eurographics Association 2010.

82



Y. Zhao et al. / Enhancing Fluid Animation

(a) (b) (c)

Figure 6: Snapshots of turbulence enhancement conditioned by the distance to obstacles: (a) a laminar smoke simulation; (b)

direct turbulence integration to (a) at the same resolution; (c) Finer turbulent behavior achieved by executing simulation on a

coarser grid than (a), while coupling turbulence to the interpolated flow.

(a) Origin (b) Turbulent (c) Origin (d) Turbulent

Figure 7: Snapshots of turbulence enhancement with SPH ((b) and (d)), in comparison with original simulation ((a) and (c)).

comparison of two snapshots between the turbulent and orig-
inal animations. Each particle acquire the turbulence force
from a 1283 grid with µ = 20 and pc = 1. Realtime simula-
tion (52 frames per second) is achieved since our enhance-
ment only need minimal extra computation of force addition.
However, it shows good turbulent dynamics in Fig. 7b and
Fig. 7d, comparing with the original results in Fig. 7a and
Fig. 7c, respectively.

Discussion In the experiments, our method provides good
turbulent behavior even with very coarse simulations, show-
ing that it can be a fast and convenient tool for creating tur-
bulent animations. The simulation performance is totally de-
pendent on the FNS() solvers, which is more complex than
using a simple vector field addition of small and large scales.
However, in comparison to previous methods, this integra-
tion approach originates from the RANS equation and pro-
vides natural and controllable coupling for turbulent effects.
Furthermore, in most cases FNS() can be computed only
on local and adaptive regions. Our method is independent
of any numerical solver, where high-order and Lagrangian
solvers can be employed. It also makes it possible to utilize
pre-computed and reusable synthetic fields separated from
original simulations. Moreover, boundaries are easily han-
dled with no special handling needed in noise synthesis.

8. Conclusion

By utilizing random forcing in turbulence integration, we are
able to enhance an existing fluid simulation with control-
lable turbulence. The effects can be designed by applying (1)

subgrid and/or large scale fluctuation; (2) prescribed energy
spectrum; (3) local effective region; (4) intermittent tempo-
ral periods; (5) physical or artificial inducing conditions. It
will lead to a variety of future works to provide a powerful
and interactive tool for fluid animators. For example, new
integration conditions based on geometric features or visi-
bility will be designed for more interesting fluid behaviors.
We will also apply random forcing from wavelet noise or
other synthetic approaches.

Acknowledgments

This work is partially supported by the US National Sci-
ence Foundation under grant IIS-0916131. We would like
to thank the anonymous reviewers for their valuable com-
ments, Paul Farrel for proofreading, and NVidia for their do-
nation of hardware to support our research. We also thank
Theodore Kim and Nils Thuerey for their publicly released
source code of wavelet turbulence, and Rama Hoetzlein for
his SPH open source code - Fluids v.1.

References

[Alv99] ALVELIUS K.: Random forcing of three-dimensional ho-
mogeneous turbulence. Physics of Fluids 11, 7 (1999), 1880–
1889.

[BHN07] BRIDSON R., HOURIHAN J., NORDENSTAM M.: Curl-
noise for procedural fluid flow. In Proceeding of ACM SIG-

GRAPH (New York, NY, USA, 2007), ACM, p. 46.

[BP08] BARBIČ J., POPOVIĆ J.: Real-time control of physically
based simulations using gentle forces. ACM Trans. Graph. 27, 5
(2008), 1–10.

c© The Eurographics Association 2010.

83



Y. Zhao et al. / Enhancing Fluid Animation

[Bri08] BRIDSON R.: Fluid Simulation for Computer Graphics.
A. K. Peters, Ltd., Natick, MA, USA, 2008.

[CD96] CANUTO V., DUBOVIKOV M.: A dynamical model for
turbulence. i. general formalism. Physics of Fluids 8, 2 (1996).

[ETK∗07] ELCOTT S., TONG Y., KANSO E., SCHRÖDER P.,
DESBRUN M.: Stable, circulation-preserving, simplicial fluids.
ACM Trans. Graph. 26, 1 (2007), 4.

[FL04] FATTAL R., LISCHINSKI D.: Target-driven smoke anima-
tion. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers (New
York, NY, USA, 2004), ACM, pp. 441–448.

[Fri95] FRISCH U.: Turbulence: The legacy of A.N. Kolmogorov.
Cambridge University Press, 1995.

[FSJ01] FEDKIW R., STAM J., JENSEN H.: Visual simulation of
smoke. Proceedings of SIGGRAPH (2001), 15–22.

[KLLR07] KIM B., LIU Y., LLAMAS I., ROSSIGNAC J.: Ad-
vections with significantly reduced dissipation and diffusion.
IEEE Transactions on Visualization and Computer Graphics 13,
1 (2007), 135–144.

[KTJG08] KIM T., THÜREY N., JAMES D., GROSS M.: Wavelet
turbulence for fluid simulation. In Proceeding of ACM SIG-
GRAPH (New York, NY, USA, 2008), ACM, pp. 1–6.

[LDM03] LAVAL J., DUBRULLE B., MCWILLIAMS J. C.:
Langevin models of turbulence: Renormalization group, distant
interaction algorithms or rapid distortion theory? Physics Of Flu-

ids 15, 5 (2003).

[LGF04] LOSASSO F., GIBOU F., FEDKIW R.: Simulating water
and smoke with an octree data structure. ACM Trans. Graph. 23,
3 (2004), 457–462.

[MCG03] MÜLLER M., CHARYPAR D., GROSS M.: Particle-
based fluid simulation for interactive applications. In Proceed-

ings of the ACM SIGGRAPH/Eurographics symposium on Com-
puter animation (Aire-la-Ville, Switzerland, Switzerland, 2003),
Eurographics Association, pp. 154–159.

[MCP∗09] MULLEN P., CRANE K., PAVLOV D., TONG Y.,
DESBRUN M.: Energy-preserving integrators for fluid anima-
tion. ACM Trans. Graph. 28, 3 (2009).

[NSCL08] NARAIN R., SEWALL J., CARLSON M., LIN M. C.:
Fast animation of turbulence using energy transport and proce-
dural synthesis. In Proceeding of ACM SIGGRAPH Asia (New
York, NY, USA, 2008), ACM, pp. 1–8.

[OP98] OVERHOLT M. R., POPE S. B.: A deterministic forcing
scheme for direct numerical simulations of turbulence. Comput.
Fluids 27, 1 (1998), 11–28.

[PN01] PERLIN K., NEYRET F.: Flow noise. ACM SIGGRAPH

Technical Sketches and Applications (2001), 187.

[Pop00] POPE S. B.: Turbulent Flows. Cambridge University
Press, 2000.

[PT05] PATEL M., TAYLOR N.: Simple divergence-free fields for
artistic simulation. Journal of Graphics Tools 10, 4 (2005), 49–
60.

[PTSG09] PFAFF T., THUEREY N., SELLE A., GROSS M.: Syn-
thetic turbulence using artificial boundary layers. In SIGGRAPH

Asia ’09: ACM SIGGRAPH Asia 2009 papers (New York, NY,
USA, 2009), ACM, pp. 1–10.

[RNGF03] RASMUSSEN N., NGUYEN D. Q., GEIGER W., FED-
KIW R.: Smoke simulation for large scale phenomena. ACM

Trans. Graph. 22, 3 (2003), 703–707.

[SB08] SCHECHTER H., BRIDSON R.: Evolving sub-grid turbu-
lence for smoke animation. In Eurographics/ACM SIGGRAPH

Symposium on Computer Animation (2008), pp. 1–8.

[SF93] STAM J., FIUME E.: Turbulent wind fields for gaseous
phenomena. In Proceeding of ACM SIGGRAPH (New York, NY,
USA, 1993), ACM, pp. 369–376.

[SRF05] SELLE A., RASMUSSEN N., FEDKIW R.: A vortex par-
ticle method for smoke, water and explosions. Proceedings of

SIGGRAPH (2005), 910–914.

[Sta97] STAM J.: A general animation framework for gaseous
phenomena. ERCIM Research Report R047 (1997).

[Sta99] STAM J.: Stable fluids. In Proceeding of ACM SIG-

GRAPH (New York, NY, USA, 1999), ACM Press, pp. 121–128.

[SY05] SHI L., YU Y.: Controllable smoke animation with guid-
ing objects. ACM Trans. Graph. 24, 1 (2005), 140–164.

[TKPR06] THÜREY N., KEISER R., PAULY M., RÜDE U.:
Detail-preserving fluid control. In Proceedings of the 2006 ACM

SIGGRAPH/Eurographics symposium on Computer animation

(Aire-la-Ville, Switzerland, Switzerland, 2006), pp. 7–12.

[Vos85] VOSS R. F.: Random fractal forgeries. In Fundamental
Algorithms in Computer Graphics, Earnshaw R., (Ed.). Springer,
1985, pp. 805–883.

[WST09] WICKE M., STANTON M., TREUILLE A.: Modular
bases for fluid dynamics. ACM Trans. Graph. 28, 3 (2009), 1–8.

[ZB05] ZHU Y., BRIDSON R.: Animating sand as a fluid. In
Proceedings of ACM SIGGRAPH (New York, NY, USA, 2005),
ACM, pp. 965–972.

c© The Eurographics Association 2010.

84




