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Abstract
This paper presents a physics-based method for creating complex multi-character motions from short single-
character sequences. We represent multi-character motion synthesisas a spacetime optimization problem where
constraints represent the desired character interactions. We extend standard spacetime optimization with a novel
timewarp parameterization in order to jointly optimize the motion and the interactionconstraints. In addition,
we present an optimization algorithm based on block coordinate descent and continuations that can be used to
solve large problems multiple characters usually generate. This framework allows us to synthesize multi-character
motion drastically different from the input motion. Consequently, a small setof input motion dataset is sufficient
to express a wide variety of multi-character motions.

1. Introduction

Multiple character interaction is critical to the percep-
tual immersion for training simulation, tele-communication,
and video games. One possible avenue to realistic multi-
character motion is through reuse and editing of example
motion sequences, using both physics-based and data-driven
approaches. Despite the recent advent of automatic tech-
niques for motion synthesis, the scope of most existing meth-
ods can only generate motion of a single character perform-
ing a single task.

Physics-based motion editing requires very little input
data to modify basic dynamic characteristics of a motion,
such as speed or orientation. However, these methods are
limited to the low-level modifications of motion parameters,
unable to change the high-level content of the motion. Fur-
thermore, physics-based methods rely on intensive compu-
tation that scales poorly to a large optimization problem. In
contrast, data-driven approaches take advantage of large mo-
tion databases by composing segments of example motions.
This approach can create long sequences that achieve coarse-
grained goals, but only if appropriate motion segments exist
in the database. Clearly, data-driven methods cannot record
all possible interactions among multiple characters in ad-
vance.

In this paper, we describe techniques for adapting a small
collection of motions to create complex new motions with
multiple characters. For example, beginning with one char-
acter walking and an another character running, we can cre-

ate a new animation, in which one character attempts to
tackle while the other character tries to dodge the tackle
(Figure1). The user can determine the scenario of the motion
by specifying whether the dodge is successful, and, if so, by
how much. These new motions are defined as solutions to a
physics-based spacetime optimization problem.

When directly applied to multi-character motion, the stan-
dard spacetime constraints framework fails on two accounts.
First, existing spacetime algorithms require the user to spec-
ify detailed environment constraints for a motion, such as
specific locations and the timing of all footsteps. The realism
of the output motion largely relies on the user’s experience
in setting the environment constraints. When multiple char-
acters interact with each other, specifying these constraints
manually could be exceedingly difficult. Second, the space-
time optimization framework is prohibitively expensive for
large problems and increasingly prone to local minima. In
this paper, we introduce methods that automatically opti-
mize the timing and the placement of the constraints, avoid-
ing suboptimal output motion due to unrealistic environment
constraints specified by the user. This framework augments
a spacetime optimization with a time-warping parameteriza-
tion, in which both the timing of the motion and the con-
straints are optimized in synchrony. To address the second
problem, we extend the spacetime windows approach with
block coordinate descent and continuation strategies to solve
for each character separately even when the characters’ mo-
tion is mutually constrained (e.g. walking hand-in-hand).
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Figure 1: Top: The input motion contains a walk and a run performed by two characters. Bottom: In the output motion, the
blue character attempts to tackle while the yellow character tries to dodge the tackle.

Combining these techniques significantly expands the
flexibility of physics-based animation and motion editing to
the domains of complex multi-character motion. We demon-
strate our algorithms on both collaborative and adversarial
interactions, that prior spacetime approaches have not been
able to successfully synthesized. Furthermore, we believe
that our techniques are general enough to be applied to all
previous spacetime formulations in the literature, thus sig-
nificantly enhancing their applicability.

2. Related work

Recent research in character animation has been focused
on two main themes: physics-based and data-driven motion
synthesis. We build our work on a physics-based framework
while exploiting a small data set of basic motion from the
real world.

In data-driven approaches, motions are created by edit-
ing and combining example motions. One simple approach
is to perform direct filtering of joint angles [BW95, WP95]
and interpolation of example motions [WH97, RCB98]. As
in these methods, we adopt motion time-warping tech-
nique [WP95], and extend it to time-warping both motion
and constraints. More recent approaches create motions by
splicing together a collection of smaller motion segments.
[AF02,KGP02,LCR∗02,LWS02,PB02] or poses similar to
examples poses [BH00,GMHP04,LWS02]. Since all poses
come from real human data, the rich nuances of the mo-
tion are easily preserved. However, only poses that exist
in the motion database (or very similar ones) can be gen-
erated, thus requiring potentially vast databases of example
motions; handling multi-character interactions would make
the requirements even more stringent.

The spacetime constraints framework casts motion syn-
thesis as a variational constrained optimization problem
[WK88, LGC94, PSE∗00]. The algorithm minimizes a spe-
cific physical measure of energy, such as joint torques
or power consumption, while satisfying dynamic or user-
specified constraints. The optimal energy movement and in-
tuitive user control are appealing for motion synthesis in low

dimensional space. However, when applied to complex hu-
man motion, the optimization quickly becomes intractable
and highly prone to local minima. Much research work has
focused on optimizing simplified models, including simpli-
fied characters [PW99], momentum constraints [LP02], ag-
gregate force models [FP03], and data-driven parameteriza-
tion [SHP04]. In each case, the results of the optimization
is strongly dependent upon choosing an appropriate param-
eterization.

Physics-based methods for editing motions combine the
realism of example motions with dynamically plausible
modifications [Gle97, PR01, RGBC96, ZH99], but are lim-
ited to relatively small, user-specified changes to constraint
positions or timing. Gleicher [Gle98] described a method for
footprint variation, when no dynamic constraints are present.
Liu and Cohen [LC95] presented a technique that allows
the keyframe timing to vary, thereby changing the param-
eterization of the motion, but holding all other constraints
(e.g footprint constraints) fixed. We introduce a novel time-
warping parameterization to jointly optimize the motion and
the constraints in concert. Our algorithms extend spacetime
framework to optimize not only the joint angles, but also the
constraints, to achieve optimal motion for complex multi-
character interactions.

Despite great advances in spacetime optimization, it re-
mains applicable only for relatively short animation se-
quences with single character. Our framework of motion
composition exploits strategies of block coordinate descent
and continuations [Bet01]. Cohen [Coh92] introduced a
spacetime method similar to block coordinate descent algo-
rithm. This method breaks a large problem into a set of sub-
problems, optimized sequentially over windows of time. van
de Panne [vL95] applied the continuation strategy to learn-
ing of balanced locomotion by using gradually reduced guid-
ing forces to assist the process of learning. Combining the
strategies of block coordinate descent and continuations, our
optimization framework is able to scale to large problems
that multi-character motions usually generate.

Multi-character animations has been demonstrated us-
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ing data-driven methods [AF02], controller-based methods
[Rey87], or a combination of both [ZMCF05]. However,
data-driven methods based on kinematic models require suf-
ficient example motions to describe the variability of multi-
character motion. Our approach is also data-driven, but uses
the data to learn a dynamic model that can generalize to
new dynamic configurations not present in the training data.
Robot controller design for multi-character motions remains
a difficult process in spite of some recent advances towards
automatic controller synthesis [HP97,FvdPT01]. Moreover,
these methods usually lack the intuitive control provided by
the spacetime framework. The goal of our work is to show
that complex multi-character dynamics can also be synthe-
sized with spacetime optimization.

Our work is also related to motion planning which
searches for a motion sequence that satisfies complex kine-
matic constraints [KKKL94, YKH04]. While these meth-
ods satisfy complex constraints, they do not model dynamic
properties of motion, resulting in less realistic motions.
Kuffner et al. [KKK ∗02] describe a method for planning dy-
namically stable robot motions, but require user-specified
keyframe constraints and fixed positions for either or both
feet. Our method combines physics-based animation with a
form of motion planning, allowing for minimally-specified
constraints with time-varying dynamic configurations, al-
though our system cannot solve fully-general planning prob-
lems.

3. Overview

We represent multi-character motion synthesis as a space-
time optimization problem where constraints represent the
desired character interactions. Our system is composed of
two major components: motion optimization and motion
composition. The first component describes an extended
spacetime optimization framework that solves forbothmo-
tion and constraints. One distinctive feature of our frame-
work is the novel constraint representation that allows the
timing and the spatial coefficients (e.g. desired location of
the foot for a footprint constraint) of a constraint to vary dur-
ing the course of the optimization.

The flexibility to vary a constraint is crucial to the synthe-
sis of interactive motion between multiple characters. It does
not, however, alleviate the poor convergence and scaling is-
sues raised by large optimization problems. In the second
part of this paper, we describe a generalized framework that
synthesizes complex motion as an optimal composition of
smaller optimal sequences, each of which is the solution to
a subproblem. The user can then arrange the subproblems
into different schedules depending on the scenarios of the
interaction among multiple characters.

The input to our system comprises input motion clips, ini-
tial environment constraints (e.g. footprints of the input mo-
tion clips), and the user-specified constraints that indicate the

t = g( t̂, hg )qj ( t̂, hqj )
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Figure 2: Left: A joint DOF function plotted in warped time
domain. B-spline coefficientshq determine the joint angle
values througĥt. Right: Time transformation defined as a
monotonic, non-linear function g from the warped timet̂ to
actual time t. B-spline coefficientshg determine the shape of
the time transformation.
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Figure 3: Left: Time transformation from an initial identity
function shown in orange, to an arbitrary non-linear func-
tion shown in green. The gray bar indicates a constraint that
occurs att̂ = 5.0. Middle: A joint DOF function plotted in
warped time domain. Time transformation does not change
the timing of the constraint in warped time domain. Right:
The same joint DOF shown in actual time domain, where
the actual timing of the constraint changes to t= 3.4. Note
that the length of the motion is also shortened by the time
transformation.

desired interaction. Our system automatically optimizes the
motion subject to the user-specified constraints, and modi-
fies the timing and the spatial coefficients of the initial envi-
ronment constraints accordingly.

4. Optimal constraints

The standard spacetime optimization usually formulates a
constraint as a function of motion variablesq, with a time
instancet and spatial constantp as function coefficients. For
example, a foot position constraintCp(q;p, t) would enforce
the position of the foot at the desired locationp at framet.
This framework allows the user to determine the timing and
spatial coefficients of each constraint, as an intuitive way to
provide controls to the user. However, manually specifying
these constraints becomes difficult, if at all possible, when
the interactions between characters take place.

One obvious approach to solve this problem is to directly
optimize the timing and the spatial coefficients of each con-
straint. However, this approach leads to a highly discon-
tinuous search space. Optimization with both motion vari-
ables and timing would almost always prefers to modify the
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motion variables, leaving the timing of the constraints un-
changed. For example, consider changing the timing of a
running sequence so that the foot constraint occurs slightly
earlier. For this modification to be feasible while reducing
the energy, the entire dynamics preceding and following the
modified constraint needs to be updated in a global man-
ner. Consequently, there is a huge energy barrier between the
original state and a new state that satisfies all constraints with
lower energy. This large, discontinuous gap in the search
space is impossible for any derivative-based optimization to
get across, effectively preventing the optimization from ever
changing the timing of a constraint.

To address this problem, we design a new framework by
augmenting spacetime optimization with a time-warping pa-
rameterization, in which both the timing of the motion and
the timing of the constraints are optimized in synchrony.
This coupling is crucial to avoiding large energy barriers
while improving the objective function without violating a
large number of constraints. A time-warping parameteriza-
tion enables us to simultaneously optimize all motion vari-
ablesq, the spatial coefficients of the constraintsp, and the
timing of both the motion and constraints, while maintaining
the temporal relation between the motion and constraints.

4.1. Motion representation

We represent a motion as a sequence of body poses
through time, using B-spline parameterization. Without
time-warping, the value of ajth joint degree of freedom
(DOF) at timet is writtenq j (t;hq j ), wherehq j are the coef-
ficients parameterizing the B-spline. In our formulation, we
choose to represent the joint DOFs under warped time pa-
rameterizationq j (t̂;hq j ), and define a monotonic, non-linear
function to represent time transformation from the warped
time to the actual timet = g(t̂,hg), wherehg are the one-
dimensional B-spline coefficients describing the non-linear
time transformation (Figure2). We deliberately representg
as aninversetime warping function for the ability to vary the
length of the actual motion sequence during the optimiza-
tion. To prevent time from being reversed, we constrainhg

to ensure the monotonicity of time:

g(t̂ +1;hg)−g(t̂;hg) > 0 (1)

for all warped time indiceŝt.

To fully determine a motion sequence, we need to specify
both motion variableshq1,hq2, . . .hqn and the time variables
hg. Note that this representation is largely redundant, ashq j
can represent all possible joint variation, provided enough
control points in the B-spline. However, the coefficients for
time transformation (hg) allow the optimizer to vary the tim-
ing of the motion by changing a minimal set of motion vari-
ables, without disrupting the relative relationship among dif-
ferent joint DOFs.

4.2. Constraint representation

The constraint representation in our framework is based on
the standard spacetime optimization with two modifications.
First, the timing of each constraint is specified by a fixed
warped time instancêtc instead of the actual time. This mod-
ification allows us to optimize the actual timing of the con-
straint (tc = g(t̂c;hg)) by varying the time coefficientshg.
Second, the spatial coefficients of each constraint are solved
as free variables in the optimization. We represent a con-
straint as a function of motion variables and spatial coeffi-
cient, with a warped time instance as a function coefficient:
C(hq,p; t̂c). We can visualize the timing changes as con-
straints travel through time together with joint DOFs that
satisfy the constraints. Figure3 demonstrates how the time
transformation affects the timing of a constraint in the actual
time domain, but leaves it unchanged in the warped time do-
main.

There are cases when constraints associated with actual
time instances are useful. For example, the user might want
the character’s hand to reach the cup exactly two seconds
after the motion starts. Our generative constraint represen-
tation can easily revert to a standard spacetime constraint
by simply associating the constraint with an actual time in-
stance:C(hq,p; tc).

4.3. Environment constraints

The ability to change the timing and spatial coefficients is
essential to environment constraints in multi-character ani-
mation. Although we only demonstrate our constraint repre-
sentation on positional constraints, the representation can be
applied to any type of environment constraints that enforce
a spatial relation between the character and the environment
at a particular time instance.

Current spacetime optimization algorithms require the de-
sired footprint locations to be fixed prior to the synthe-
sis process. These models are not suited for synthesis of
multi-character motion, as the interactions between charac-
ters could change the footprints unexpectedly. Our coupled-
warping formulation allows the optimizer to search for the
best desired location and timing for a positional constraint
Cp:

Cp(hq,p; t̂c) = d(hq; t̂c)−p = 0 (2)

whered(hq; t̂c) evaluates the position of the relevant handle
on the character’s body att̂c andp is the desired location of
the handle. Note that varyinghg does not affect the value of
Cp, but changes the timing ofCp in the actual time domain.

This new constraint specification provides the flexibility
to generate optimal motions that vary significantly from the
initial state. For example, a single optimal walking cycle can
be transformed into arbitrary walking, turning, pivoting, or
maneuvers.
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4.4. Dynamic constraints

To ensure physical realism, we enforce generalized dynamic
constraints on each joint. Similar to environment constraints,
we represent a dynamic constraint as a function of mo-
tion variableshq, associated with an warped time instance
t̂c: Cd(hq; t̂c). In general, adjusting timing of environment
constraints can easily violate a large number of dynamic
constraint distributed over time, immediately requiring very
large forces with high energy cost. Consequently, the opti-
mization would almost never modify the time variableshg.
To avoid this problem, we let the dynamic constraints travel
through actual time domain in synchrony with environment
constraints as time variableshg vary.

We use the dynamics formulation described by Liu et.
al. [LHP05]. Here we provide a brief summary of this for-
mulation. A dynamic constraint enforces the Lagrangian dy-
namics that includes the effect of external and internal forces
at each joint DOFj.

∑
i∈N( j)

d
dt

∂Ti

∂ q̇ j
−

∂Ti

∂q j
−Qg j −Qc j −Qsj −Qt j −Qmj = 0 (3)

whereTi indicates the kinetic energy ofith body node,N( j)
is the set of body nodes in the subtree of joint DOFq j ,
and the first two terms together represent the generalized
net force at DOFq j . Qmj is the force generated by muscles,
Qg j is the generalized gravitational force,Qc j is the gener-
alized ground contact force,Qsj is the generalized elastic
force from the characters’ shoes, andQt j represents an ag-
gregate spring force from the passive elements around joint
q j , such as tendons and ligaments. It is crucial to model the
accurate impedance parameters for the passive elements, as
passive forcesQt j significantly affect the realism of the re-
sulting motion. The process of computing these values from
a motion capture sequence is described in [LHP05]. Since
there are no muscles or tendons around root DOFs, the root
motion of the character is completely determined by the ex-
ternal forcesQg j , Qc j , andQsj ( [LHP05]).

Dynamic constraints introduce two sets of additional
DOFs in the optimization: generalized muscle forcesQm and
ground contact forcesλ in Cartesian coordinates.

4.5. Optimization

We measure effort in terms of muscle force usage by sum-
ming the magnitudes of the forces at all joint DOFsj over
the warped time domain:

E = ∑
j
∑̂
t

α j‖Qmj (t̂)‖
2 (4)

where the weightsα represent the relative usage prefer-
ence for each joint. These weights are also automatically
determined from the motion capture data as described in
[LHP05].

In summary, we formulate an optimization for solving a

motion sequencex = {hq,hg,p,Qm,λ}, which minimizes
the muscle force usageE while satisfying environment con-
straintsCp, dynamic constraintsCd, and interaction con-
straintsCi . Interaction constraints are defined based on spe-
cific scenarios. We will detail three examples in section6.

min
x

E(x) subject to







Cp = 0
Cd = 0
Ci = 0

(5)

5. Motion composition

The flexibility of the framework described in the previous
section works well with a short, single-character motion, but
scales poorly when extended to a large problem with mul-
tiple characters. Although researchers have partly addressed
these issues with spacetime windows [Coh92] and wavelet
representation of DOFs [LGC94], these methods did not ap-
ply to multi-character motion. To solve such problems, we
describe a generalization of the spacetime windows together
with the continuation-based optimization strategy.

We view the process of synthesis of complex motions as
an optimal composition of smaller optimal sequences. The
user selects motion clips from a small set of primitive motion
date set and specifies the important constraints to achieve
desired interaction. Our framework solves for an optimal
motion that carries out the interaction in a physically real-
istic manner. The main challenges of solving large multi-
character motions lie in slow convergence rates and large
number of local minima, causing the optimization to halt
close to the initial state. In our experience, it is virtually im-
possible to solve such large problems with a single, simulta-
neous optimization over all variables.

We describe a framework that allows us to both reduce
the number of unknowns and avoid local minima. Instead of
optimizing all unknowns simultaneously, we use a cyclical
sequence of smaller optimizations, which we refer to as a
schedule, designed for a specific problem. For example, an
adversarial chase scenario determines a schedule different
from the schedule of a collaborative scenario where charac-
ters work towards a common goal. Our strategies use a com-
bination of block coordinate descent and continuations. We
outline these basic strategies in this section, and describe a
number of useful schedules and their applications in the next
section.

5.1. Block coordinate descent

This optimization strategy is frequently used for large opti-
mization problems [Coh92]. The idea is to optimize with re-
spect to a block of coordinates (or unknowns), while holding
the remaining unknowns fixed. The active block of coordi-
nates varies during the optimization. As long as the blocks
cycle over all unknowns, this process will converge to a lo-
cal minimum. In our framework, we use the results from
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the previous optimization to construct interaction constraints
that need to be satisfied in the current optimization. In the
two-character animation, the interaction constraint for char-
acterA’s optimization depends on the earlier optimization
for characterB, and vice versa. We can select the blocks
by their spatial or temporal relations. For example, we can
set unknowns to be only the DOFs of a specific charac-
ter, treating the motion of all other characters as constant.
Similarly, we can restrict the optimization to a smaller part
of the whole animation. Whichever strategy is chosen, we
interleave the blocks so that all unknowns are optimized.
Coordinate-descent strategies always minimize the same ob-
jective function and the same constraints. In our framework,
we also vary the objective function and constraints by con-
tinuation strategies.

5.2. Continuations

The idea of continuations is to solve a sequence of different
problems that, in the limit, smoothly approach the objective
function. For example, if a positional constraint is very diffi-
cult to satisfy, we may replace it with a spring of rest-length
zero, and slowly increase the spring coefficient during the
optimization. In the limit, we will strictly enforce the origi-
nal positional constraint.

It is also crucial to apply block coordinate descent in con-
junction with continuation to solve tightly coupled multi-
character motion, such as a mother and a child walking hand-
in-hand. If we were, for example, to first solve for mother’s
motion and then for the child’s motion, the mother would
change her entire motion to accommodate for the child’s
movement; the child would then change its motion mini-
mally, resulting in undesirable behavior where the mother
unrealistically tracks the child’s hand movement. By using
continuations, such as an increasingly tightening spring con-
straint between two hands, we can still use the character-
decoupling block optimizations, without biasing one sub-
problem over another due to the ordering. This approach al-
lows us to decouple all DOFs in virtually any grouping we
choose. As long as we have a way of smoothly introducing
the coupling constraints, in the final optimization they will
revert to the true problem formulation.

6. Results

In our implementation, we used only three basic input mo-
tion clips: a walk cycle, a run cycle, and a child’s walk cycle.
We intentionally restricted ourselves to this small set of input
motions to demonstrate the versatility of this approach. From
this very limited input motion data set (5 second long), our
framework was able to compose complex multi-character
motions with interesting interaction in many different sce-
narios. The length of the clips ranges from 40 to 60 frames
at 30 fps. We use SNOPT [GSM96] to solve spacetime op-
timization problems on a 2Ghz Pentium 4 machine. Each
optimization takes approximately 8 to 20 minutes.

A

B

C

pose constraint rubber-band constraint
positional constraint
inequality constraint

Figure 4: Three different schedules. Left: Time-layered
schedule. The gray bars indicate the pose constraints at tran-
sition points. Middle: Constrained multi-character sched-
ule. The motions of two characters (red and blue bars) are
tightly coupled by a continuation constraint. The influence of
the constraint is indicated in grayscale. Right: Decreasing-
horizon optimization. Two characters plan their motions ac-
cording to the previous movement of the opponents.

6.1. Time-layered schedule

This schedule is deployed for sequentially composition of
small problems. First, we solve for two abutting optimiza-
tions A and B, and then we solve the optimization C that
straddles across the transition from A to B. Each optimiza-
tion has pose constraints obtained from the adjacent blocks.
Repeated optimizations of this schedule converge to the op-
timal solution over the interval of A and B, thus effectively
using smaller interval optimizations to solve for larger inter-
vals (Figure4).

Example: Transition synthesis. Since a complex motion
is composed of smaller sequences that can be fundamentally
different, there is a large discontinuity between the two se-
quences. Given two example sequences, our goal is to gen-
erate a realistic transition between them. First, we initialize
the problem by connecting the two motions: we determine
the average pose between the start and the end of the two se-
quences, and then solve two optimization problems (A and
B) so that both motions smoothly lead to the average tran-
sition pose. We then remove the transition pose and solve
for the overlap (C). The transition pose is only used for ini-
tializing the problem and has little effect on subsequent op-
timization. The video shows the synthesized transition be-
tween walking and running where the character correctly
dips down and leans forward before reaching the running
speed. This example was completed by three optimizations.
The total computation time took 38 minutes.

6.2. Constrained multi-character schedule

When the motion of two characters is mutually constrained,
we employ a schedule that alternates between optimizing
each character’s motion. We also use a continuation strategy
to represent the constraint connecting the two characters. To
find the optimal constraints for both characters, we need to
allow each character to slowly adjust its motion according to
the behavior of the other character.

Example: Hand in hand walking. When solving for the
walk cycle with two people holding hands, we start out from
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Figure 5: Solving for the mother’s motion more frequently than the child’s motion would result in a final motion where the
mother does all the work, while the child adjusts minimally.

two people walking independently without any body con-
tacts. We first optimize for the motion of one person and treat
the other person’s motion as constant. During the optimiza-
tion, we apply a continuation-like “rubber-band” that pulls
the hand of the character towards the other one. After every
scheduled cycle, we increase the stiffness coefficient of the
rubber-band by 100, pulling the characters further together
(Figure4). At convergence, the soft constraint is satisfied.
Since we exert a spring force on the characters, the resulting
force exchange across the hand constraint is dynamically ac-
curate. By manipulating the order of the schedules, the user
can control which character dominates the motion. For ex-
ample, solving for character A more frequently than char-
acter B would result in the motion where character A does
all the work, while character B adjusts minimally (Figure
5). The example shown in the accompanying video took 8
scheduled cycles before convergence. The total computation
time took 85 minutes.

6.3. Decreasing-horizon optimizations

Spacetime optimization is inherently unsuited for creating
animations where characters react to unexpected events, be-
cause all constraints are knowna priori and the character
can always plan well ahead. When two people are planning
their motions in an adversarial setting, at every instance in
time, each character adjusts to the latest movement of the
opponent. We approximate this process by interleaving the
solutions for both opponents, while consistently decreasing
the reaction time for each character by reducing the opti-
mization interval.

Example: Simulations of optimal adversary behavior.
We synthesized several scenarios of a tackler and a target.
The tackler’s goal is to hit the torso of the target at specific
velocity, and position his hands around the torso. The target’s
goal is to avoid the tackler at the collision time. We represent
this as an inequality constraint that prevents the target from
being inside the bounding sphere of the tackler. We use one
running cycle and one walking cycle from the dataset as the
initial motions for the tackler and the target. Each scheduling
cycle, we choose to half the interval of time over which we
are optimizing (Figure4). First the tackler would find the op-
timal motion for tackling the target. Then the target charac-
ter would solve for the optimal avoiding motion based on the
tackler’s final position, only we would solve for the last half

of the animation. Then the tackler would plan the optimal
motion based on the new avoidance strategy, only during the
last half of the animation. This process would continue until
a sufficiently small time interval. In the video, we optimize
each character for two or three cycles depending on the sce-
narios. Effectively, we have created a coarse discretization of
the optimal planning process. We show the two outcomes of
the tackle by letting different characters have the last chance
to adjust the motion. We also show an animation where the
target avoids two tacklers coming from different directions.

7. Conclusion

We have described a framework for composing complex op-
timal motions from optimal motion building blocks. We in-
troduce two simple but powerful extensions to spacetime
optimization that make this possible. First, we exploit a
time-warped parameterization to optimize the timing and the
spatial coefficients of the constraints. Second, we describe
how a block-coordinate descent approach can be extended to
solve tightly coupled multi-character motions by use of con-
tinuations. The combination of these two techniques greatly
expands the applicability of the spacetime optimization, in-
cluding optimal transitions between different motions and
collaborative and adversarial optimal motions for multiple
characters.

This work presents only the first attempt at solving com-
plex multiple character animations. We have by no means
described a general framework that can deal with any sit-
uation, but merely shown that, with thoughtful structuring
of the problem, it is possible to solve these large problems
using spacetime optimizations. An important open problem
is to automatically determine the appropriate schedule from
high-level user specifications. Our current implementation
uses inequality constraints to prevent self-penetration of a
character. As the complexity and the number of the charac-
ters increase in the scenario, a more sophisticated collision
detection method becomes necessary to our system. The in-
tensive computational time also undermines the applicabil-
ity of our algorithms. An adaptive optimization framework
could potentially result in a more efficient algorithm for mo-
tion synthesis of a large group of characters.
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References

[AF02] ARIKAN O., FORSYTH D. A.: Synthesizing Constrained
Motions from Examples.ACM Trans. on Graphics 21, 3 (July
2002), 483–490.

[Bet01] BETTS J. T.:Practical methods for optimal control using
nonlinear programming. SIAM, 2001.

[BH00] BRAND M., HERTZMANN A.: Style machines.Proceed-
ings of SIGGRAPH 2000(July 2000), 183–192.

[BW95] BRUDERLIN A., WILLIAMS L.: Motion signal process-
ing. In Computer Graphics (SIGGRAPH 95 Proceedings)(Aug.
1995), pp. 97–104.

[Coh92] COHEN M. F.: Interactive spacetime control for anima-
tion. In Computer Graphics (SIGGRAPH 92 Proceedings)(July
1992), vol. 26, pp. 293–302.

[FP03] FANG A. C., POLLARD N. S.: Efficient synthesis of phys-
ically valid human motion.ACM Trans. on Graphics 22, 3 (July
2003), 417–426.

[FvdPT01] FALOUTSOSP., VAN DE PANNE M., TERZOPOULOS

D.: Composable Controllers for Physics-Based Character Ani-
mation. InProceedings of SIGGRAPH 2001(August 2001).

[Gle97] GLEICHER M.: Motion Editing with Spacetime Con-
straints. 1997 Symposium on Interactive 3D Graphics(Apr.
1997), 139–148.

[Gle98] GLEICHER M.: Retargeting motion to new characters. In
Computer Graphics (SIGGRAPH 98 Proceedings)(July 1998),
pp. 33–42.

[GMHP04] GROCHOW K., MARTIN S. L., HERTZMANN A.,
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[WP95] WITKIN A., POPOVIĆ Z.: Motion Warping.Proc. SIG-
GRAPH 95(Aug. 1995), 105–108.

[YKH04] YAMANE K., KUFFNER J. J., HODGINS J. K.: Syn-
thesizing animations of human manipulation tasks.ACM Trans.
on Graphics 23, 3 (Aug. 2004), 532–539.

[ZH99] ZORDAN V. B., HODGINS J. K.: Tracking and modify-
ing upper-body human motion data with dynamic simulation. In
Proc. CAS ’99(September 1999).

[ZMCF05] ZORDAN V. B., MAJKOWSKA A., CHIU B., FAST

M.: Dynamic response for motion capture animation.j-TOG 24,
3 (July 2005), 697–701.

c© The Eurographics Association 2006.


