
Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2004)
R. Boulic, D. K. Pai (Editors)

Directable Photorealistic Liquids

N. Rasmussen1, D. Enright2, D. Nguyen3, S. Marino4, N. Sumner1, W. Geiger1, S. Hoon1, R. Fedkiw3

1 Industrial Light + Magic, {nick, nsumner, wgeiger, samir}@ilm.com
2 University of California, Los Angeles and Industrial Light + Magic, enright@math.ucla.edu

3 Stanford University and Industrial Light + Magic, {dqnguyen, fedkiw}@stanford.edu
4 Industrial Light + Magic, smarino@imageworks.com

Abstract
We present a method for the directable animation of photorealistic liquids using the particle level set method
to obtain smooth, visually pleasing complex liquid surfaces. We also provide for a degree of control common to
particle-only based simulation techniques. A variety of directable liquid primitive variables, including the isosur-
face value, velocity, and viscosity, can be set throughout the liquid. Interaction of thin liquid sheets with immersed
rigid bodies is improved with newly proposed object-liquid boundary conditions. Efficient calculation of large-
scale animations is supported via a multiple grid pipelined flow method and a novel moving grid windowing
technique. In addition, we propose a few significant algorithmic enhancements to the basic liquid simulation algo-
rithm to provide for the smooth merging of liquid drops, allow for the efficient calculation of high viscosity liquids,
and ensure the proper treatment of isolated free liquid pockets surrounded by controlled liquid regions.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and RealismAnimation;

1. Introduction

Providing animators control over the behavior of a liquid in-
terface when creating a directed performance has proven to
be elusive. Natural liquids generally exhibit a characteristi-
cally “sloppy” behavior as discussed in [FM97a], which one
would like to maintain while at the same time providing for
explicit control in regions of interest. In the past, liquid ac-
tors such as those in ‘The Abyss” and “Terminator 2: Judg-
ment Day” have been created with realistic rendering, but
without the desirable “sloppy” liquid behavior. In both cases,
the liquid actor was directed via control vertices placed on
the liquid surface. For complex large scale liquid animations,
this approach quickly becomes infeasible. We instead pro-
pose a new method for the directable animation of photore-
alistic liquids as seen in figure 1. This character exhibits both
controlled (e.g. the motion of the ridges around the nose) and
uncontrolled (e.g. the dripping chin) liquid behavior.

Although we first reported on this control system over one
year ago in [SHG∗03], this paper provides many of the miss-
ing details. To our knowledge, this is the first liquid anima-
tion system that provides for such an extensive degree of
control, while still remaining practical enough for a produc-

Figure 1: Use of “sloppy” liquid as a main actor.

tion environment. More recently, [MTPS04] proposed con-
trol techniques for liquids as well, but their results were lim-
ited to grids with two orders of magnitude less grid points
than ours making their method impractical for a production
environment.

The particle level set method of [EMF02] is particu-
larly effective in creating photorealistic behavior for com-
plex, three dimensional liquids when combined with the ba-
sic Navier-Stokes solver of [FF01], which uses the “sta-

c© The Eurographics Association 2004.

http://www.eg.org
http://diglib.eg.org

Rasmussen et al. / Directable Photorealistic Liquids

ble fluids” semi-Lagrangian method of [Sta99] for effi-
ciency. We extend the particle level set coupling tech-
nique of [EMF02] and control methodology introduced
by [FM97a] and later [FF01] to create a method for the di-
rectable control of photorealistic liquids. Control particles
are used to provide the desired degree of directed behav-
ior. Associated with each particle is a control shape which
defines the region of influence of the particle, and within
this region a falloff curve is used to determine the amount
of control applied to the liquid. A soft degree of control can
be applied to any of the controllable liquid properties, e.g.
viscosity. We also propose a hard control method for the ex-
plicit directed movement and visual appearance of the liquid
interface. This allows for precise control over the behavior
of the liquid, necessary for example when interacting with
other animated characters or objects.

We introduce a variety of algorithmic improvements to
the basic liquid animation technology of [FF01] to give ro-
bustness and flexibility to our method. We propose a new,
loosely coupled multiple grid sourcing technique to allow
for the calculation of large scale “down and out” liquid be-
havior without either a decrease in grid resolution or a signif-
icant increase in computational time over a single grid simu-
lation. We propose a novel moving grid windowing method
to track only the visually relevant portion of a liquid anima-
tion. A fast and stable method for variable viscosity liquids
is also presented. In addition, we propose the use of a diver-
gence free velocity extrapolation technique to facilitate the
smooth merging of liquid masses. Object-liquid boundary
conditions are improved to allow for the natural interaction
of the particle level set representation of the liquid interface
with rigid bodies. We also propose a simple flood fill tech-
nique to properly account for isolated pockets of free liquid
surrounded by regions of hard control.

The signed distance from the interface allows for efficient
ray tracing of the liquid. The liquid is rendered as an ele-
ment in the final scene in order to capture the reflections of
other objects in the liquid interface, and occlusions. Texture
mapping of the liquid surface employed a combined parti-
cle and level set approach as well. Texture coordinates were
attached to a set of particles which were passively advected
along with the liquid interface. During the ray tracing pro-
cess, texture coordinates of the particles nearest the intersec-
tion point of the ray with the liquid surface were blended
together in order to define suitable texture coordinates. A
simple look up procedure was used to calculate the texture
coordinate at later times. Due to the advection of the parti-
cles through the liquid, the texture defined by the particles
flows smoothly with the surface.

2. Previous Work

Various models have been proposed to capture the behav-
ior of different types of liquid phenomena. Large scale 2D
water surfaces have been represented by a variety of tech-

niques ranging from spectral methods [MWM87, Tes02] to
wave trains [FR86, Pea86] and hybrid spectral wave-train
models [HNC02]. Liquid models more appropriate to a dy-
namic animation environment have utilized some form of the
Navier-Stokes equations. [KM90] used a linearized form of
the 2D shallow water equations to obtain a height field rep-
resentation of the liquid surface. [CL94] and [OH95] com-
bined interactivity with immersed objects and particle-based
splashing respectively with a 2D height field fluid model.
Recent SPH approximations to the Navier-Stokes equations
include [PTB∗03, MCG03].

[FM96] utilized the work of [HW65] in developing a
grid based 3D Navier-Stokes methodology for the realis-
tic animation of liquids. An unconditionally stable semi-
Lagrangian treatment of the convective part of the Navier-
Stokes equations was introduced to the computer graphics
community in [Sta99]. [FF01] made significant contribu-
tions to the animation of three dimensional liquids through
the introduction of a hybrid liquid volume model combining
implicit surfaces and massless marker particles. [EMF02]
demonstrated the particle level set method’s ability to main-
tain visually pleasing thin sheets of water. Work incorpo-
rating bubbles, spray and foam can be seen in [HK03]
and [TFK∗03]. Additional research into object-liquid inter-
action has been done in [GHD03] which uses a point mass-
spring object model and in [HBW03] and [WR03] which
use level sets to model objects. Previous work in formulat-
ing fluid boundary conditions for animation purposes can be
found in [FM97a] and [FM97b]. Recently, [LGF04] devised
a symmetric pressure discretization on an unrestricted octree
enabling an efficient adaptive approach to liquid simulation.

To complete the visual appearance of a liquid actor,
texture mapping is required. Texture mapping of implicit
surfaces has traditionally focussed on static surfaces, e.g.
see [Ped95]. Two-dimensional advected textures for fluids
were addressed in [Sta99, Wit99, Ney03]. Stunning imagery
was created via flow on surfaces in [Sta03].

Natural phenomena have been used as an active dramatic
element for visual effect purposes. Early use of particle
based systems for fire effects can be seen in [Ree83] and
continuing to the present with [LF02]. Particles can provide
animators with the maximum degree of behavioral control,
which is desirable when sculpting a performance. The use of
velocity and force fields to control grid based liquid anima-
tions have been proposed in [Gat94, FM96, FM97a, WR03].
See also [SF93]. [TMPS03] used velocity fields in an auto-
mated key frame approach to control the “fuzzy” behavior of
smoke. [FF01] introduced the idea of using point control on
a liquid. Through this control technique, small liquid regions
can be trapped and their behavior directed by an animator.

Most recently, [MTPS04] proposed a method for control-
ling liquids. Although they made large speed improvements
over the work in [TMPS03], their coarse grids and large
computational demands render this method unsuitable for a

c© The Eurographics Association 2004.

194

Rasmussen et al. / Directable Photorealistic Liquids

production environment. While we readily simulate multi-
ple 2003 grids with an overnight computation, [MTPS04]’s
examples ranged from 303 to 45x50x36. This finest grid has
81,000 elements and took .6 GB of memory and 2 days to
simulate. In contrast, our 2003 grid has 8 million, or two
orders of magnitude more elements. Even if their compu-
tations scaled linearly in the number of grid points (typi-
cal of a standard fluid simulation), it would take 60 GB of
memory and 200 days to simulate a single 2003 grid. More-
over, [MTPS04] uses a level set only technique employing
artificial fluid sourcing to combat the significant mass loss
incurred without using particles. This sourcing causes fluid
to nonphysically disappear and reappear instead of convect
around in a visually appealing fashion. In fact, the authors
themselves dismiss this sourcing approach for smoke where
they are able to avoid it.

3. Simulation Method

On each computational grid (our method allows for more
than one), we solve the Navier-Stokes equations,

∇ ·u = 0, (1)

ut = −u ·∇u+∇ · τ− 1
ρ

∇p+g, (2)

where ρ is the density of the liquid, p is the pressure, u is
the liquid velocity, g is an externally applied gravity field,
and τ is the liquid viscous stress tensor. Each computational
domain is divided into voxels with the components of u
stored on the appropriate faces and p and ρ stored at the cen-
ter of the cell. This arrangement of computational variables
is the classic staggered MAC-style arrangement [HW65].
The approach of [FF01] is used to numerically solve for
the various terms in equation 2 using the “stable fluids”
semi-Lagrangian method of [Sta99] to update the convec-
tive terms. The discretization of the viscous force term, i.e.
∇ · τ, in equation 2 is discussed in section 5.1. To calculate
the pressure in equation 2, the mass-preserving incompress-
ibility constraint in equation 1 is used. The resulting linear
system is solved with a fast, preconditioned conjugate gra-
dient method. A constant pressure boundary condition is en-
forced in the “air” region outside the liquid. A modified ver-
sion of the simple velocity extrapolation technique proposed
in [EMF02] is used to satisfy incompressibility in cells near
the interface as discussed in section 5.2.

The liquid volume is represented as an isocontour of an
implicit function, φ. The surface of the liquid is defined by
the φ = 0 isocontour, the liquid by φ ≤ 0 and, the “air” by
φ > 0. This implicit surface description is passively evolved
by the underlying liquid velocity field according to

φt +u ·∇φ = 0. (3)

A convenient representation of φ is as a signed distance func-
tion, making the accurate calculation of interface geometri-
cal quantities straightforward, e.g. surface normals are given

by N = ∇φ/|∇φ|. For a discussion of the numerical proper-
ties and various algorithms associated with φ, see [OF02]. To
avoid excessive amounts of numerical diffusion when solv-
ing equation 3, the particle level set method of [EMF02] is
used. Particles are placed in a band about the φ = 0 isocon-
tour. Particles in the unmodeled air region move according to
the extrapolated velocity field, while particles inside the liq-
uid use the underlying liquid velocity field u. A newly pro-
posed semi-Lagrangian treatment of the level set function in
equation 3 combined with a fast second order Runge-Kutta
time integration of the particles is used to avoid the computa-
tionally expensive HJ-WENO performed in [EMF02] with-
out any significant degradation to the interface, see [ELF04].

Specialized boundary conditions are needed to account
for the presence of objects in the liquid. The particle level
set boundary conditions discussed in sections 5.5.2 and 5.5.3
are imposed during the advection phase for both the particles
and level set. The object-velocity boundary conditions of
section 5.5.1 are used when evolving the velocities forward
in time according to equation 2. Application of the object-
velocity boundary conditions are done in the same manner
as proposed in [FF01].

4. Particle Based Controls

4.1. Basics

We define four types of control particles based upon the liq-
uid variables we wish to control: velocity, viscosity, level
set, and the velocity divergence. We use velocity particles to
control the movement of the liquid interface, and level set
particles to explicitly modify the level set representation of
the liquid interface. Viscosity particles provide for visually
pleasing melting behavior as seen in figure 3. Divergence
particles enable the modeling of expansion/contraction of
the liquid (see also [FOA03]). The region and amount of in-
fluence a control particle has is determined by its shape and
falloff curve as discussed below.

Spline-based interpolation of keyframed position and ve-
locity values is used to determine particle positions during
the entire animation. All of the particle attributes are deter-
mined prior to animating the liquid, although it is possible
to stop an animation in midstream and change the various
control particle attributes if desired. Through the extensive
use of our animation system, we have found that a particle
density of one control particle per grid cell allows for a suffi-
cient degree of control over an animation without too much
over or under sampling. Keyframing of control particles is
easily accomplished with a standard production animation
package, and we implemented this aspect of our liquid ani-
mation system in Maya as shown in figure 2.

4.2. Control Shapes and Falloff Curves

A control particle’s region of influence is determined by
its shape. We primarily use two basic shapes: a sphere for

c© The Eurographics Association 2004.

195

Rasmussen et al. / Directable Photorealistic Liquids

Figure 2: Control particles (in white) applying a hard veloc-
ity control. Blue regions have soft velocity control and green
regions are CSG level set liquid erasers.

isotropic control and a cylinder for anisotropic control. A
spherical control shape is normally used when manipulating
velocity and viscosity fields. A cylindrical control shape is
used when directing the level set function, since it provides
the ability to set the surface normal to a desired direction.
The typical radius of a control shape is between one-half to
one grid cell in size.

The amount of control applied to the grid cells within the
region of influence of a particle is determined by an anima-
tor set falloff curve. A box function, a hat function, and a
smooth cubic interpolating function are typically used. Each
of these functions are scaled to vary between zero and one,
with the function set to one at the center of the region. For
a spherical control region, the falloff curve is a function of
the distance to the center of the sphere, while for a cylin-
drical control region it is a function of the distance to the
major axis through the center of the cylinder. A box function
is often used when we want ultimate directorial control, and
a hat function provides for continuity at the boundary of the
region of influence. For smoother control behavior, a cubic
interpolating function with zero derivative at the end points
is used. This function is also continuous at the boundary of
the control region.

4.3. Soft and Hard Control

After defining all of the attributes of the control particles,
the exported particle information is incorporated into the liq-
uid simulation engine. From the control region of each par-
ticle, the grid cells that will undergo directorial control can
be determined. A “soft” or blended control is typically used.
The amount of mixing between the animator desired value,
Vparticle, and the liquid value currently used by the simula-
tion, Vliquid , is given by the falloff curve value α in each cell.
A convex combination of these two values is formed to de-
termine the value used by the simulation, i.e.

Vcontrol = (1−α)Vliquid +αVparticle. (4)

If a cell is undergoing control by N particles on the same
liquid property, a weighted average is taken.

Figure 3: Melting and flowing of a liquid metal creature.

To control the exact timing and placement of the liquid
interface, the velocity field may require a greater degree of
control, i.e. a “hard” control. This is due to the imprecise
amount of control provided by blended force and wind fields
whose effect is blurred by the inherent nonlinear velocity
convection present and the global coupling of the velocity
field through the pressure term. A hard control over a region
of liquid is obtained by fixing, independent of the physics-
based model, the velocity field inside the region undergoing
hard control and enforcing a Neumann type pressure bound-
ary condition at the boundary of this region. Then the pres-
sure solver naturally provides us with a smoothly varying
velocity field away from the controlled region and into the
surrounding uncontrolled liquid. We enforce a hard control
on a cell if α > .9. Figure 2 illustrates control particles in
white applying a hard control to the liquid metal surface of
an animated creature. The final rendered result is shown in
figure 3.

While applying a hard control to the interface produces
the visual behavior we desire, sometimes grid based aliasing
artifacts are encountered. For the liquid metal face seen in
figure 1, the regions undergoing hard control, e.g. the ridges
above the eyes, exhibited an excessive amount of smoothing
when the movement of the liquid interface was determined
solely by fixed velocity fields. To correct this aliasing arti-
fact, when a hard control on the velocity field was imposed
at this location we also imposed a soft control on the level
set function on the same region via an additional set of level
set control particles. Cylindrical control particles centered at
the same position as the velocity control particles were used
to achieve this. The animator set the desired normal direc-
tion for the liquid interface in the ridges above the eyes. This
normal information along with the position of the control
particle, defines a cross sectional plane to the cylinder which
was used to calculate a φparticle at each grid point inside the
cylinder. This value is then blended with φliquid to retain the
sharp eyebrow ridges. Since the interface position is being
artificially controlled, any particles associated with the par-
ticle level set representation of the interface in this region are
reseeded to the adjusted interface location. Through this pro-
cess we are able to maintain a visually pleasing smooth liq-

c© The Eurographics Association 2004.

196

Rasmussen et al. / Directable Photorealistic Liquids

uid interface everywhere, including regions undergoing ani-
mator directed control.

We also note that the volumetric description of the liq-
uid interface lends itself to CSG style manipulations when a
coarser degree of control is desired as seen in figure 2.

5. Algorithmic Improvements

5.1. Variable Viscosity

To enhance control we allow the viscosity of the material to
vary in space and time. This variation in the viscosity can
either be controlled by an animator using the methods dis-
cussed above or be made a function of another modeled field,
such as temperature, as was done in [CMVHT02]. High vis-
cosity liquids have been animated using a backwards Eu-
ler discretization [CMVHT02, FR03] in order to avoid any
numerical instabilities associated with taking a large semi-
Lagrangian time step. We also note that Stam’s FFT-based
solver for the viscous diffusion terms [Sta99] is equivalent
to a backward Euler implementation in the case of constant
viscosity when there is no free boundary present in the flow.

For the variable viscosity case, the viscous forcing terms
resulting from the divergence of the viscous stress tensor, i.e.
Fvisc = ∇ · τ, are given by (see e.g. [Pan96]),

Fx = (ν(2ux−
2
3

∇ ·u))x +(ν(uy + vx))y +(ν(wx +uz))z,(5)

Fy = (ν(uy + vx))x +(ν(2vy−
2
3

∇ ·u))y +(ν(vz +wy))z,(6)

Fz = (ν(wx +uz))x +(ν(vz +wy))y +(ν(2wz−
2
3

∇ ·u))z,(7)

where u = (u,v,w) and ν is the kinematic viscosity. For in-
compressible flow, the ∇ ·u terms vanish. A straightforward
implicit discretization of equations 5-7 results in a matrix
which is nonsymmetric and therefore expensive to invert. In-
stead, we propose an explicit-implicit splitting using a fast
preconditioned conjugate gradient solver.

When advancing the velocity forward in time via equa-
tion 2, we first add in the contributions from the convective
and body forcing terms to un, obtaining u∗. Next, we explic-
itly add the asymmetric components of equations 5-7 plus
one of the two symmetric components, i.e.

u∗ + = ∆t
[
(νun

x)x +(νvn
x)y +(νwn

x)z

]
, (8)

v∗ + = ∆t
[(

νun
y
)

x +
(
νvn

y
)

y +
(
νwn

y
)

z

]
, (9)

w∗ + = ∆t
[(

νun
z
)

x +
(
νvn

z
)

y +
(
νwn

z
)

z

]
, (10)

where standard second order central differencing is used
along with linear interpolation to obtain viscosity values
where needed.

We now are left with the following systems of equations

Figure 4: Melting wax mannequin head (left). Liquid flow-
ing down a pirate skeleton’s chest (right).

to invert,

(I−∆tAu)u∗∗ = u∗, (11)

(I−∆tAv)v∗∗ = v∗, (12)

(I−∆tAw)w∗∗ = w∗, (13)

where the Ai are symmetric constant coefficient matrices de-
fined via,

Auu∗∗ = (νu∗∗x)x +
(
νu∗∗y

)
y +

(
νu∗∗z

)
z , (14)

Avv∗∗ = (νv∗∗x)x +
(
νv∗∗y

)
y +

(
νv∗∗z

)
z , (15)

Aww∗∗ = (νw∗∗x)x +
(
νw∗∗y

)
y +

(
νw∗∗z

)
z . (16)

Standard central differencing is used to compute the deriva-
tives, and ν is interpolated when necessary. Finally, we solve
for the pressure and project out any non-divergence free
component in u∗∗ to obtain un+1.

Use of this explicit-implicit viscosity treatment can be
seen in figures 3 and 4 (left). If the viscosity is constant,
the explicit part of the viscous terms shown in equations 8-
10 are zero due to incompressibility. However, [CMVHT02]
inaccurately neglects these in the variable viscosity case as
well. (We also note that the artificial dissipation of high vis-
cosity liquids in free flight that was noted in [CMVHT02] is
probably due to a bug in their implementation. There is no
null space in these equations.)

5.2. Divergence Free Velocity Extrapolation

While using the velocity extrapolation approach advocated
by [EMF02], we observed that the method may sometimes
have difficulty dealing with merging liquid interfaces. As
shown in figure 5, two liquid drops are about to merge and
their extrapolated velocity fields overlap due to the drops’
proximity to each other. The behavior of the extrapolated ve-
locity field and the “air” particles, both in red, can be seen in
figures 5(a) and 5(c). The air particles between the two drops
remain clustered between them due to the fact that the ex-
trapolated velocity field, while satisfying incompressibility
under grid refinement, fails to do so on the under-resolved
grid seen here. This failure to satisfy the incompressibility

c© The Eurographics Association 2004.

197

Rasmussen et al. / Directable Photorealistic Liquids

(a) Velocity - Not Diver-
gence Free

(b) Velocity - Divergence
Free

(c) Particle Distribution,
Not Divergence Free

(d) Particle Distribution,
Divergence Free

Figure 5: Velocity Extrapolation - Two Colliding Drops

constraint can result in the liquid and air mixing together to
form a visually displeasing liquid interface and the possible
loss of liquid mass.

To prevent this phenomenon from occurring, after extrap-
olating the velocity away from the interface we then also
project out any non-divergence free component of the ex-
trapolated velocity field. The resulting velocity field is ev-
erywhere discretely mass conserving, even in the unmodeled
air region near the interface. The method used for the diver-
gence free projection of the extrapolated velocity field is the
same as for the liquid velocities. A constant pressure bound-
ary condition is maintained in the air outside the extrapolated
velocity region and a fixed velocity boundary condition is
applied to the liquid. This divergence free velocity extrapo-
lation technique was first proposed in [Sus03]. The resulting
velocity field can be seen in figure 5(b) and the correspond-
ing behavior of the air particles is shown in figure 5(d). The
extrapolated velocity now behaves correctly, i.e. the air sees
that it is being squeezed by the drops and forms two high
speed jets, one to the right the other to the left, to relieve the
pressure. The air particle density, while not zero, is substan-
tially less than in figure 5(c), resulting in a smoother merging
of the two drops. Note that if air particles do get trapped in
a merging region, they are deleted if they penetrate too far
into the liquid (as suggested in [ENGF03]).

5.3. Grid Windowing And Resizing

Capturing the detailed motion of liquids or liquid-like crea-
tures interacting with other objects using volumetric simula-
tion techniques can result in long computational times and
large memory costs. To minimize these costs, a moving grid

Figure 6: Dynamically resized grid to capture dripping liq-
uid metal train.

windowing technique has been developed to restrict the sim-
ulation of the liquid to a region of interest as shown in fig-
ure 1 where liquid metal has been placed over an animated
head mesh collision object. A simple approach for this sim-
ulation would have been to use a grid large enough to con-
tain the entire movement of the head mesh. Instead, a much
smaller moving grid window of the larger logical grid con-
taining the entire movement of the head was used.

To accomplish this, the liquid primitive variables, φ, u,
and ν, are translated in their arrays to match the movement of
the grid window. Also, the information describing the spatial
location of each grid cell is changed accordingly. We restrict
translations to whole grid cell increments to avoid any inter-
polation issues. As an example, if the grid window is trans-
lated to the left by three grid cells, the following data move-
ment for the level set function is performed, φi, j,k← φi+3, j,k
for i = 1 . . .N−3, j = 1 . . .N, and k = 1 . . .N, where N is the
number of grid cells per dimension. In the case of the head
mesh simulation shown in figure 1, the entire head mesh was
always centered in the middle of the moving grid window
as the head moved from side-to-side. Thus, any uninitial-
ized values resulting from the translated grid window were
treated as unmodeled air values. To capture the liquid metal
train dripping from the head in figure 6, we dynamically re-
sized the grid window without incurring too much additional
computational overhead.

We wish to emphasize that the process described above
does not require any additional forcing terms to be added to
equation 2 since we are not simulating the liquid in a non-
inertial reference frame. Rather, we are just taking a window
of the fixed logical grid in which the entire scene is taking
place.

5.4. Grid Sourcing

While grid windowing can provide for higher resolution sin-
gle grid liquid simulations, the animation of large scale liq-
uid streams is still problematic due to the size of the grid
necessary to obtain reasonable surface resolution. For freely

c© The Eurographics Association 2004.

198

Rasmussen et al. / Directable Photorealistic Liquids

Figure 7: Sourcing of liquid from the torso and down the
arm of the creature.

flowing gravity driven motion, i.e. liquid flowing down and
out, liquid pressure effects are relatively unimportant to the
behavior of the interface. Instead, the bulk convection of the
liquid determines the behavior of the liquid interface. The
proposed grid sourcing technique takes advantage of this fact
by splitting up the overall liquid computational domain into
smaller, higher resolution volumes that are loosely coupled
together through the primitive liquid variables.

We “source”, i.e. transfer, the liquid primitive variables
from one grid to the next at every time step. The grids, which
cover the domain of interest, are arranged in an acyclic di-
rected graph indicating the flow direction. The grids slightly
overlap each other in three grid cell deep bands to allow
for the smooth transfer of data from one grid to the next.
For grids lower in the dependency graph, the values sourced
onto these grid are held constant when solving equations 1
and 2. The sourced boundary bands are stored to disk after
each time step for convenient access. The sourcing of the
liquid primitive variables allows the entire flow calculation
to be pipelined, with grid volumes higher up the dependency
graph continuing further on in the flow calculation without
waiting for the volumes lower in the dependency graph to
finish. By pipelining the calculation, a substantial savings in
the overall computational time can be obtained. One diffi-
culty encountered when pipelining the calculation with time
asynchronous fluid volumes is that a volume further down
the pipeline may demand sourced boundary information at a
time level not explicitly computed by the volume upstream
to it. In this case, we just interpolate the sourced data from
the upstream volume to the appropriate time level.

An example of grid sourcing can be seen in figure 7,
where flowing liquid metal from the melting torso and down
the arm of the creature is captured with two computational
volumes. An additional benefit of grid sourcing is the flexi-
bility of adding additional computational volumes without
having to restart the entire calculation. Unexpected flow-
ing of liquid off a computational domain can be captured
through the addition of a downstream computational volume
using the stored sourced variables as the boundary condi-

Figure 8: Thin liquid sheets flowing from the melting crea-
ture.

tions for the newly added volume. The upstream sourcing
volume is able to finish its calculation normally.

5.5. Boundary Conditions

Specialized boundary conditions are needed to ensure a vi-
sually pleasing interaction of the liquid interface with im-
mersed objects. A common approach to incorporating ob-
jects into liquid animations is to enforce a velocity bound-
ary condition such that no liquid is allowed to enter an ob-
ject [FM96, FF01]. While relatively easy to implement, use
of this method alone to ensure visually pleasing liquid-object
interaction is challenging when using a grid based interface
method. We instead propose a set of object boundary con-
ditions for the velocity field and both the level set function
and particles comprising the particle level set method. These
boundary conditions are used for both moving and stationary
objects as seen in figures 4 (right) and 8.

Although objects in our liquid animation method are in-
trinsically represented as triangulated rigid and deformable
bodies, we use a corresponding volumetric representation on
the liquid computational domain to allow the object to in-
teract with the liquid. We maintain both an explicit and im-
plicit representation of an object as in [GBF03]. The implicit
representation, φob j, is constructed each time step from the
animator-controlled explicit representation.

5.5.1. Velocity

We use the constrained velocity extrapolation approach
of [HBW03]. First, we extrapolate the velocity field nearby
the object into the object using φob j. Then for each grid cell
within the object, a convex combination of the smoothly ex-
trapolated velocity uext and the desired animator-controlled
object velocity uob j is taken, i.e. ucomb = (1−α)uext +αuob j
where α ∈ [0,1] is based upon the amount of object fric-
tion with the liquid. From ucomb, we fix the tangential com-
ponent of the velocity field inside the object to be u‖f ix =
ucomb − (ucomb ·Nob j)Nob j. For the normal velocity com-
ponent inside the object, we enforce the condition that no
liquid is allowed to flow into the object. We first calculate

c© The Eurographics Association 2004.

199

Rasmussen et al. / Directable Photorealistic Liquids

u⊥rel = (uext − uob j) ·Nob j. If the relative velocity indicates
flow into the object (u⊥rel < 0), we set u⊥f ix = u⊥ob j, otherwise

we set u⊥f ix = u⊥ext . A hard control on the velocity cells inside
an object is now set to ensure that the fixed velocity field is
faithfully preserved during the pressure update as discussed
in section 3.

5.5.2. Level Set

An obvious representation of an object would be to assign
the interior of the object a value of φ > 0. However, this con-
dition can pose aliasing issues when solving equation 3, with
the interior of an object incorrectly “leaking” air into the liq-
uid. Thus, to set the φ values for cells inside the object, we
extrapolate inwards the φ values surrounding the object. By
having a more consistent representation of φ both inside and
outside the object, visual discrepancies resulting from equa-
tion 3 are minimized. However, with only this boundary con-
dition for φ, it is difficult to cause sheets of liquid to separate
from the object and into the air. Objects will now instead
leak liquid. Therefore, while we extrapolate φ into the ob-
ject after solving equation 3, before solving equation 3 we
correct φ inside the object in the following manner. First,
we determine the relative velocity, i.e. urel = uext−uob j, for
each cell inside the object. If urel ·Nob j > .1|urel | and φ < 0
for a given cell, we reset the cell’s φ value to be air (i.e. we
set it to |φob j|). We have found that this threshold condition
produces satisfactory results allowing liquid to separate from
the object.

5.5.3. Particles

“Air” particles do not collide with an object, and they are
deleted if they drift more than a small distance inside the
object. In contrast, “liquid” particles collide with the object.
Standard collision treatment would project all the particles
to the surface of the object causing them to pile up in an in-
finitesimally thin band, which doesn’t provide enough thick-
ness to resolve a thin film. This is similar to the cloth flatten-
ing problems discussed in [BMF03] and we use a similar so-
lution. First, before updating the position of any particles, we
label those that are in close proximity to the object (within
about one grid cell) based on their φ values. After the posi-
tions of these particles are updated, we use the object normal
to project these particles away from the object to ensure that
they are no closer than their original φ value would imply.
This keeps the particles in the band well stratified so that
they can resolve thin liquid films. We additionally adjust the
velocity of these particles to remove any normal component
that would cause the particle to drift closer to the object.

5.6. Enslaving Isolated Free Liquid Pockets

Creation of isolated uncontrolled liquid pockets that are
completely surrounded by regions of hard control can occur
in many places in our directable liquid method, e.g. during
grid sourcing or when placing complicated collision objects

in the liquid. Calculating the pressure with one of the stan-
dard solver techniques will fail, since there is no guarantee
that the boundary conditions do not force a violation of in-
compressibility. Thus, special treatment is needed for any
liquid region which is completely surrounded by Neumann
boundary conditions. One remedy would be to enforce a
compatibility condition guaranteeing that incompressibility
can be enforced. However, since the behavior of the isolated
pockets of free liquid is completely forced due to the sur-
rounding Neumann boundary conditions, we “enslave” the
velocity field inside the pockets instead. During each time
step we scan all the cells containing liquid to see if any iso-
lated free fluid pockets exist. This can be efficiently done
with a simple flood fill algorithm. The terminating condition
for the flood fill recursion is when either a hard controlled
boundary cell (which includes objects, walls, and/or fluid re-
gions) or an air boundary cell is reached. If an air boundary
cell is reached, the liquid region is not isolated and we ignore
it. Otherwise we proceed as described below.

The velocity of each identified isolated pocket of free liq-
uid can be set by a velocity extrapolation technique, i.e. ex-
trapolating the boundary velocities inward. We instead use
an even simpler diffusion technique iterating through the en-
slaved region a couple of times updating the velocity value
of each enslaved cell with the average value of its neigh-
bors. Either technique yields a smooth movement of the liq-
uid in the enslaved region. In addition, by enforcing a fixed
velocity on all the newly enslaved cells, these cells can be re-
moved from the pressure solver, providing additional com-
putational savings when calculating the pressure in the re-
maining free liquid cells.

6. Rendering

We use a combined particle and level set approach to texture
map liquids as seen in figure 3. While the signed distance in-
formation of the level set is used for efficient ray-liquid inter-
section calculations, particles advected through the flow de-
termine the surface texture. We place particles on the initial
liquid surface which was made to correspond to a previously
photographed background plate of the actor. To determine
where in the background plate a particle should determine
its color, first the particle position is transformed into nor-
malized device coordinates. From the normalized device co-
ordinates of a particle, the actual location on the plate to per-
form the texture lookup can be determined. After executing
the liquid animation, the texture particles are then advected
through the stored liquid velocity field. At a ray intersection
point on the surface of the liquid, the initial positions of the
closest 64 particles are interpolated to determine which coor-
dinate to perform the aforementioned texture lookup proce-
dure on. This interpolation procedure, when combined with
the particle advection through the precomputed flow field,
provides for a smooth flowing texture to the surface. While
this procedure is sufficient to provide texturing to a flowing

c© The Eurographics Association 2004.

200

Rasmussen et al. / Directable Photorealistic Liquids

surface from a static initial plate, if the texture in the back-
ground plate is also moving, then an additional time projec-
tion step is necessary. After determining the position on the
initial surface to perform the look up, this position is pro-
jected onto the time correct surface from which the standard
texture lookup procedure is performed. The projection is de-
termined by the calculated velocity of the figure according
to the background plates.

7. Conclusions

The two types of control discussed (i.e. “soft” or blended
control of the primitive liquid variables and the explicit
“hard” velocity control of the liquid interface), when com-
bined with the underlying liquid animation method of Fos-
ter and Fedkiw [FF01] (enhanced with our algorithmic im-
provements), provides for the desirable procedural anima-
tion of “sloppy” liquid behavior.

8. Acknowledgement

Research supported in part by an ONR YIP award and
a PECASE award (ONR N00014-01-1-0620), a Packard
Foundation Fellowship, a Sloan Research Fellowship, ONR
N00014-03-1-0071, ONR N00014-02-1-0720, NSF DMS-
0106694, NSF ITR-0121288, NSF IIS-0326388 and NSF
ACI-0323866. In addition, D. E. was supported in part by
an NSF postdoctoral fellowship (NSF DMS-0202459). We
would like to thank Cliff Plumer, Steve Sullivan and Indus-
trial Light + Magic for their support and enthusiasm.

References

[BMF03] BRIDSON R., MARINO S., FEDKIW R.:
Simulation of clothing with folds and wrin-
kles. In Proc. of the 2003 ACM SIG-
GRAPH/Eurographics Symp. on Comput.
Anim. (2003), pp. 28–36. 8

[CL94] CHEN J., LOBO N.: Toward interactive-rate
simulation of fluids with moving obstacles us-
ing the navier-stokes equations. Computer
Graphics and Image Processing 57 (1994),
107–116. 2

[CMVHT02] CARLSON M., MUCHA P., VAN HORN R.,
TURK G.: Melting and flowing. In ACM SIG-
GRAPH Symposium on Computer Animation
(2002), pp. 167–174. 5

[ELF04] ENRIGHT D., LOSASSO F., FEDKIW R.: A
fast and accurate semi-Lagrangian particle
level set method. Computers and Structures,
(in press) (2004). 3

[EMF02] ENRIGHT D., MARSCHNER S., FEDKIW R.:
Animation and rendering of complex water
surfaces. ACM Trans. Graph. (SIGGRAPH
Proc.) 21, 3 (2002), 736–744. 1, 2, 3, 5

[ENGF03] ENRIGHT D., NGUYEN D., GIBOU F., FED-
KIW R.: Using the particle level set method
and a second order accurate pressure bound-
ary condition for free surface flows. In Proc.
4th ASME-JSME Joint Fluids Eng. Conf.
(2003), no. FEDSM2003–45144, ASME. 6

[FF01] FOSTER N., FEDKIW R.: Practical animation
of liquids. In Proc. of ACM SIGGRAPH 2001
(2001), pp. 23–30. 1, 2, 3, 7, 9

[FM96] FOSTER N., METAXAS D.: Realistic anima-
tion of liquids. Graph. Models and Image
Processing 58 (1996), 471–483. 2, 7

[FM97a] FOSTER N., METAXAS D.: Controlling fluid
animation. In Computer Graphics Interna-
tional 1997 (1997), pp. 178–188. 1, 2

[FM97b] FOSTER N., METAXAS D.: Modeling the
motion of a hot, turbulent gas. In Proc. of
SIGGRAPH 97 (1997), pp. 181–188. 2

[FOA03] FELDMAN B. E., O’BRIEN J. F., ARIKAN

O.: Animating suspended particle explosions.
ACM Trans. Graph. (SIGGRAPH Proc.) 22, 3
(2003), 708–715. 3

[FR86] FOURNIER A., REEVES W. T.: A simple
model of ocean waves. In Computer Graph-
ics (Proc. of SIGGRAPH 86) (1986), vol. 20,
pp. 75–84. 2

[FR03] FÄLT H., ROBLE D.: Fluids with extreme
viscosity. In SIGGRAPH 2003 Sketches &
Applications (2003), ACM Press. 5

[Gat94] GATES W.: Interactive Flow Field Modeling
for the Design and Control of Fluid Motion
in Computer Animation. Master’s thesis, Uni-
versity of British Columbia, 1994. Dept. of
Computer Science. 2

[GBF03] GUENDELMAN E., BRIDSON R., FEDKIW

R.: Nonconvex rigid bodies with stacking.
ACM Trans. Graph. (SIGGRAPH Proc.) 22,
3 (2003), 871–878. 7

[GHD03] GÉNEVAUX O., HABIBI A., DISCHLER

J.-M.: Simulating fluid–solid interaction.
In Graphics Interface (2003), A K Peters,
pp. 31–38. 2

[HBW03] HOUSTON B., BOND C., WIEBE M.: A
unified approach for modeling complex oc-
culsions in fluid simulations. In SIGGRAPH
2003 Sketches & Applications (2003), ACM
Press. 2, 7

[HK03] HONG J.-M., KIM C.-H.: Animation of bub-
bles in liquid. Comp. Graph. Forum (Euro-
graphics Proc.) 22, 3 (2003), 253–262. 2

c© The Eurographics Association 2004.

201

Rasmussen et al. / Directable Photorealistic Liquids

[HNC02] HINSINGER D., NEYRET F., CANI M.-P.:
Interactive animation of ocean waves. In ACM
SIGGRAPH Symposium on Computer Anima-
tion (2002), pp. 161–166. 2

[HW65] HARLOW F., WELCH J.: Numerical Calcula-
tion of Time-Dependent Viscous Incompress-
ible Flow of Fluid with Free Surface. Phys.
Fluids 8 (1965), 2182–2189. 2, 3

[KM90] KASS M., MILLER G.: Rapid, stable fluid
dynamics for computer graphics. In Com-
puter Graphics (Proc. of SIGGRAPH 90)
(1990), vol. 24, pp. 49–57. 2

[LF02] LAMORLETTE A., FOSTER N.: Structural
modeling of natural flames. ACM Trans.
Graph. (SIGGRAPH Proc.) 21, 3 (2002),
729–735. 2

[LGF04] LOSASSO F., GIBOU F., FEDKIW R.: Sim-
ulating water and smoke with an octree data
structure. ACM Trans. Graph. (SIGGRAPH
Proc.) (2004). 2

[MCG03] MÜLLER M., CHARYPAR D., GROSS M.:
Particle-based fluid simulation for interactive
applications. In Proc. of the 2003 ACM SIG-
GRAPH/Eurographics Symposium on Com-
puter Animation (2003), pp. 154–159. 2

[MTPS04] MCNAMARA A., TREUILLE A., POPOVIĆ

Z., STAM J.: Fluid control using the adjoint
method. ACM Trans. Graph. (SIGGRAPH
Proc.) (2004). 1, 2, 3

[MWM87] MASTEN G., WATTERBERG P., MAREDA I.:
Fourier synthesis of ocean scenes. IEEE Com-
puter Graphics and Applications 7 (1987),
16–23. 2

[Ney03] NEYRET F.: Advected textures. In Proceed-
ings of Eurographics/SIGGRAPH Symposium
on Computer Animation (2003), pp. 147–153.
2

[OF02] OSHER S., FEDKIW R.: Level Set Meth-
ods and Dynamic Implicit Surfaces. Springer-
Verlag, 2002. New York, NY. 3

[OH95] O’BRIEN J. F., HODGINS J. K.: Dynamic
simulation of splashing fluids. In Computer
Animation ’95 (Apr. 1995), pp. 198–205. 2

[Pan96] PANTON R. L.: Incompressible Flow. John
Wiley & Sons, 1996. (2nd ed.). 5

[Pea86] PEACHEY D. R.: Modeling waves and surf.
In Computer Graphics (Proc. of SIGGRAPH
86) (1986), vol. 20, pp. 65–74. 2

[Ped95] PEDERSEN H. K.: Decorating implicit sur-

faces. In Proc. of SIGGRAPH 95 (1995),
pp. 291–300. 2

[PTB∗03] PREMOZE S., TASDIZEN T., BIGLER J.,
LEFOHN A., WHITAKER R.: Particle–based
simulation of fluids. In Comp. Graph. Fo-
rum (Eurographics Proc.) (2003), vol. 22,
pp. 401–410. 2

[Ree83] REEVES W. T.: Particle systems - a tech-
nique for modeling a class of fuzzy objects.
In Computer Graphics (Proc. of SIGGRAPH
83) (1983), vol. 17, pp. 359–376. 2

[SF93] STAM J., FIUME E.: Turbulent Wind Fields
for Gaseous Phenomena. In Proc. of SIG-
GRAPH 1993 (1993), pp. 369–376. 2

[SHG∗03] SUMNER N., HOON S., GEIGER W.,
MARINO S., RASMUSSEN N., FEDKIW R.:
Melting a terminatrix. In SIGGRAPH 2003
Sketches & Applications (2003), ACM Press.
1

[Sta99] STAM J.: Stable fluids. In Proc. of SIG-
GRAPH 99 (1999), pp. 121–128. 2, 3, 5

[Sta03] STAM J.: Flows on surfaces of arbitrary topol-
ogy. ACM Trans. Graph. (SIGGRAPH Proc.)
22, 3 (2003), 724–731. 2

[Sus03] SUSSMAN M.: A second order coupled level
set and volume-of-fluid method for comput-
ing growth and collapse of vapor bubbles. J.
Comp. Phys. 187 (2003), 110–136. 6

[Tes02] TESSENDORF J.: Simulating Ocean Water.
In SIGGRAPH 2002 Course Notes #9 (Simu-
lating Nature: Realistic and Interactive Tech-
niques) (2002), ACM Press. 2

[TFK∗03] TAKAHASHI T., FUJII H., KUNIMATSU A.,
HIWADA K., SAITO T., TANAKA K., UEKI

H.: Realistic animation of fluid with splash
and foam. Comp. Graph. Forum (Eurograph-
ics Proc.) 22, 3 (2003), 391–400. 2

[TMPS03] TREUILLE A., MCNAMARA A., POPOVIĆ

Z., STAM J.: Keyframe control of smoke sim-
ulations. ACM Trans. Graph. (SIGGRAPH
Proc.) 22, 3 (2003), 716–723. 2

[Wit99] WITTING P.: Computational fluid dynamics
in a traditional animation environment. In
Proc. of SIGGRAPH 99 (1999), pp. 129–136.
2

[WR03] WRENNINGE M., ROBLE D.: Fluid simu-
lation interaction techniques. In SIGGRAPH
2003 Sketches & Applications (2003), ACM
Press. 2

c© The Eurographics Association 2004.

202

