
EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2012)
L. B. Kara and K. Singh (Editors)

TreeSketch:
Interactive Procedural Modeling of Trees on a Tablet

Steven Longay1, Adam Runions1, Frédéric Boudon2 and Przemyslaw Prusinkiewicz1

1 University of Calgary, Canada
2 CIRAD/INRIA, Virtual Plant Team, UMR AGAP, Montpellier, France

Figure 1: Examples of trees created with TreeSketch. Arrows indicate the motions of the brush that determined the correspond-
ing tree forms. The trees were generated instantaneously while brushing.

Abstract
TreeSketch is a system for modeling complex trees that look natural yet are creatively designed. The system inte-
grates procedural tree generation with a multi-touch tablet interface that provides detailed control of tree form.
The procedural component is based on the concept of tree self-organization and simulates competition of branches
for space and light as the tree develops from a seedling. The modeler can control this process by directing growth
with a procedural brush, changing parameters as the tree grows, interleaving controlled and autonomous growth,
and editing generated forms. Complex trees can be created in a matter of seconds.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems; Computer Graphics [I.3.6]: Methodology
and Techniques—Interaction techniques; Simulation and Modeling [I.6.8]: Types of Simulation—Visual.

1. Introduction

Our [modeling] tools need to feel more like brushes.
Rob Cook, 2009 Steven A. Coons Award speech

Due to the complexity of tree structures, the creation of trees
for computer imagery requires specialized modeling meth-
ods [SLS∗10]. Current methods include procedural tree gen-
eration and the reconstruction of tree geometry from pho-
tographs or laser scans. Reconstruction methods can poten-

tially provide faithful models of real trees with little user
intervention. However, finding an actual tree that meets the
artistic requirements of a specific scene while being suffi-
ciently isolated to obtain good photographs or scans is dif-
ficult. This problem is compounded for trees that only grow
in forests, and accentuated by the limited geographic range
in which some trees occur. Procedural models do not suf-
fer from these limitations. Nevertheless, the development of
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Figure 2: Designing a bonsai-inspired tree. The modeler has
first applied three strokes of a small-sized procedural brush
to create three superimposed arched branches (left). The de-
sign is completed by pruning the overhanging parts of the
first two arcs, adding smaller branchlets with several strokes
of a larger brush, increasing the girth of the main trunk, and
stretching the trunk vertically (right).

methods capable of generating widely diverse trees, botani-
cally plausible yet easily controlled to meet artistic require-
ments, has remained a challenge.

In this paper we present TreeSketch, a program that allows
the modeler to create a wide range of trees by combining
procedural methods with detailed control of tree form us-
ing a multi-touch tablet interface. The main tool is a brush,
which gives the modeler decisive control over the form of the
tree (Figure 1). By changing the brush radius, the modeler
can seamlessly progress from specifying the exact course
of individual axes to a broad definition of large branches
and the entire crown. The user can also direct the growth
into predefined shapes using a lasso tool to draw silhou-
ettes, or allow the tree to grow autonomously. Reversing
time “ungrows" the tree, providing a continuous undo and
making it possible to precisely target the desired growth
stage. The general character of branches is controlled using a
small number of parameters. The generated branches can be
pruned, bent and stretched to meet the requirements of the
design (Figure 2). Branch widths are defined procedurally,
but can be modified by the user by placing constraints at any
point throughout the tree. Saved trees can be reloaded and
further manipulated, thus providing a set of templates for
different tree types that expands as the system is used. By
combining fast procedural methods with an intuitive inter-
face, TreeSketch makes it possible to quickly create diverse
natural and artistically expressive trees.

Following a review of related work (Section 2), we present
the interface design and algorithms underlying the tree gen-
eration and editing techniques implemented in TreeSketch
(Section 3). We then present select examples of the applica-
tion of the system (Section 4), and conclude the paper with

a discussion of the results and suggestions for further work
(Section 5).

2. Background

Algorithms for procedural tree modeling form a contin-
uum spanning two extremes: those generating trees as recur-
sive or hierarchical branching patterns, and those in which
branching patterns emerge from the competition of candi-
date limbs for space or light. The middle ground is occupied
by algorithms that combine both aspects in various propor-
tions. We review the spectrum of procedural models by fo-
cusing on their capability to generate trees with a realistic
appearance and capacity for interactive control of tree form.

2.1. Recursive and hierarchical models

Generative algorithms. Procedural trees are often gener-
ated using recursive or hierarchical algorithms. Most older
algorithms [Hon71, AK84, Blo85, Opp86, PL90] operate in
a bottom-up fashion, i.e., by repeating a locally defined
ramified geometry over consecutive orders of the branching
hierarchy. Recursive and hierarchical algorithms can yield
a wide range of tree forms [dEF∗88], but the modeler’s
ability to control them is impeded by the need to under-
stand the intricacies of the generative processes and their
software implementation. These difficulties have been par-
tially circumvented by limiting the modeler to manipulat-
ing a set of exposed parameters using standard control pan-
els [Opp86, PL90] or specialized graphical editors [IOOI05,
IOI06b]. Additional techniques include confining modifica-
tions of the algorithm to the choice between predefined op-
tions [dEF∗88], introducing dedicated modeling languages
to specify the generative algorithms [PL90, KP03], and in-
troducing graphical interfaces for composing the algorithm
from predefined components [LD99]. In most cases, how-
ever, global attributes of the generated structures — the over-
all silhouette of the tree, the shape of key limbs, and the
density of branches — emerge from the execution of the
bottom-up algorithms, and are not directly controlled. One
exception is the method for modeling topiary trees [PJM94],
in which branches that grow outside a predefined shape are
repetitively pruned. The resulting trees, however, have the
artificial appearance of topiary trees, rather than that of nat-
ural trees that happened to grow into particular forms. An-
other exception is the method for inferring structures match-
ing a high-level specification (e.g., a sketch) from a range of
possibilities afforded by the underlying generative algorithm
(a grammar) [TLL∗11].

Control of silhouette. The above shortcomings were ad-
dressed in top-down algorithms, which operate by decom-
posing plant axes into smaller segments (internodes), as op-
posed to composing them from the internodes [PMKL01].
The key observation was that the silhouette of a tree with a
well defined trunk is largely determined by the reach of its
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first-order branches, which therefore can be inferred from
the silhouette of the tree [RB85]. Methods proposed to de-
fine silhouettes include specialized surfaces controlled by a
small number of parameters [RB85, WP95, BPF∗03] and ar-
bitrary surfaces of revolution with a graphically defined pro-
file [DL97,PMKL01]. Boudon et al. [BPF∗03] extended the
top-down approach by introducing a hierarchy of envelopes
to define both the silhouette of the whole tree and the sil-
houettes of individual branches. More recently, Wither et
al. [WBCG09] used a sketch-based interface to define 2D
silhouettes of branches that were subsequently rearranged in
3D.

Control of limb shape. The top-down systems by Deussen
and Lintermann [DL97], Prusinkiewicz et al. [PMKL01]
and Boudon et al. [BPF∗03] allowed the modeler to spec-
ify the shape of selected axes using a parametric curve ed-
itor. A more intuitive method was introduced by Okabe et
al. [OOI05] and Ijiri et al. [IOI06b], who defined the axes
of two-dimensional branching structures by sketching. Di-
verse methods were proposed to infer the three-dimensional
shape of plant axes from 2D strokes. They employed the as-
sumption of constant stem curvature in 3D [IOOI05], projec-
tions of sketches onto billboards arranged in 3D, and multi-
ple projections [IOI06a]. Onishi et al. [OMKK06] bypassed
the problem of inferring 3D axes from 2D sketches by using
a 3D input stylus. Complementing these techniques, Power
et al. [PBBPS99] introduced interactive pruning and bending
of branches using inverse kinematics.

Control of branch distribution and proliferation. The
problem of inferring 3D form from 2D sketches extends
from the control of limb shape to the layout of branches.
The 3D arrangement of branches has been inferred from
2D sketches by rearranging branches to maximize their mu-
tual distances [OOI05] or imposing a phyllotactic pattern
of branch arrangement [WBCG09]. In the technique intro-
duced by Chen et al. [CNX∗08], a sketch representing main
branches and, optionally, the desired silhouette of the tree
is compared with a database of reference trees, and the best
matching tree provides parameters for a recursive genera-
tive algorithm. Related techniques have been proposed to
distribute and proliferate small branches while reconstruct-
ing trees from photographs or laser scan data. For example,
Tan et al. [TZW∗07] inferred parameters used for branch
proliferation from the layout of visible branches. Livny et
al. [LPC∗11] proliferated branches by rearranging templates
generated with L-systems to fill given envelopes.

2.2. Self-organizing trees

Generative algorithms. The main limitation of recursive
and hierarchical models is that the harmonious distribu-
tion of branch densities throughout the tree crown is not
achieved automatically and must be monitored carefully
by the modeler. This problem is much reduced in self-
organizing models, which emphasize competition between

branches as a fundamental process controlling branch pro-
liferation in nature (as proposed from a biological perspec-
tive by Ward [War09], Sachs and Novoplansky [SN95], and
Sachs [Sac04]).

Computational models based on the self-organizing prin-
ciple have their roots in early models of branching struc-
tures proposed by Ulam [Ula62] and Cohen [Coh67], and
within computer graphics in methods that captured the role
of light [Gre89, COMM94] and space [RCSL03, RLP07] in
shaping the tree. In the tree models proposed by Měch and
Prusinkiewicz [MP96], control of branch density is not lim-
ited to local action, but is integrated globally through internal
signaling. The signals integrate the amount of light reaching
entire branches to decide whether they were profitable to the
plant and should be kept, or whether they were a liability and
should be shed. More recently, Pałubicki et al. [PHL∗09] ex-
tended this idea with a model in which the internal flow of
signals also biases the outcome of competition between buds
for light. Parameters controlling competitive bias and shed-
ding capture tree characteristics that are recognized as visu-
ally important by arborists, such as the presence or absence
of a well-defined trunk.

Control of tree form. Explicit representation of space in
self-organizing models makes it possible to control the form
of plants by manipulating their environment. An early exam-
ple was given by Měch and Prusinkiewicz [MP96], who used
a paint program to define the distribution of water in the soil
that guided the development of a branching root structure.
Rodkaew [RCSL03] and Runions et al. [RLP07] observed
that in self-organizing trees, tree silhouettes can easily be
specified by constraining the space within which the trees
grow. Neubert et al. [NFD07] extended Rodkaew’s algo-
rithm to incorporate branches that approximate a given input
obtained from photographs. Likewise, Côté et al. [CWFV09]
adapted the space colonization algorithm of Runions et al.
to proliferate branches around main limbs obtained from LI-
DAR data. Beneš et al. [BvMM11] divided the environment
into a set of regions guiding the form of individual, possibly
distinct components of the tree, such as naked branches and
leaf clusters.

In the context of interactive systems, the environment may
be regarded as a two- or three-dimensional canvas, in which
the user paints properties with a brush. For example, Maya
PaintEffects provides a brush that makes it possible to indi-
cate the region and direction of growth of a population of
simple flowers. Zakaria and Shkuri [ZS07], and Pałubicki
et al. [PHL∗09] proposed a procedural brush to indicate re-
gions in which the tree grows. Due to the fast response of
the underlying tree-generating algorithms, the modeler has
the impression of interactively guiding tree growth.

3. Design and implementation of TreeSketch

The procedural component of TreeSketch is based on the al-
gorithms for generating self-organizing trees described by
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Figure 3: Main components of the TreeSketch interface.
Left: the workspace with a modeled tree. Right: The view
with a control panel pulled down.

Runions et al. [RLP07] and Pałubicki et al. [PHL∗09]. These
algorithms have been tailored for interactive use, taking full
advantage of a multi-touch tablet interface, and implemented
on an Apple iPad 2.

3.1. A modeler’s perspective

Almost the entire screen is devoted to the workspace (Fig-
ure 3, left), in which the modeler can view, grow, sketch,
brush, and edit the tree using a variety of one- and two-
handed gestures. Sliding two fingers across the screen trans-
lates the tree, the standard two-touch pinch gesture zooms
it in and out, and moving three fingers across the screen ro-
tates it in 3D. Single-stroke gestures operate the brush that
guides the growth of the tree. The rotation strip at the bot-
tom of the screen makes it possible to rotate the tree with one
hand while it is being modeled with the other hand. More
specialized gestures will be presented in the context of the
operations they perform.

The side bar collects buttons that are frequently activated
while the modeler sketches or manipulates the tree. Pressing
the Brush button opens a slider that controls the diameter of
the brush. The Grow button opens another slider, which con-
trols the progress of simulation time while the tree grows
autonomously, and makes it possible to reverse the progress
of time to ungrow the tree. Lasso changes the interpretation
of single-finger strokes, making it possible to sketch silhou-
ettes of the whole tree or its parts. The Width button is used
to place and manipulate widgets for controlling the diame-
ter of selected branches. Multi-level Undo cancels previous
actions. The side bar can be switched between the left and
right side of the screen to accommodate operations with ei-
ther hand.

The tool bar above the workspace is used to select and
pull down any of the five control panels. With a panel pulled
down (Figure 3, right), the workspace is reduced in size,
but remains active. Two panels, Architecture and Brush, con-

Figure 4: A conceptual model of tree development im-
plemented in TreeSketch. Higher-positioned branches cast
shadows on lower ones (here shadows are shown only for
buds). Information about the light exposure of each bud,
combined with information on the location of the buds on
their supporting axes, propagates towards the tree base
(blue arrows) and guides the distribution of a growth-
inducing vigor signal flowing back to the buds (red arrows).
A bud that has sufficient vigor and wins the competition for
some markers of free space (yellow dots pointed to by ar-
rows) produces a new shoot (dashed lines). The markers are
distributed with a brush (brown circle) or a lasso.

tain manipulable diagrams and sliders for controlling proce-
dural aspects of the model. The remaining panels, Leaves,
Branches and Background, control details of the form and
the rendering of the tree on the tablet. The tool bar also in-
cludes buttons for hiding all elements of the interface while
previewing the tree, saving designed trees, accessing the
repository of saved trees, initiating a new design, and dis-
playing help pages.

3.2. Tree generation

Overview of the algorithm. Pałubicki et al. [PHL∗09] pre-
sented two classes of self-organizing models. Models em-
ploying competition for light were shown to generate plau-
sible forms of natural trees. By incorporating an internal
signaling mechanism that biased the results of competi-
tion, these forms could be controlled on the important scale
from excurrent to decurrent forms (i.e., with and without a
conspicuous trunk). In contrast, competition for space pro-
duced a narrower range of plausible trees, but allowed for
interactive guidance of tree development with a brush. In
TreeSketch, we aimed at combining the potential for high
realism with interactive control of tree form. To this end, we
created a model in which development depends simultane-
ously on light and space. The resulting conceptual model for
TreeSketch is shown in Figure 4. Beginning with a seedling,
branches develop from buds distributed along their support-
ing axes. Whether a bud will develop into a shoot, and how
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Figure 5: Brushing and sketching. Left: A snapshot of the
TreeSketch screen. The tree was rotated while brushing, re-
sulting in a helical trunk. Pink dots indicate position of fin-
gers on the tablet. Right: A candelabra espalier created by
sketching the main branches, then brushing the upper crown.

long this shoot will be, depends on the vigor of the bud and
the availability of space. Model parameters may bias vigor
distribution towards buds exposed to a higher amount of
light vs. those in less light, terminal vs. lateral buds, and lat-
eral buds positioned on the upper side of the mother branches
vs. those located underneath, yielding different tree architec-
tures.

Brushing and sketching. The space available for growth is
represented as a set of marker points (yellow dots in Fig-
ure 4) [RFL∗05, RLP07, PHL∗09]. The modeler can guide
growth interactively by distributing these points using a pro-
cedural brush or by defining or extending the envelope of the
tree with a lasso tool. Marker points can also be generated
automatically in the general vicinity of the buds, to simulate
natural growth.

The brush is implemented by continually generating
marker points (with uniform random distribution) within
a sphere invoked and manipulated by the modeler using
single-finger strokes (Figure 5, left). By default, the brush
moves in the plane that passes through the base of the tree
and is parallel to the screen. Strokes originating at a branch
modify the depth of the drawing plane so that it includes the
selected branch point. The radius of the brush is controlled
by a slider activated with the Brush button on the side bar,
and can be changed while brushing (Figure 6). With the ra-
dius of the brush decreasing to zero, brushing transitions in
a continuous manner to sketching (Figure 5, right).

Similar rules apply when the lasso is used to sketch the sil-
houette of the entire tree or its part (Figure 7). To infer a 3D
envelope from a 2D silhouette sketch, image-based erosion
of the silhouette is first used to infer its chordal axes [Hal89].
The silhouette is then inflated around these axes as in the
Teddy system [IMT99]. The inflated envelope is filled with

Figure 6: A hanging branch and a tree created with single
strokes of the brush (arrow) with interactively changed ra-
dius (visualized as colored sweeps).

marker points by generating random points within a cube
bounding the envelope, and retaining those points that fall
within the envelope.

Competition for space. The mapping of a distribution of
markers into a tree form was described before [RLP07,
PHL∗09], but its refinement in TreeSketch includes many
details that are important to the “feel” of the interface, and
consistency between trees modeled interactively and grow-
ing autonomously. Consequently, we describe it here in de-
tail.

Branches grow in the directions that are initially deter-
mined by the distribution of buds on their supporting axes
(Figure 8A), and modified by gravity and the distribution
of available space. Each bud is surrounded by a sphere of
radius r, representing the zone occupied by the bud. Extend-
ing beyond this zone is the bud’s volume of perception: a
truncated cone (with a spherical base) characterized by the
angle of perception ζ and radius of perception r + d (Fig-
ure 8B, see also [PHL∗09]). At the beginning of each simu-
lation step, the set M of markers of free space is augmented
with new markers generated with the brush, the lasso tool,
or autonomously. In the autonomous case, the markers are
generated within the perception volume of each bud. Next,
the following markers are removed from the set M:

• Markers that are within the occupancy zone of one or
more buds (e.g., Marker 1 in Figure 8B).

• Markers that were generated with a brush and are older
than the maximum age. The removal of lingering markers
increases the modeler’s sense of direct, immediate guid-
ance of growth.

• Markers generated with a lasso or autonomously, which
persist after the tree has stopped growing. Such a situa-
tion may occur when no markers are within the volume of
perception of any bud.
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Figure 7: Examples of tree forms controlled with a lasso (red contours shown for two of the models).

If any markers remain, the buds compete for them according
to the following rules:

• A marker within the perception volume of a single bud is
associated with this bud (Markers 2 and 3 in Fig. 8B);

• A marker within the intersecting volume of two or more
buds is associated with the closest of these buds (Marker
4);

• The markers outside of the volume of perception of
any bud remain unassociated in a given simulation step
(Marker 5).

By default, all buds associated with at least one marker are
considered enabled: they will produce new shoots if they are
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Figure 8: Buds in space. A) Distribution of buds and lateral
branches is defined by the internode length l, phyllotactic
angle φ and branching angle ψ. At the branching point, the
main branch may deflect in the direction opposite to the lat-
eral bud by angle δ (not shown). B) Competition of buds for
space. Circles of radius r represent the spherical zones oc-
cupied by buds. The colored areas represent each bud’s vol-
ume of perception, characterized by radius r+ d and angle
ζ. Dots represent markers of free space, for which buds com-
pete (details in the text). The average direction towards the
markers associated with a bud defines its preferred growth
direction EEE.

sufficiently vigorous. The resulting proliferation of shoots
from the existing branches can make it difficult, however,
to create a large new branch in proximity of one or more
older branches. Consequently, TreeSketch also supports the
selective growth mode, in which growth is limited to the
branch originating at the bud selected by the modeler. To
enter this mode, the modeler presses and holds a bud until
the selection is confirmed by expanding red circles. In the
selective mode, all buds remove markers within their occu-
pancy zones, but only buds in the new branch compete for
the remaining markers and may grow (Figure 9).

Acceleration of proximity queries. The search for buds as-
sociated with marker points is accelerated in TreeSketch
by placing the tree in a voxel space. The voxel size (edge
length) is equal to the bud’s radius of perception, r + d.
Each voxel stores the list of buds it contains. These lists
are updated incrementally when the buds are created, re-
moved, or change position due to an interactive manipula-
tion of branches. Since a marker may only influence a bud
within the radius r+ d, it suffices to consider the 27 voxels
surrounding each marker to determine the bud it may affect.

Shoot growth. Superimposed on the competition for space
is a process evaluating the vigor of buds, which determines
which of the enabled buds will actually produce new shoots,
and how long these shoots will be. We model this process us-
ing the extended Borchert-Honda (BH) algorithm described
by Pałubicki et al. [PHL∗09] (see Figure 4 for intuition),
with the following modifications.

• Instead of using the amount of light L reaching buds di-
rectly as the input Q to the BH algorithm, we use the re-
lation Q = bLκ. Parameter κ> 0, set by the modeler, con-
trols the sensitivity of buds to light. Allowing only buds
exposed to strong light to produce new branches reduces
the subsequent shedding of branches. This reduction is de-
sirable during interactive modeling, as shedding can inter-
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Figure 9: Comparison of non-selective and selective growth. The initial tree crown (left) was refined by non-selective growth
(middle) and selective growth (right). Non-selective growth produced a series of branches extending from the initial tree lobe,
whereas selective growth produced a separate lobe from the selected bud indicated by the expanding red circles.

fere with the intentions of the modeler. The role of vari-
able b is discussed in the section on gravimorphism below.
• Instead of using the amounts of resource v output by the

BH algorithm to determine the number of metamers n di-
rectly with the formula n = bvc, we use a scaled version
of this formula, n = b v

vmax
nmaxc. Here vmax is the high-

est vigor of any enabled bud and nmax is a parameter,
set by the modeler, which determines the maximum shoot
length. This change ensures that the brush remains effec-
tive in lower parts of the tree, which receive little light. In-
creased values of parameter nmax result in wispy branches,
such as those often found in pendulous trees (e.g., Fig-
ure 1, center).

Shedding. Shedding of branches is an important aspect of
tree development, controlling the density of the crown and
the self-pruning of branches in lower parts of the trunk. In
TreeSketch, a branch is shed if the ratio of its vigor to the
size of the branch (measured in the number of internodes)
falls below a user-defined threshold T h.

Gravimorphism. The coefficient of proportionality b in
Equation Q = bLκ captures the differential development of
lateral buds depending on their orientation on horizontal or
slanted parent axes — an aspect of gravimorphism. In the
case of epitony, buds on the upper side of such axes are fa-
vored, amphitony favors buds in the most horizontal posi-
tion, and hypotony favors buds on the lower side of the par-
ent axes [BC07]. To quantify these phenomena, we define
an ellipse lying in a plane perpendicular to the parent axis at
the location of a bud (Figure 10A). The propensity b of this
bud to grow depends on the distance d between the branch
axis and the ellipse, measured in the direction χ determined
by the polar position of the bud on the axis (Figure 10B). An
additional factor is the angle τ between the axis direction HHH
and the vertical direction YYY . Grouping these factors together,
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Figure 10: Specification of the gravimorphic response. The
axes sv and sp of the control ellipse are aligned with the axes
VVV and PPP of the HHHVVV PPP (HHHeading – most VVV ertical – PPParallel
to the ground) reference system associated with the intern-
ode. The center of the ellipse is translated by distance ev
along the axis VVV . Bias of bud activation in direction χ is pro-
portional to the distance d from the internode to the ellipse,
measured in this direction.

the effect of gravimorphism is captured using the equation

b = cos2
τ+d sin2

τ, (1)

which maximizes this effect for horizontal parent axes and
reduces it to zero for vertical axes. Gravimorphic responses
of different types and magnitudes can be defined by manip-
ulating the position and displacement of the control ellipse
(Section 3.4). Their impact on tree forms is best illustrated
in connection with gravitropism.

Gravitropism. The term gravitropism refers to the tendency
of branches to maintain a preferred orientation with re-
spect to gravity. Traditionally, this tendency was character-
ized qualitatively, using terms such as negative gravitropism
(the tendency of branches to grow upwards), plagiotropism
(the tendency to maintain a slanted or horizontal orientation)
and positive gravitropism (the tendency to grow downward).
Digby and Firn [DF95] quantified and unified these notions

c© The Eurographics Association 2012.

113



S. Longay, A. Runions, F. Boudon, and P. Prusinkiewicz / TreeSketch

H’

Y

H

T

E
H

T

E
A B

θ

Figure 11: A) Calculation of tropic responses. New growth
direction HHH′ is a weighted sum of the current bud direction
HHH, the tropic vector TTT , and the preferred growth direction
EEE returned by the environment. B) Visualization of weights
α,β,γ as a point (black dot) in a triangle with vertices la-
belled HHHTTT EEE and as vectors from the gravity center of this
triangle to its vertices.

by introducing the gravitropic set-point angle (GSA): the an-
gle θ to the vertical direction YYY that the branch axes tend
to maintain. To model tropisms in TreeSketch, we orient
consecutive internodes of a growing axis so as to approach
a user-specified GSA. First, we calculate the local tropism
vector TTT by rotating the global up vector YYY by θ in the ver-
tical plane including the current growth direction HHH. If HHH is
almost vertical, we break symmetry by choosing the vertical
plane of rotation at random. As shown in Figure 11A, the
new growth direction, HHH′ is then calculated as the weighted
sum

HHH′ = αHHH +βTTT + γEEE, α+β+ γ = 1, (2)

where EEE is the unit vector corresponding to the optimal di-
rection of local growth obtained from the environment (Fig-
ure 8B). Parameters α, β and γ control the relative influence
of current axis direction, gravitropism and space available
for growth, respectively. Their values can be conveniently
visualized as a point in barycentric coordinates spanned by
vertices (α,β,γ) = (1,0,0), (0,1,0) and (0,0,1), respectively
(Figure 11B). This visualization is used in the design of the
widget for manipulating parameters α, β and γ interactively
(Section 3.4). Gravimorphism and gravitropism often work
in concert, producing dramatically different tree forms. Ex-
amples are shown in Figure 12.

3.3. Tree manipulation

Interaction with procedural tree models can be accomplished
not only by guiding tree development, but also by editing
trees that have already been generated. TreeSketch supports
four editing operations: modifications of branch shape, se-
lective modification of branch width, pruning, and undo.

Modification of branch shape. Branch bending provides a
convenient metaphor for editing trees, consistent with the
physical manipulations employed by horticulturalists when
training trees. In computer graphics, bending was introduced

Figure 12: Contrasting tree forms resulting from the inter-
play between gravitropism and gravimorphism. Left: down-
ward tropism + epitony; right: upward tropism + hypotony.

as a method for editing plants by Power et al. [PBBPS99],
who implemented it using inverse kinematics. We reimple-
mented and tested that technique in an early version of
TreeSketch. It produced plausible deformations, but suffered
from two limitations. First, it was not reversible: moving the
end effector back to its original position through a circular
path did not restore the branch to its original form. Sec-
ond, manipulations did not preserve the local character of
branches.

In the broader context of surface editing, similar
limitations were overcome in the PriMo deformation
method [BPGK06]. In TreeSketch, we have adapted PriMo
to tree skeletons. PriMo represents mesh geometry as a set
of rigid prisms connected by elastic joints (Figure 13A).
The modeler manipulates this structure by placing positional
constraints on a subset of these prisms. The resulting defor-
mation is determined by minimizing the elastic energy of
the joints. In our system, prisms correspond to the intern-
odes in the path between a modeler-selected base internode
B and end internode E. The end internode can be freely cho-
sen within the subtree rooted at B, and further internodes can
be selected within the path from B to E. The tree is manipu-
lated by changing the position of the selected internodes with
a multi-touch gesture (Figure 14). As an axis is deformed,
other branches maintain their relative positions and orienta-
tions with respect to their supporting internodes.

A tunable parameter of the PriMo model allows for sep-
arately controlling the susceptibility of joints to stretching
and bending [BPGK06]. Although real tree branches are al-
most non-stretchable, we found it convenient to allow for
stretching when editing branches in TreeSketch.

Branch width specification. By default, branch width in
TreeSketch is determined procedurally, using the da Vinci
formula dn = dn

1 + dn
2 that relates the diameter d of an in-

ternode below a branching point to the diameters d1 and d2
of the internodes above [Mac83]. This formula makes it pos-
sible to recursively compute the width of all branches by
propagating information from the extremities of the tree to-
wards the trunk. The trunk of a tree supporting n terminal
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d1

d2

d3
d4

dM − 1

dM

db

d0

Joints

Prisms

A B

Figure 13: A) Representation of branch geometry for the
PriMo deformation method. Prisms correspond to intern-
odes, joints correspond to nodes of a path in a tree. B) Width
constraints (red) divide a tree into subtrees. Within each
subtree, Equation 3 is solved to yield the exponent n, then
branch width is calculated using the da Vinci formula.

Figure 14: Bending a branch with a three-touch gesture.
Left: the initial state of the system; right: the result of manip-
ulation. The bottom and top touches establish the base B and
end effector E, respectively. The in-between touch provides
an additional positional constraint.

Figure 15: A model (left) is refined by modifying the width
of selected branches (right).

branches with diameters d0, ...,dM will thus have diameter d
that satisfies the equation

dn =
M

∑
i=0

dn
i . (3)

Da Vinci claimed that the cross-section of the parent branch
is equal to the sum of cross-sections of the child branches,
which implies that the exponent n involved in this equation
is equal to 2. MacDonald [Mac83] pointed out, however, that
other values of this exponent, usually between 2 and 3, may
be more realistic. In TreeSketch, we use this degree of free-
dom to incorporate user-defined constraints into the compu-
tation of branch width. In the simplest case, the user speci-
fies the width of branches at the extremities (de) and at the
base of the tree (db). From Equation 3 it then follows that the
exponent n is equal to log M

log db−log de
. In general, the modeler

may place an arbitrary number of constraints at arbitrary lo-
cations on the tree (Figure 13). These locations partition the
tree into subtrees and Equation 3 is applied to calculate the
exponent n separately in each subtree. As the branches at
the extremities of these subtrees may have different diame-
ters de, Equation 3 no longer has an analytic solution and is
solved numerically, using the Newton-Raphson method. The
computation is fast, allowing branch widths to be specified
interactively even for complex trees with a large number of
constraints. Selective changes in branch width have a sig-
nificant impact on the appearance of the tree (Figures 2 and
15).

Pruning. Pruning is the most common tree manipulation
procedure in horticultural practice. In TreeSketch it is ac-
complished by double-tapping on a branch. The branch is
then removed at the branching point closest to the tapped lo-
cation, and the diameter of remaining branches is adjusted
as if the pruned branch was never present. When needed, the
stub of the removed branch can be maintained, and the ra-
dius of the remaining branches preserved, by placing a width
constraint on the branch, and pruning just above it (e.g., the
stub over constraint d0 in Figure 13).

Undo. To support undo operations, all internodes of the tree
are time-stamped by the iteration number of the generative
process in which they have been created. Branches that have
been shed by the tree or pruned are not discarded, but kept
on a stack. Furthermore, all editing events are time-stamped
and also saved on a stack. In the case of branch manipulation,
the saved information includes the positions of all internodes
in the path from the base B to the end effector E before the
branch has been modified. Continuous undo is implemented
by rolling back the state of the tree to an earlier time by
small intervals. Discrete undo rolls back the model by entire
operations, e.g., a stroke of a brush. The undo operations are
controlled by a slider activated with the Grow button and the
Undo button on the side bar, respectively.
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3.4. Interface design

The general appearance of the interface has been outlined in
Section 3.1 and illustrated in Figure 3. The gestures for op-
erating the brush, the lasso, and editing the tree, have been
explained in the context of these operations. The key remain-
ing aspect of the interface is the architectural panel (Fig-
ure 16), which allows the modeler to control general charac-
teristics of the modeled trees by manipulating key parame-
ters of the generative algorithm. Visual feedback is provided
by a schematic two-dimensional tree, generated by the same
procedural model as the “main" tree being created, which
changes form instantaneously according to the parameters
used. These parameters are manipulated with five special-
purpose widgets, which control:

1. Tropism direction. This widget is represented by an arrow
superimposed on the schematic tree model and controls
the gravitropic set-point angle θ shown in Figure 11A .

2. Gravimorphism. This widget controls the preferential
growth of buds according to their orientation on the sup-
ported axes. It is a manipulable version of the ellipse in
Figure 10B, returning values of parameters sv, sp and ev.

3. Branching angle ψ and deflection angle δ (Figure 8A).
4. Branch direction. This widget controls the relative impact

of the current direction, tropism and markers of empty
space on the direction shoot growth. It is a manipulable
version of Figure 11B, returning values of weights α, β

and γ.
5. The interaction of buds with the markers of free space.

This widget is a manipulable version of Figure 8B, re-
turning values of parameters r, d and ζ.

Figure 16: The architectural panel.

In addition, apical dominance λ [PHL∗09], sensitivity of
buds to light κ, branch shedding threshold T h and maximum
shoot length nmax are controlled using sliders. Finally, the
panel includes switches for inferring tropism direction from
the direction of brush stroke (particularly useful when mod-
eling pendulous tree forms) and forcing upward tropism of
the trunk independently of the tropism of the branches (use-
ful when modeling conifers). The ranges and default values
of key parameters are provided in the supplementary table.

3.5. Model visualization

Trees modeled with TreeSketch are intended to be assembled
into scenes and rendered using external programs. Neverthe-
less, realistic rendering is an important component of the in-
teractive modeling process as well. To this end, we combine
the following rendering techniques:

• Phong light model of the tree, with texture-mapped leaves
and texture- and normal-mapped bark. Position of the
light source is indicated by a spherical “sun", which can
be interactively moved around the tree. By default, rota-
tion of the tree also rotates the sun. Alternatively, the mod-
eler may pin the position of the sun with one hand while
rotating the tree with the other.

• Indirect light model. An approximate distribution of light
intensity within the tree crown is computed as an inherent
component of the growth model. We use this information
while rendering, by modulating the ambient light compo-
nent in the Phong model. This results in a much improved
perception of crown form in three dimensions at no com-
putational cost.

• Shadows. Shadow-mapping is used to cast Gaussian-
filtered blurred shadows on the ground and hard shadows
within the tree.

In addition, we account for differences in leaf color by shift-
ing the hue of leaves on less vigorous branches towards yel-
lows and reds. The magnitude of this shift is a parameter
controlled by the modeler.

Speed considerations. To accelerate rendering, several
quality-improving features, such as anti-aliasing and soft
shadows, are temporarily disabled while interactively ma-
nipulating the tree. These effects are automatically phased
in when the modeler is not interacting with the system.

4. Examples

Diverse trees modeled with TreeSketch are shown in Fig-
ures 17. While specific aspects of their form are due to the
use of the brush and lasso, general architectural character-
istics correspond to the parameters grouped in the architec-
tural panel. The impact of tropism is most easily discernible,
ranging from the upward tropism (trees B3 and B4) to pla-
giotropism (A1, A4, B1) to strong downward tropism (B2,
C2). In the case of trees A3 and C1, the initial growth with
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Figure 17: Diverse trees modeled using TreeSketch.

upward tropism was followed by plagiotropic growth. Trees
B2 and B3 illustrate the effect of strong gravimorphism, fa-
voring growth on the upper and lower side of the parent
branches, respectively. The sparsity of tree C1 is due to the
strong shedding of branches, while the sparse, gnarled ap-
pearance of tree C4 is due to a combination of high sensitiv-
ity to light and interactively increased branch width.

Figure 18 illustrates the complexity and visual realism of
structures generated with TreeSketch. The tree on the left
also illustrates the effectiveness of the indirect light model,
which has been used almost exclusively in rendering this
tree.

Figure 19 provides examples of generating realistic tree
models that address the artistic requirements of target
scenes. The tree on the left is a weathered tree on a sheer
cliff face. The tree’s architecture was modeled by combin-
ing direct sketching of the main branches with procedural

brushing of the tree crown. The form of branches was then
modified to generate a more gnarled appearance using bend-
ing. Finally, width constraints were used to increase the bulk
of the trunk and the leafless branches near the base, and cre-
ate a more even distribution of widths in the crown. A simi-
lar design process was used to create the gnarled oak tree in
Figure 19 on the right.

5. Conclusions

In spite of decades of computer graphics research, the mod-
eling of three-dimensional objects remains a tedious task.
The crux of the problem is the tension between detailed con-
trol of form by the modeler and the complexity of the objects
being modeled. We have presented a program for modeling
trees that reconciles the interactive control needed in creative
design with the emergence of form inherent in procedural
generation. This synthesis was accomplished by integrating
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Figure 18: Examples of complex tree structures modeled and rendered with TreeSketch.

appropriately tailored procedural methods with an interface
taking ample advantage of multi-touch displays. Our work
demonstrates that:

• procedural (tree) models can easily be controlled by mod-
elers without a computer science background,

• tree modeling based on a sound biological basis does not
require a biological background on the part of the model-
ers, and

• complex tree models can be created procedurally at inter-
active rates using current (relatively low-end) hardware.

These insights are not obvious and contradict statements
routinely made in the literature.

We are continually astonished by the degree and intuitive
feel of control afforded by strokes of different length, direc-
tion, speed, and brush width. While rigorous user studies of
a program for performing tasks as complex as artistic de-
sign of trees are difficult, our perception of TreeSketch is
supported by positive feedback from the users of two earlier
versions of TreeSketch (97 comments on 13,000 downloads
from iTunes between March and December, 2011). They
found that TreeSketch presents “excellent balance between
procedural and hand-crafted controls", “combines intuitive

modeling of plant life [...] with a simplicity and joy of a
game", and is “easy to learn and use, [yet] challenging to
master" because of the depth of artistic possibilities it offers.

The applications that we originally envisioned for
TreeSketch lie in the domain of image synthesis for com-
puter animation, games, and computer-assisted landscape
design. Experimenting with TreeSketch we were surprised,
however, by the extent to which it has sharpened our own
perception of tree form and development in nature. We thus
also intend to explore possible applications of TreeSketch to
teach students of botany and art, including children, about
tree development and form. Another prospective application
of TreeSketch is in the domain of horticulture. In this ap-
plication, the user would sketch the form of an existing tree
using model parameters consistent with the tree species, edit
the form by pruning, then grow it autonomously to predict
the impact of pruning on the tree over the years.

A number of problems remain open for further research.
Botanists observed that not only the inclination of branches,
but also their curvature play a role in gravimorphism. The
incorporation of this role of curvature may further in-
crease the diversity and verisimilitude of trees modeled with
TreeSketch. Furthermore, flowers and fruits are an essen-
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Figure 19: Two scenes with trees generated using TreeSketch. The scenes were assembled and rendered in Maya.

tial component of a tree’s appearance. Architectural analy-
sis and mathematical models make it possible to predict the
positions of these organs, providing a basis for their incor-
poration in the models. The distribution and orientation of
leaves also deserve a more careful consideration. Branches
are currently modeled as generalized cylinders, and branch-
ing geometry simply results from their intersections. More
refined methods have been described, and possibly could be
incorporated into TreeSketch without sacrificing the speed
of model generation. Finally, the TreeSketch interface is
an early exploration of possibilities opened by multi-touch
tablets in the domain of interactive procedural modeling. We
expect many further advances in this area.
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