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Abstract
Free-sketch recognition systems attempt to recognize freely-drawn sketches without placing stylistic constraints on
the users. Such systems often recognize shapes by using geometric primitives that describe the shape’s appearance
rather than how it was drawn. A free-sketch recognition system necessarily allows users to draw several primitives
using a single stroke. Corner finding, or vertex detection, is used to segment these strokes into their underlying
primitives (lines and arcs), which in turn can be passed to the geometric recognizers. In this paper, we present
a new multi-pass corner finding algorithm called MergeCF that is based on continually merging smaller stroke
segments with similar, larger stroke segments in order to eliminate false positive corners. We compare MergeCF
to two benchmark corner finders with substantial improvements in corner detection.

Categories and Subject Descriptors (according to ACM CCS): I.4.6 [Computing Methodologies]: Image Processing
and Computer Vision—Segmentation - Edge and feature detection

1. Introduction

Sketch recognition is an emerging field that utilizes pen-
based interfaces in an attempt to make human-computer in-
teraction as natural as human-human interaction. In these
interfaces, electronic styli replace traditional mice and key-
boards and allow users to draw onto a digital screen as if it
were intelligent paper.

Free-sketch recognition (or natural sketch recognition) al-
lows users to draw without developer-placed constraints on
the drawing style. Such constraints could force a user to
draw primitives in separate strokes, draw strokes in a certain
order, or learn a set of prespecified gestures (e.g., [Rub91,
ACLLRM00]). Researchers have built free-sketch recogni-
tion systems in domains such as circuit diagrams [AD04],
figure recognition [SvdP06], and UML diagrams [HD02]
(Figure 1).

Some important free-sketch recognition systems that
avoid constraining the user are geometric recognizers,
which define shapes by sets of primitives and geometric
rules [HD07] or graphical models [CD04]. A geometric

Figure 1: A free-sketch recognition system for UML dia-
grams, implemented in LADDER.

recognition system works by first breaking down drawn
strokes into primitive shapes, and then classifies the group of
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primitives using geometric constraints. This process avoids
many drawing style issues since all symbols are broken
down into a single, basic form.

Strokes can be classified as primitive shapes using rec-
ognizers such as Sezgin’s [SSD01] and Paulson’s [PH08].
These classifiers require strokes composed of multiple prim-
itives to be split using corner finders. In a corner detection
system, algorithms automatically break a user’s drawn stroke
into primitive lines and arcs. This task can be completed
during stroke preprocessing, and the resulting primitives can
then be sent to a geometric recognizer for stroke classifica-
tion.

As a geometric recognizer example, suppose a user draws
the two symbols in Figure 2(a). Both symbols are squares,
yet they are drawn using a different number of strokes. Find-
ing the corners of each stroke (Figure 2(b)) allows the rec-
ognizer to describe each symbol as consisting of four lines;
the more complex descriptions are avoided. Geometric rules
can then analyze the four lines and find that certain lines are
perpendicular and of equal length (Figure 2(c)), and the ge-
ometric recognizer then classifies each symbol as a square
based on the primitives within the symbol and the geometric
constraints satisfied.

This process demonstrates the necessity for reliable cor-
ner finding techniques in free-sketch, geometric recognition
systems. Corner finding is the first step in geometric recog-
nition, and, if corner finding is inaccurate, then the entire
recognition process is error prone and the resulting classifi-
cation is unreliable.

In this paper we present MergeCF, a multipass corner de-
tection algorithm that utilizes the stroke’s curvature and the
user’s drawing pen speed in order to find the corners of a
stroke. MergeCF then eliminates false positives by merg-
ing stroke segments together based on inherent false positive
properties that help distinguish between correct and unnec-
essary corners. This powerful corner finder improves upon
current state-of-the-art techniques using two different accu-
racy measures.

2. Previous Work

Sezgin et al. use a stroke’s curvature and pen speed to deter-
mine stroke corners [SSD01]. In their system, points of high
curvature are considered corner candidates, as well as points
of low speed. After the authors obtain an initial collection
of curvature and speed corners, their system picks either the
“best” curvature or speed corner, one at a time, and creates a
new corner fit for the stroke using the picked corner and the
previous corner fit. The best corner is determined by defined
metrics. This process of adding the best curvature or speed
corner candidate to create a new fit is continued, and then a
final corner fit is chosen as the fit with the least amount of
corners and an error below some threshold.

Sezgin et al.’s algorithm relies on the assumption that the

(a) Two squares drawn by a user; each square is drawn
differently.

(b) The corners are found within all of the strokes.

(c) Primitive lines examined under square constraints.

(d) Two recognized squares.

Figure 2: The geometric recognizer process from drawn
strokes 2(a) to the recognized squares 2(d)

correct corners to add to the system will always be ranked
highest according to their metrics. Yet, if the first few corners
added to the system are false positives, then any fit after these
corners are added will also contain these false positives. Our
corner finder does not make this assumption, and instead of
building a corner set one corner at a time, we start with a
large set of possible corners and eliminate false positives.

Stahovich also used pen speed and curvature to detect cor-
ners [Sta04]. Unlike [SSD01], Stahovich relies more heav-
ily on chosen thresholds for average speed and curvature.
Like our algorithm, Stahovich’s algorithm does not build a
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fit but seeks to remove false positives by merging segments
together. Our algorithm uses a more lenient approach to
thresholding and a more rigorous segment merging, whereas
Stahovich’s algorithm does the opposite.

Yu and Cai created a corner finder that uses only di-
rection and curvature information to find the corners of a
stroke [YC03]. Their system introduces the idea of feature
area, or the area of a drawn stroke segment in relation to a
beautified version of the same segment. Yu and Cai’s cor-
ner finder performs stroke beautification; our algorithm does
not. We partially use Yu and Cai’s technique for finding the
error of arcs through our use of the primitive recognizer, Pa-
leoSketch [PH08].

Kim and Kim propose new curvature metrics in their cor-
ner finding system [KK06]. These metrics, local convexity
and local monoticity, measure the curvature in the same di-
rection at a point. Convexity adds together all of the cur-
vatures of the same sign within a window, whereas local
monotocity looks at decreasing curvatures of the same sign
around a point. Kim and Kim also have a different measure
for the curvature at a point. Their system first resamples the
points of a stroke to be equidistant from one another. Since
the distance between consecutive points is now constant, a
point’s curvature value does not have to take into account
path length changes, so the curvature at each point is equal
to the direction change at that point. Our algorithm does not
use any techniques defined by Kim and Kim, but we use an
implementation of their corner finder for reference during
our analysis.

The corner finders previously mentioned all require de-
veloper set thresholds for different properties, such as curva-
ture and speed thresholds or the interspacing distances for re-
sampled points. Other corner finders avoid relying on hard-
coded variables. Bandera et al. use a multi-pass algorithm
to detect the curvature, or contour, scale for strokes of var-
ious sizes [ABS00]. Another Sezgin corner finder relies on
finding the optimal scale for a stroke [SD04]. This technique
increasingly applies Gaussian filters to curvature data, and,
as the filters smooth the data, the number of detected corners
drops. The optimal scale is determined to be where the num-
ber of corners reduced by increasing the smoothing factor
tapers off.

ShortStraw is a recent corner finder developed for seg-
menting polyline strokes [WEH08]. Although ShortStraw is
the state of the art for polylines, it cannot segment arcs and,
thus, we avoid using it in our comparisons.

Our merging algorithm is similar to a merging technique
that is alluded to in [PH08]. The corner finder technique
mentioned in this paper is focused on finding corners within
polylines, whereas our algorithm extends the idea to work
with complex fits consisting of lines and arcs. Paulson and
Hammond also defined different error fit measurements for
primitives such as lines, arcs, curves, circles, helixes [PH08].

We use the primitive fit definitions they provide to calculate
our line and arc fit errors.

3. Implementation

Our corner finder utilizes curvature and speed differences
within a stroke to obtain an initial corner segmentation for
our stroke. We then repeatedly merge smaller stroke seg-
ments with longer segments, and, if the fit for the merged
segment is below a certain threshold, we eliminate the cor-
ner between the two segments.

3.1. Curvature and Speed Values

Our curvature and speed values are based on the equations
given by [Sta04] and [YC03]. The distance between two
points is the euclidean distance between the points, and the
path length across a series of points pa, pa+1, . . . , pb is taken
to be the sum of the euclidean distances between each pair
of points.

pathLength(a,b) =
b−1

∑
i=a

√
(xi+1− xi)2 +(yi+1− yi)2 (1)

Where xi and yi are the respective x and y values of the
point, pi. Curvature values for a point at stroke index i are
taken to be the change in angle across a window of points,
divided by the path length across the window.

ci =

∣∣∣∑ a+k
i=a−katan2(δyi/δxi)

∣∣∣
pathLength(a− k,a+ k)

(2)

Speed at a point, pi, is calculated as the path length change
across the point, divided by the time difference

si =
pathLength(i−1, i+1)

ti+1− ti−1
(3)

3.2. Initial Fit

After we compute the curvature and speed values for each
point, we find our initial set of corners by taking points
that are local maxima (for curvature) and local minima (for
speed), with respect to set curvature and speed thresholds. In
this implementation, these thresholds were set to find points
above the average curvature and below 75% of the average
speed.

These curvature and speed corners are found separately
and then combined into one set of corners. We then iterate
through our new corner set and remove any points that do
not fit both the curvature and speed requirements. This idea
stems from [Sta04], but we use more lenient thresholds in
order to accept more points.
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Figure 3: Initial set of corners found for a stroke, which
would split the stroke into 9 primitive lines and arcs. False
positives are circled.

We also check for points that are close together in proxim-
ity. If two corners are less than 15 pixels euclidean distance
apart, then we remove the corner with the smallest curvature
from the initial fit.

3.3. Merging Segments

Our initial corner fit tends to contain a few extraneous points
that overfit the stroke. The main algorithm involved with our
corner finding system is designed to eliminate these false
positives, and MergeCF works on the assumption that cor-
ners surrounding the smallest segments (parts of the stroke
between two corners) are those more likely to be false posi-
tives overfitting the data.

The algorithm first finds the smallest stroke segment,
checks if the segment can be merged with any of its neigh-
bors, and then merges the segment with the “best” neigh-
boring segment. The best segment is determined to be the
segment that has the least primitive fit error (either line or
arc) when combining the two segments.

The fit error calculations we use come from [PH08]. The
two primitives our system handles are lines and arcs, and
Paulson’s recognizer handles line and arc errors by calculat-
ing the least squares error and the feature area error [YC03]
for each segment. Lines additionally have to pass a ratio test,
where the test takes the euclidean distance length between
the two points and divides the value by the path length be-
tween the points. If this ratio is greater than a set threshold,
then the segment is a line. In our algorithm, the threshold is
equal to 0.95. Arcs have to pass another test as well, which
is a feature-based test using the NDDE and DCR metrics
defined in [PH08]. These metrics are tuned to distinguish
between polylines and arcs.

As an example, Figure 3 shows a symbol with an ini-

tial corner fit containing three false positives (the circled
points) and numbered stroke segments. Merging segment 5
with segment 4 would still result in an arc fit error that is not
too much higher than the either segment 4 or 5’s original er-
ror. Yet, merging segment 5 with segment 6 would produce
a very high primitive error for either lines or arcs. Therefore,
the best segments to merge are 4 and 5, and the circled point
in between the two segments is removed from the corner set.

3.4. Algorithm

A more formal definition of our algorithm is as follows:

1. Calculate the path length of each segment.
2. Calculate the average path length of the segments.
3. Sort the segments from step 1 in ascending order, based

on the path lengths.
4. For each segment shorter than the average segment:

a. Calculate the primitive fit error of the segment,
FitErrors, and the fit error of the segment to the left
and to the right of the short segment, if there are any.
These are FitErrors−1 and FitErrors+1, respectively.

b. Calculate the primitive fit error of the joined segments
s−1 and s, which we will call FitErrorle f t . Also, cal-
culate FitErrorright from s and s+1.

c. If FitErrorle f t < FitErrorright and FitErrorle f t <
1.5 ∗FitErrors−1 + FitErrors, then remove the cor-
ner between s− 1 and s. Otherwise, preform similar
checks for the right side of the segment.

5. Repeat steps 1-4, but, after each run, multiply the av-
erage segment by the number of runs. This steadily in-
creases our “segment shorter than” threshold. Stop re-
peating once every segment is shorter than this threshold.

MergeCF’s algorithm underperforms when trying to
merge two line segments. The primitive fit error for two indi-
vidual line segments tends to be much lower than the fit error
for the joined segments. After running the above algorithm,
we iterate through our remaining segments and check specif-
ically for two consecutive lines. If both lines have similar
slopes, we merge the two segments together by eliminating
the corner between them.

3.5. Intuition

Our algorithm to merge smaller segments works because of
the inherent way that corners are initially detected. Complex
and polyline stroke symbols tend not to have segments that
have extreme variance in length. This is due to the inher-
ent problems with “hook” detection where very small stroke
segments attached to much longer segments are typically
noisy data (hooks) that should be removed [Sta04]. To avoid
having issues with overzealous hook removal, stroke seg-
ments within symbols tend to be on the same scale.

If an initial corner fit contains few false negatives (i.e.,

96



Wolin et al. / Sort, Merge, Repeat

Figure 4: Initial set of corners found for a stroke consisting
of an arc and a line. Segment 2 is the smallest, unneeded
segment and should be merged with Segment 1.

missing corners), then the majority of the corners found can
be assumed to be false positives. Now, if we assume that
all of the stroke segments are drawn at the same scale, then
any false positives would split a stroke segment of average
length into smaller pieces. Therefore, the merging algorithm
should start by examining the smallest stroke segments since
they are most likely to contain false positives as end points.

Another reason why we want to merge smaller segments
first is due to the way fit errors are calculated. Suppose a
stroke consisting of an arc and a line has the initial fit shown
in Figure 4. If the algorithm started by merging the largest
segments first, then segment 2 would be merged with Seg-
ment 3 since the error calculation for the line consisting of 2
and 3 is not substantially different than the line error for Seg-
ment 3 alone. In fact, Segment 2 can be considered a hook
of Segment 3 since it is substantially smaller. A much better
option would be to merge Segment 1 and 2 together to form
a slightly larger arc. To avoid the problem of merging Seg-
ment 2 and 3 we let the smallest segments decide their best
merging options.

Continually increasing the threshold that determines
which segments are small ensures that all stroke segments
will eventually be evaluated.

4. Results

MergeCF was developed around a training data set consist-
ing of 157 unistroke shapes drawn collected from five users.
The algorithm was tested on a different set of data based
on the symbols found in [KK06]. This test set consisted of
501 complex shapes and polylines, each drawn with a single
stroke. During the collection of both data sets, users were
asked to sketch a given shape with easily defined corners.
Example shapes can be seen in Figure 7.

Results were gathered on two other corner finders as well,
Sezgin et al.’s algorithm [SSD01] and Kim and Kim’s al-
gorithm [KK06]. We implemented both algorithms as pre-
sented in their respective papers, and we tested all of the
corner finders on the same data sets.

We used two different measures to determine the accuracy
of a corner finder. The first accuracy measure is a “correct
corners found” accuracy as presented by [SSD01]. This ac-

curacy is calculated by dividing the number of correct cor-
ners found divided by the total number of correct corners
perceived. Essentially, this accuracy measure does not dis-
count false positives, and returning every point in a stroke
would constitute a 1.00 accuracy since all of the correct cor-
ners have been found.

To counteract this issue, we also calculate an all-or-
nothing accuracy for each corner finder. All-or-nothing im-
plies that only the minimum number of corners to segment
a figure are found (i.e., there are no false positives or neg-
atives) in order for a stroke to be considered correctly seg-
mented. This accuracy is calculated by taking the number of
correctly segmented strokes divided by the total number of
strokes.

The results in Table 1 show how our algorithm outper-
forms both the corner finding algorithms from Sezgin and
Kim.

5. Discussion

Our corner finder significantly improves corner detection
over the two benchmark systems in both accuracy measures.
MergeCF finds less false positives and negatives than our
Sezgin and Kim implementations, and the all-or-nothing ac-
curacy is over twice that of the previous best corner finder’s.

MergeCF performs better than the other corner finders
for a few reasons. Sezgin et al.’s algorithm assumes that
the best corners, or the correct ones, will always be ranked
higher than any false positives. This assumption is often in-
valid on complex shapes where minor speed differences and
line noise can greatly affect the the author’s corner metrics.
Noisy arcs are the main culprit in this issue and produce
many false positives along subtle bumps or peaks in the arc.
Also, since Sezgin et al.’s algorithm chooses the fit with the
least number of corners below a certain threshold, it is of-
ten the case where correct corners are missing from the final
segmentation if the threshold is too high for a shape. If the
majority of the corner fits are below the threshold, then the
corner fit with the least number of corners can be a poor
choice (See Figure 5).

Kim and Kim’s corner finding algorithm produces many
false positives, mainly due to sensitive thresholds present in

MergeCF Sezgin Kim
False Positives 159 173 188
False Negatives 98 608 741
Correct Corners Found 3314 2804 2671
Total Correct Corners 3412 3412 3412
Correct Corners Accuracy 0.971 0.822 0.783
All-or-Nothing Accuracy 0.667 0.298 0.194

Table 1: Results from the individual corner finding algo-
rithms.
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Figure 7: Examples of correctly classified symbols by MergeCF. These symbols come from the set of 501 complex and polyline
shapes drawn by six users. The size ratio between the symbols has not been altered, although each symbol is similarly scaled
so that the entire image will fit in the paper.

their system. Their algorithm oversmooths the data by us-
ing resampled points as well as smoothing curvature metrics,
and when the data is too smooth, points with a high curva-
ture have only slightly higher curvature values than points
with average curvature.

Figure 6 illustrates the issues just mentioned. The first cor-
ner fit (A) is the result we obtain using our algorithm, and it
is the correct fit for the shape. The second corner fit (B) is
from Sezgin et al.’s algorithm. In this fit, the two false pos-
itives are ranked highly in their curvature metrics, and they
are added to the final corner fit early. Sezgin et al.’s algo-
rithm does not allow for removal of corners after they have
been added, so the final fit contains these two. In the third
corner fit shown (C), Kim and Kim’s algorithm finds all of
the correct corners, but it also finds 3 false positives. The cur-
vatures at these points are high enough for those points to be
considered corners under our Kim and Kim implementation.

MergeCF avoids the issues from Sezgin and Kim’s algo-
rithms by

• Having an initial fit with few false negatives
• Evaluating individual corners and segments at a local level
• Using inherent properties of false positives to examine

short segments first
• Performing multiple passes through the segments to en-

sure that each segment is eventually evaluated and merged
if necessary.

6. Future Work

Improving our complex fit detection, especially with arcs, is
our main goal for the future. Merging two smaller arcs to-
gether can be difficult since arcs are classified as sections of
circles and the error associated with arcs tends to be high.
Appending two slightly offset arcs often produces a shape
that has a considerably higher error than either of the individ-
ual arcs. One possible solution would be to allow MergeCF
to use a new primitive: curve. A Bezier curve could be cre-
ated to approximate two adjacent arc segments, and if the
curve fits the segments well, then the corner between the
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Figure 5: An incorrect corner fit found by Sezgin et al.’s sys-
tem. The error threshold for a “good” fit for this shape is set
to be substantially high by the algorithm, so any slight im-
provements to the initial fit drop the total fit’s error to be
below the threshold. Since adding one corner greatly im-
proves the fit, and since three corners is the smallest number
of corners in all of the fits below the threshold, the algorithm
incorrectly chooses the three-corner fit to be the best.

Figure 6: The same shape with corner fits from our algo-
rithm (A), Sezgin’s algorithm (B), and Kim’s algorithm (C).
Our algorithm correctly finds the corners, whereas the other
two corner finders have false positives and negatives.

segments would be eliminated. The primitive recognizer we
use from [PH08] already has a definition for curves, and our
main merging algorithm would have to be tweaked to handle
the error associated with these primitives.

7. Conclusion

We have presented a new corner finding technique that uti-
lizes curvature and pen-speed values of a stroke to obtain an
initial corner fit. After a fit is found, we eliminate false pos-
itives by examining small stroke segments and merging the

segments with similar neighbors. Overall, our system greatly
improves upon the existing benchmarks with room for fur-
ther improvement for complex fits.
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