
Copyright © 2007 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for commercial

advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit

is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions Dept, ACM

Inc., fax +1 (212) 869-0481 or e-mail permissions@acm.org.

Sketch-Based Interfaces and Modeling 2007, Riverside, CA, August 02-03, 2007.

© 2007 ACM 978-1-59593-913-5/07/0008 $5.00

EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2007)
M. van de Panne, E. Saund (Editors)

CrossSketch: Freeform Surface Modeling with Details

Alexis Andre, Suguru Saito and Masayuki Nakajima

Tokyo Institute of Technology, Japan

Abstract

This paper presents a novel technique to model a three dimensional freeform surface, in its global shape and

small details, using a sketching interface, from a single point of view. In the past, most modeling systems that used

sketches as input reconstructed the shape from the silhouette, and the user had few control on the inner parts of the

result. In our system, we generate a grid of co-planar lines from a small number of strokes that the user drew, then

we estimate the normal vector where it is constrained, and we form the surface by propagating this information to

the whole grid. As a result, smaller strokes act locally to add detail, while longer strokes modify the whole surface.

Our system gives a new approach to the modeling from sketches problem, and is intended to be a part of a more

complex modeling system.

Categories and Subject Descriptors (according to ACM CCS): J.6 [Computer-aided engineering]: Computer-aided
design I.3.5 [Computational Geometry and Object Modeling]: Modeling packages I.4 [Image Processing and
Computer Vision]: Applications

1. Introduction

Three dimensional modeling is a tedious process. Traditional
tools put the user in front of multiple projections of a three
dimensional world, and the user needs to position every ob-
ject with respect to these projections. However, the human
visual system is able to recognize even complex shapes from
single line drawings, quite instantaneously. The underlying
process is based on a lot of various mechanisms, from a lo-
cal understanding of the shape to a global gestalt of all visual
clues. Line drawings are often associated to contours, or sil-
houettes, and a few carefully chosen strokes suffice to con-
vey shape in a general meaning. Hoffman [Hof00] showed
that the process is really complex, but some rules that the
brain follows when reconstructing the shape from the visual
stimuli have however been proposed.

From the pioneer Teddy [IMT99] to more recent work, for
example [CSSJ05], the use of two dimensional sketches to
model objects received a lot of attention from the modeling
community.

The problem of using the drawing of an object to recon-
struct its shape is challenging, as the map from surfaces to
drawings is not a bijection. One silhouette drawing is the
projection of a infinity of various shapes. Existing systems
produce natural shapes, where the contours determined the

boundaries of a volume that is then inflated like a balloon.
While the inflation method, as well as the nature of the sur-
face, varies, for a given system, the same contour always
leads to the same shape, while a infinity of shapes shares the
same silhouette. We think there is a need to give control on
the inner shape to the user in order to produce more com-
plex surfaces, and in order to do that, we need to find other
sources of information to construct the inner part of the sur-
face.

We propose here a method able to construct one surface
with a few strokes, from a single frontal view, where the user
specified the inside of the surface. In this paper, we do not
inflate the shape, but rather construct the surface from the
drawing. We chose to use only one view to stay close to the
way people draw on paper.

The main contributions of this paper can be stated as fol-
lows.

First, we propose an algorithm to reconstruct three dimen-
sional surfaces from a grid of lines, where two of them are
planar and perpendicular to each other, based on simple rules
of the visual intelligence (Section 4).

Second, we describe an interface that covers key points of
sketch drawing, from stroke processing (Section 5.1) to the
inclusion of various visual rules that gives more insight to

http://www.eg.org
http://diglib.eg.org

A. Andre, S. Saito and M. Nakajima / CrossSketch

Figure 1: A surface (right) modeled by our system from the lines drawn on the left, without the help of contour information.

the drawing, that produces grids of lines (Section 6) with the
properties needed for the previous algorithm.

2. Related Work

The creation of three dimensional objects from two dimen-
sional input is a really challenging topic that various re-
searchers have already heavily investigated.

SKETCH [ZHH96] is one of the first attempts to com-
bine mouse gestures and non-photo realistic rendering to
create and modify three dimensional models. Their system
uses a set of gesture strokes that are then interpreted as basic
shapes. The resulting objects are afterward positioned where
the user wants them to be.

The pioneer work by Igarashi et al., Teddy [IMT99], is
an intuitive interface that creates round shapes from closed
contours, then allows the user to extrude, cut, or bend the
initially created shape. Here, the user draws at each step
the contour of the object he wants to model, and the sys-
tem presents a plausible inflation of the shape. Such blob-
like creation systems, [IMT99, KH06, KHR02, SWSJ05] are
easy to use, as they provide good-looking shapes with a few
strokes, but the main issue here is that the nature of the
produced shape is fixed by the system, as the user has lit-
tle control on the inner aspect of the shape. Furthermore,
to model crease and sharp features often requires a cut op-
eration. We would like to by-pass this cut operation at the
creation step. The following systems allow some control on
the inner shape.

“Harold, a world made of Drawings” [CHZ00], proposed
one simple way to generate terrain by drawing a stroke start-
ing and ending on the ground, indicating the silhouette of the
desired terrain. Our system takes a similar view of modeling,
by drawing planar strokes that lie on the desired surface.

Cherlin et al. [CSSJ05] used various techniques to gener-
ate interesting shapes. Their approach was inspired by real
drawing techniques, such as the spiral method, where the
shape depiction comes from a spiral stroke bounded by the
silhouette. Their system is able to generate complex shapes
with few strokes, but only one part at a time. As a result, the
creation of complex objects takes some time, but most of it
is used to assemble the various parts.

Ijiri et al. [IOOI05] present a sketch-based system focused
on plants, especially leaves and petals, in a well-thought
combination of free-form modeling and bending operations.
While the system can create realistic models of various flow-
ers, the purpose is too specific for the system we want to
build.

Some sketching interfaces uses additional information
such as shade and shadow to reconstruct the object with
more details, for example [SLKM04], where the amount of
shade is used to inflate more or less the volume. Narrower
shadows result in more elongated shapes.

Another related work can be found with the sketch based
interface for mesh editing by Nealen et al. [NSACO05].
They provide a framework able to modify existing meshes
using various types of strokes while preserving the details.
The available operations can deform one part of the silhou-
ette, or modify one line drawn on the mesh. Our system
shares common points with this work, as we also allow de-
tail editing. Our main focus, though, is to create the surface
from scratch.

Another approach is to construct the shape once the user
has finished his drawing. 3D Sketch [MSK00] takes the
sketch of an object, maps the strokes to the edges of a cube,
and inflates the corresponding cubic form, while preserving
the style of the strokes. The system provides a nice interface
to sketch a whole range of objects, as long as they can be
mapped to a cube. Such limitation makes the strength and the
weakness of their system. We want a system able to model
any shape, without any constraint.

While it is not strictly the same domain of application,
single-view reconstruction of images (with some user inter-
action) present many similarities with our objective. Prasad
et al. [PF06] mapped the visible edges of an object to a plane
in the 3D contour generator domain, then inflate the shape
with the constraints on the contours. The method works well
with objects of cylindrical topology and of various genus.
The approach we use is different, as we do not use the edge
or contour information at all.

We also refer the reader to a survey of sketch-based mod-
eling [CPCN05] for a broader overview.

46

© Association for Computing Machinery, Inc., 2007.

A. Andre, S. Saito and M. Nakajima / CrossSketch

Figure 2: One line is seen as a planar stroke. Two lines are

seen orthogonal to each other, and similar strokes appear

similar, in this case, parallel in 3D.

3. Vision of a grid of lines

3.1. Reconstruction problem

We will consider the following framework for our system.
The user draws strokes on the plane z = 0, under an ortho-
graphic projection, that is, the x and y coordinates of each
stroke point are known, but not the z one. The main problem
is now to find the desired z coordinate for every point in the
sketch, on the whole surface. We chose to use in the begin-
ning an orthographic projection, and we hope to deal with
other cases in the future.

However, a given line drawing is the projection of an infi-
nite number of objects, so how do we reconstruct the correct
surface? In order to do so, we use the following guidelines
that have been established about the way people see and re-
construct lines.

3.2. Perception of lines

Stevens [Ste82], as well as Hoffman [Hof00] provide a set
of rules that our visual system follows. The rules of interest
for the problem we consider are the following:

1. Similar lines stay similar.
2. One curved stroke is seen as lying on a plane.
3. Two intersecting lines are seen as orthogonal to each

other.

These rules hold under the general viewpoint assumption
[Fre94]. This assumption is to suppose that the drawing is
drawn from a generic view, where the drawing is stable
when the viewpoint slightly moves. Linked lines (in 3D) stay
linked even under a rotation of the viewpoint, while coinci-
dental joints, due to the perspective, split. We suppose that
the user draws from a generic viewpoint. We believe this is a
safe assumption as the user wants to model one surface, and
they do their best not to draw lines with ambiguity.

These rules allow us to reconstruct the shape from a grid
of two sets of similar lines. Figure 2 gives the outline of the
idea. One line is viewed as a planar line. Another line, in-
tersecting the first one, is viewed as a different planar line,
and the angle between the two is a right angle. One repre-
sentative of each set of similar lines, the backbone of the

other group, can then be reconstructed in 3D, by first com-
puting the planes on which they appear to lie. Similar lines,
close to the representative line of the set are reconstructed
by translating the plane of the corresponding representative,
and projecting the new lines onto it.

We will in the next section present the details of our re-
construction algorithm, and in Section 5 present a system
able to produce the input grids of similar lines with a few
user-drawn strokes.

4. Reconstruction

4.1. Projection of the normal vector

We suppose that we have a drawing of a grid, similar to the
one on Figure 2, and one representative of each set of lines.
From now on, we will refer to such strokes as “hatching”
lines. We use the term hatching, however such strokes are
not to be confused with cross-hatching strokes used to depict
shade or shadows, and whose orientation may not be related
to the underlying object.

Our algorithm depends on two main strokes chosen in the
hatching structure, the backbones described in the previous
section. As stated before, the two strokes appear orthogonal.
However, this is not enough to know the orientation of the
two planes. We will use here the geometric properties of the
projection of a corner of a cube to estimate the normal vector
to the surface at this particular point.

4.2. Orientation of the backbones

Cubic Corners, studied by Perkins [Per68] while investigat-
ing the perception of cubic shapes from the point of view of
human vision, are easy to visualize and to draw with three
right angles. His main interest was to understand when hu-
man beings see the corner of a cube in three concurring lines.
Meanwhile, he established the relation between the angles of
the lines and the perceived depth under an orthographic pro-
jection. This result has been used in [MVS05] to reconstruct
objects where the orthogonality prevails.

Figure 3: A cubic corner.
Using the notations of the Figure 3, we have:

zC = zD ±LC′D′ tan(arcsin(

√
cot ̂A′D′C′ cot ̂B′D′C′)), (1)

47

© Association for Computing Machinery, Inc., 2007.

A. Andre, S. Saito and M. Nakajima / CrossSketch

Figure 4: For a given set of hatching lines, and from the normal vector, we reconstruct the two backbone strokes (second from

the left). We then use these 3D strokes to create a series of projection planes for the other group of strokes, resulting in two

groups of 3D hatching lines. Finally, we take the mean of the two groups to reconstruct the object.

Figure 5: For the two vectors in red, the third vector must

be inside the black regions. We choose the bisector of that

region to estimate the normal vector.

where zX represents the z-coordinate of the point X, LAB

is the length of the segment AB. The two possible results
come from the Necker’s reversion. Moreover, not all triplets
of lines can be the projection of a cubic corner, as Perkins
remarked. The projective consistence imposes that all three
angles around the corner must be greater than Π/2 for a Y-
junction, and that two angles around the corner, each less
than Π/2, must sum to greater than Π/2 for a W-junction.
For a given pair of vectors, the third vector must lie in a
specific zone in order to be a possible corner. Moreover, as
Stevens [Ste82] remarked, the available domain, depending
on the two others vectors, may be strongly restricted. He sug-
gested the use of the bisector of the available domain, when
strongly restricted, as an approximation of the third vector.
We apply the same approach, however, we do not have the
liberty to look for strongly constrained crossings, as we have
only one point where the two representatives of each group
cross. In most cases, however, taking the bisector at that par-
ticular point still produces acceptable results, see Figure 5.
In the event of a bad result, the user is allowed to draw the
normal vector on the intersection. The choice of the back-
bones is capital for this method to work well. As a result, the
system is difficult to manipulate in the beginning.

4.3. Propagation along the backbones

Once the normal vector is known, we can extend the 3D in-
formation to the whole surface. We first approximate these

two strokes as planar strokes. As we know the projection of
all the points on the drawing plane, reconstructing the stroke
is straight forward once the original plane is specified. The
orientation of the strokes is now fixed, and the strokes are
reconstructed (Figure 4, second from the left). From these
two backbones, we will inflate the other hatching strokes in
a similar way. For simplicity, we will describe one group, the
process being similar for the other.

Now that the backbone for a particular group is known,
(for example, the red backbone on the Figure 4, top line).
All the blue strokes (the opposite hatching group) are recon-
structed in 3D by projecting them to planes orthogonal to
the backbone, that is, all the strokes present the same orien-
tation. Once all the hatching strokes of the two groups have
been reconstructed, the original intersections points of the
two hatching groups are averaged to produce the shape.

5. Interface

In this section, we describe the steps needed to create grids
of lines that suits the previous algorithm. Strokes are es-
sential in this paper, as they contain all the information
available. We therefore apply specific pre-processing to the
strokes in order to get the most meaningful information.
First, we need to filter out the stroke from the raw input data.

5.1. Stroke Sampling

Our system accepts as input strokes ordered sets of points,
coming from any conventional 2D input device. A pen tablet,
for example, was used to produce all the figures of this paper.
We implemented a slightly improved version of the sampling
method of [SSD01], where corners of the strokes are ex-
tracted from the set of local minima of speed (the user tends
to slow down at corners) and from the set of local maxima
of curvature (corners present high curvature profiles). Each
segment of the stroke is then interpolated as a succession of
Bezier curves until the error between the input points and

48

© Association for Computing Machinery, Inc., 2007.

A. Andre, S. Saito and M. Nakajima / CrossSketch

Figure 6: The raw data points in black, the approximated

set of Bezier lines and the corresponding corners in green,

the extension result in red.

the resulting approximation is below an small threshold. We
then enforce C2 continuity on the succession of curves for
each segment, by slightly adjusting the control points. This
gives smoother strokes, and the error stays small. Without
the C2 continuity, the resulting shape would present irregu-
larities that would appear on the shading. Figure 6 shows one
original point set and its corresponding stroke interpolation
and extension.

One particular advantage of this method is that the stroke
is sampled between corners. This allows the user to draw
strokes with sharp angles. As the reconstruction method is
able to deal with such angles, this gives more freedom to the
category of shapes this system can reconstruct.

When drawing with a pencil, there is no modes or any-
thing that holds information about the type of strokes being
drawn. Once the drawing is done, anyone can classify the
strokes between two groups, silhouette (or edges) and hatch-
ing (two directions), without any doubt for most cases. We
want here to reach a similar level of simplicity, that is the
user must be able to draw his sketch without specifying any-
thing.

5.2. Classification of the strokes

The user must start by drawing the edges of the surface he
wants to model. While he is drawing strokes, we construct
a graph where the nodes correspond to corners and ending
points of each stroke, and links correspond to the strokes.

Internally, a stroke is classified into one of the following
groups: unknown, edge, hatching (unknown), first group of
hatching lines, second group of hatching lines. Groups of
hatching lines are valid for any surface of the object, so we
need first to determine possible surfaces. To do so, we look
for shortest loops in the set of strokes of type unknown or
edge using Djikstra’s shortest path algorithm. For any loop,
we suppose there is a surface whose edges correspond to the
loop in the graph. Each of these edges is then classified as a
edge.

For hatching lines, we use the following approach. If a
stroke is not linked with any known edge, we look for a sur-
face that may contain a big portion of the stroke (greater than
a fixed threshold). If such surface exists, we suppose that the
stroke is a hatching stroke, and we classify it as a stroke of
type hatching (unknown) for the given surface.

5.3. Hatching strokes

Now we need to separate all the hatching strokes into two
and only two groups, as we made this assumption. We will
create the two groups incrementally, i.e. when a new hatch-
ing stroke is found, we classify it with the information we
have to this point. When the stroke crosses an existing hatch-
ing stroke, the new stroke belongs to the other hatching
group.

However, when no intersection point can be found, the
new stroke is matched against all other hatching strokes al-
ready present in the same surface, and the new stroke is cat-
egorized as the same type of its closest match. In the ini-
tial case, the first hatching stroke is labeled as first group of
hatching lines, then as long as new strokes are similar to this
group, they end up in the same group. If the new stroke’s
minimum similarity value to the first group is higher than a
threshold, the stroke is then categorized as second group of
hatching lines. After that, the closest group or the one that
the new stroke crosses is chosen.

As a result, two strokes from the same hatching group can
not intersect, but such cases are not included in the domain
of shapes we aim to reconstruct.

5.4. Similarity between two strokes

We need a way to measure the similarity of two strokes. We
use a modified version of the Hausdorff distance. The Haus-
dorff distance is suitable for measuring the distance between
two sets of objects, in our case, sample points of the stroke.
The most common version of the distance is not suited for
our problem, as we look for similar strokes, i.e. the closest
stroke from the distance point of view may not at all be re-
lated to the closest stroke from the shape point of view. The
version we use includes a translation of the first set in order
to find the best match.

We use the following definition to calculate the similarity
S of the sets A and B:

S(A,B) = min
t

max
a∈A

min
b∈B

‖a−b+ t‖, (2)

where t is the translation vector, and ‖.‖ is some norm in
the considered space. We use the L2 norm in the drawing
plane. Each stroke is re-sampled as a set of equidistant seg-
ments, and the extremities of these segments form the set of
points needed for computation. The reader may refer to Hut-
tenlocher et al. [HKR93] for a more complete study on this
particular measure.

6. Populating the surfaces

Once we have some samples of the hatching strokes inside
one surface, we need to extend them to the whole surface.
The problem has two aspects. First we need to elongate the
strokes until they reach the surface boundaries, and also to

49

© Association for Computing Machinery, Inc., 2007.

A. Andre, S. Saito and M. Nakajima / CrossSketch

Figure 7: Example of surface population. At first, with only two strokes, the hatching structure is constructed with extended and

translated copies of the original strokes. As the number of strokes increases, the hatching lines between two strokes of the same

group are interpolated.

match the length of the other strokes. We then need to ap-
proximate the hatching strokes where the user did not draw
anything.

6.1. Stroke extension

In order to elongate the strokes in a natural manner, we com-
pute the curvature along the strokes using a triangular ap-
proximation of a circle. We then take the average of the
curvature in the neighborhood of the ending points of the
strokes, then we extend the strokes with new points, keep-
ing the curvature equal to the minimum of the mean curva-
ture and the last curvature calculated, as the strokes tend to
present higher curvature near the ending points. We add seg-
ments of the same length, and the angle with the previous
segment of the stroke is chosen such that the curvature of
the newly added part of the stroke matches the desired cur-
vature. In order to add more realism, we slightly decrement
this desired curvature along the extension points, resulting
in strokes that tend to straight lines. See Figure 6 for one
example.

6.2. Interpolation of hatching lines

In this part, we interpolate new strokes that follow the global
shape of the input strokes, in order to cover the whole sur-
face with hatching information to provide feedback to the
user. The way strokes are interpolated influences the result-
ing shape. Our approach is similar to the method described
in [RK00], when building hatching lines from the principal
directions of curvature. On the contrary, we want here to in-
terpolate hatching lines from the input lines, in a natural way.

For a given set of hatching strokes, each stroke is re-
sampled to a series of angles, that is, each stroke is made of
segments of equal length, and we know the angle between
one segment and the next one. Then, along the correspond-
ing stroke (backbone), we interpolate the strokes (ribs) be-
tween the reference strokes (the strokes the user drew) using
a linear interpolation of the series of angles.

Figure 8 shows the process. The stroke on the left is sam-
pled as the set {Ai|i = 0...n} while the stroke on the right

comes as {Bi|i = 0...n}. Each stroke in the middle of those
two strokes in created as {Xi = (1− t)∗Ai + t ∗Bi|i = 0...n},
where t is the corresponding sampling parameter of the
backbone stroke, and n the length of the smallest stroke, but
we extended the strokes in order to cover the whole surface
in the previous section. For strokes on the outer sides, we use
the last user-given stroke in that direction, and we translate
it to populate the sides.

This method gives natural results (seen on Figure 7),
while other methods of interpolation, for example Coons’
patches, would produce very different results, as every inter-
polation would have been done on four-sided-surfaces, with
a number of sample points that needs to be the same along
corresponding edges. The method we use here allows us to
generate hatching structures with only two or three strokes.
However, since we interpolate the strokes using the arc-
length of the ones the user draws, unexpected results may
occur, for example when one really long stroke, shaped like
a V, used to depict a bump, is interpolated with a straight
stroke half the length. The bump will spread along the stroke
direction instead of a more natural decrease in amplitude.

Figure 8: The ribs generation. For a given backbone stroke

(the bottom line), we sample the crossing lines as a series

of segments of constant length, taking the relative angles

for the calculation of the approximation along the sampled

backbone.

6.3. Detail addition with small strokes

The previous interpolation is done as soon as there is enough
information to create hatching strokes on the whole surface.
Of course, the generated strokes may not be right for com-
plex surfaces, so we allow the user to redraw on the sur-
face to specify details, in a oversketching way. As the user

50

© Association for Computing Machinery, Inc., 2007.

A. Andre, S. Saito and M. Nakajima / CrossSketch

Figure 9: Adding detail by oversketching.

is given interpolated hatching lines over the whole surface,
he is able to see exactly what and where he needs to provide
more detail.

When the user inputs a small stroke (where the length of
the stroke is less than the mean of the other strokes times a
reducing factor, 0.3 in our implementation), the system will
categorize the stroke as a correction stroke, that is, the user
wants to modify the local structure of the surface rather than
the whole surface. We then localize the stroke in the pre-
viously created hatching structure, and we recreate a whole
hatching stroke using the previously interpolated data in the
beginning, the new input stroke in the middle, then one more
time the previously interpolated data. Then the stroke is pro-
cessed as if it were a complete hatching stroke.

This allows oversketching in a natural way. When the
stroke does not match the user’s wishes, the user can re-
draw on the stroke, and it will be corrected locally. This also
removes the need for an undo function. This allows step-
by-step modeling of the surface. The first strokes decide the
global shape of the surface, then small strokes can be added
to add small details to the shape.

7. Results and Discussion

The described method was implemented in Java-JoGL. On a
AMD Atlhon 64 3400+ with 1GB of memory running Linux,
the system is interactive. The main time-consuming parts
are the numerous re-sampling steps of the strokes, as well
as the interpolations. The reconstruction of the 3D shape
is fast in comparison, and most of the time is spent com-
puting the intersection of the surface with the edges of the
surface. We present here some results obtained by our sys-
tem. Figure 1 shows a mask modeled in less than two min-
utes (drawing and processing time included) by a trained
user, with three edges, four complete hatching strokes and
eight correction strokes. Figure 10 shows a single leaf mod-
eled with just two strokes to specify the inner shape, result-
ing in a simple shape. While the strokes needed to model
such a leaf are similar to the ones needed to model a sim-
ilar leaf using the cross-sectional blending surface method
of [CSSJ05], our method was meant to allow the modeling
of objects on the spot, with the correct orientation. More-
over, the stroke needed by [CSSJ05] to specify the cross-
section seems to be drawn from a different viewpoint, while
the strokes needed in our case are consistent with the view-

Figure 10: A leaf modeled with three strokes

Figure 11: A shape with sharp angles.

point. Figure 11 shows a stairs-like shape, where sharp an-
gles are dominant.

The rules about our visual system are merely guidelines,
and they do not hold under any circumstances, and not for
all drawings. For surfaces close to a plane, or a cylinder, the
proposed guidelines apply, and as a result, we can recon-
struct the surface with confidence. In the case of a sphere,
however, the grid that complies with the rules is not natural
to draw. As a result, it is difficult in the current state of the
system to model objects of spherical topology.

Another limitation of the system is the fact that only
frontal geometry is reconstructed, and self-occluding parts
are impossible. As a result, the models designed with this
system are meant to be viewed from a viewpoint close to
the one used during the modeling. Moreover, animations of
the models are difficult, as changing the orientation of the
models is not easy with the current method.

The system, in its current state, is far from the level of
precision that other projects that allow multi-view sketching
reach, even if we believe that it can scale to complex sur-
faces. Our main focus was to allow complex modeling from
a single drawing, with small details. As our method works
for a single view point, we look forward to implement it in
a wider system, where our system could be used to specify
local details or global changes. We also believe that an un-
derstanding of the reconstruction of one single drawing can
lead to a more direct link between artists, used to draw on
one piece of flat paper, and modelers, used to think in a 3D
world.

51

© Association for Computing Machinery, Inc., 2007.

A. Andre, S. Saito and M. Nakajima / CrossSketch

8. Conclusion and Future Work

We presented a new approach to the modeling from sketches
problem, using inner lines in order to apprehend the inner
shape of the current drawing. We showed that simple sur-
faces can be modeled in a few strokes, and that the resulting
system is usable.

Moreover, our system focuses on drawing from a unique
point of view, and that was successfully achieved, while be-
ing able to produce objects of various shapes. Building ob-
jects using multiple drawings from different viewpoints is
different from the framework we used in this paper, but we
hope to integrate our method to specify the inner details of
shapes constructed with more powerful systems soon.

Another direction for future work is to use the important
information the user gave in this paper to produce cross-
hatched rendering images of the objects. As stated before,
the user makes corrections where the shape does not fol-
low the global hatching structure. Using the location of such
small strokes in order to control the density of a cross-
hatching generator may lead to interesting renderings. It may
also helps the user to apprehend how the system interpreted
his drawing.

We also hope in the near future to adapt the algorithm to
spherical objects, using for example rotated planes along the
other backbone to reconstruct the strokes. Lastly, we hope
to extend the system to model more than one surface at the
same time.

References

[CHZ00] COHEN J. M., HUGHES J. F., ZELEZNIK R. C.:
Harold: a world made of drawings. In NPAR ’00: Proceedings

of the 1st international symposium on Non-photorealistic anima-

tion and rendering (New York, NY, USA, 2000), ACM Press,
pp. 83–90.

[CPCN05] COMPANY P., PIQUER A., CONTERO M., NAYA F.:
A survey on geometrical reconstruction as a core technology to
sketch-based modeling. Computers & Graphics 29, 6 (2005),
892–904.

[CSSJ05] CHERLIN J. J., SAMAVATI F., SOUSA M. C., JORGE

J. A.: Sketch-based modeling with few strokes. In SCCG ’05:

Proceedings of the 21st spring conference on Computer graphics

(New York, NY, USA, 2005), ACM Press, pp. 137–145.

[Fre94] FREEMAN W. T.: The generic viewpoint assumption in
a framework for visual perception. Nature 368 (7 April 1994),
542–545.

[HKR93] HUTTENLOCHER D., KLANDERMAN D., RUCKLIGE

A.: Comparing images using the Hausdorff distance. IEEE

Transactions on Pattern Analysis and Machine Intelligence 15,
9 (September 1993), 850–863.

[Hof00] HOFFMAN D. D.: Visual Intelligence: How We Create

What We See. W. W. Norton & Company, February 2000.

[IMT99] IGARASHI T., MATSUOKA S., TANAKA H.: Teddy:
a sketching interface for 3d freeform design. In SIGGRAPH

’99: Proceedings of the 26th annual conference on Computer

graphics and interactive techniques (New York, NY, USA, 1999),
ACM Press/Addison-Wesley Publishing Co., pp. 409–416.

[IOOI05] IJIRI T., OWADA S., OKABE M., IGARASHI T.: Floral
diagrams and inflorescences: interactive flower modeling using
botanical structural constraints. In SIGGRAPH ’05: ACM SIG-

GRAPH 2005 Papers (New York, NY, USA, 2005), ACM Press,
pp. 720–726.

[KH06] KARPENKO O. A., HUGHES J. F.: Smoothsketch: 3d
free-form shapes from complex sketches. In SIGGRAPH ’06:

ACM SIGGRAPH 2006 Papers (New York, NY, USA, 2006),
ACM Press, pp. 589–598.

[KHR02] KARPENKO O., HUGHES J. F., RASKAR R.: Free-
form sketching with variational implicit surfaces. Computer

Graphics Forum 21, 3 (2002), 585–594.

[MSK00] MITANI J., SUZUKI H., KIMURA F.: 3d sketch:
Sketch-based model reconstruction and rendering. In IFIP Work-

shop Series on Geometric Modeling: Fundamentals and Appli-

cations, 7th Workshop GEO-7 (2000), pp. 85–112.

[MVS05] MARTIN R. R., VARLEY P., SUZUKI H.: Perpendic-
ularity as a key to interpreting line drawings of engineering ob-
jects. IJCC Workshop on Digital Engineering (2005), 115–120.

[NSACO05] NEALEN A., SORKINE O., ALEXA M., COHEN-
OR D.: A sketch-based interface for detail-preserving mesh edit-
ing. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers (New
York, NY, USA, 2005), ACM Press, pp. 1142–1147.

[Per68] PERKINS D.: Cubic corners. Quarterly Progress Report,
89 (1968), MIT Research Laboratory of Electronics, 207–214.

[PF06] PRASAD M., FITZGIBBON A.: Single view reconstruc-
tion of curved surfaces. In CVPR ’06: Proceedings of the 2006

IEEE Computer Society Conference on Computer Vision and Pat-

tern Recognition (Washington, DC, USA, 2006), IEEE Computer
Society, pp. 1345–1354.

[RK00] RÖSSL C., KOBBELT L.: Line-art rendering of 3D mod-
els. In Computer Graphics and Applications, 2000. Proceedings.

The Eighth Pacific Conference on (2000), pp. 87–96.

[SLKM04] SHIZUKA H., LIU W., KONDO K., MATSUDA K.:
A sketch interpreter system with shading and cross section lines
by freehand drawing. In Proceedings of the 11th International

Conference on Geometry and Graphics (ICGG2004) (8 2004),
pp. 357–362.

[SSD01] SEZGIN T. M., STAHOVICH T., DAVIS R.: Sketch
based interfaces: Early processing for sketch understanding.
Workshop on Perceptive User Interfaces, Orlando FL (2001).

[Ste82] STEVENS K.: Implementation of a theory for inferring
surface shape from contours. A.I. Memo, 676 (1982), MIT Arti-
ficial Intelligence Laboratory.

[SWSJ05] SCHMIDT R., WYVILL B., SOUSA M. C., JORGE

J. A.: Shapeshop: Sketch-based solid modeling with blobtrees.
In Proceedings of the 2nd Eurographics workshop on Sketch-

Based Interfaces and Modeling, (8 2005), pp. 53–62.

[ZHH96] ZELEZNIK R. C., HERNDON K. P., HUGHES J. F.:
Sketch: an interface for sketching 3d scenes. In SIGGRAPH

’96: Proceedings of the 23rd annual conference on Computer

graphics and interactive techniques (New York, NY, USA, 1996),
ACM Press, pp. 163–170.

52

© Association for Computing Machinery, Inc., 2007.

