
Copyright © 2007 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for commercial

advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit

is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions Dept, ACM

Inc., fax +1 (212) 869-0481 or e-mail permissions@acm.org.

Sketch-Based Interfaces and Modeling 2007, Riverside, CA, August 02-03, 2007.

© 2007 ACM 978-1-59593-913-5/07/0008 $5.00

EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2007)
M. van de Panne, E. Saund (Editors)

Temporal Sketch Recognition in Interspersed Drawings

Tevfik Metin Sezgin 1 and Randall Davis 2

1University of Cambridge, Computer Laboratory, Cambridge, UK
2Massachusetts Institute of Technology, CSAIL, Cambridge, MA, USA

Abstract
Sketch recognition has been recognized as an enabling technology for pen-based interfaces. Previous work in the
field has shown that in certain domains the stroke orderings used when drawing objects contain temporal patterns
that can aid recognition. So far, systems that use temporal information for recognition have assumed that objects
are drawn one at a time. This paper shows how this assumption can be relaxed to permit temporal interspersing
of strokes from different objects. We describe a statistical framework based on Dynamic Bayesian Networks that
explicitly models the fact that objects can be drawn interspersed. We present recognition results for hand-drawn
electronic circuit diagrams. The results show that handling interspersed drawing provides a significant increase
in accuracy.

Categories and Subject Descriptors (according to ACM CCS): I.5.4 [Pattern Recognition]: Applications

1. Introduction

Sketching is typically (and unconsciously) rather stylized in
the sense that people have routine habits in the way they
sketch. For example, people typically draw enclosing ob-
jects first and use a left-to-right stroke ordering when draw-
ing symmetric objects. There is psychological evidence at-
tributing such ordering phenomenon to motor convenience,
part salience, hierarchy, geometric constraints, planning and
anchoring [Tve99, vS84].

Existence of ordering patterns during drawing is signif-
icant from a recognition perspective because as has previ-
ously been demonstrated in a variety of domains, tempo-
ral stroke orderings can be used to aid recognition [SD04,
ABS04,SD05,SD07]. All these systems, however, make cer-
tain assumptions that limit the complexity of the inputs they
can accommodate. For example, the simplest approach as-
sumes the scene contains only one object, drawn in a single
stroke [ABS04]. Other systems allow recognition in scenes
with multiple objects with the restriction that objects or com-
plete object components are drawn using a single stroke
[SD04]. Another approach allows scenes with multiple ob-
jects and objects consisting of multiple strokes but assumes
that no objects share strokes [SD05]. A more recent frame-
work allows stroke sharing between shapes under certain
conditions and shows how common stroke orderings as well
as object orderings can be used for recognition [SD07].

Even so, one key assumption that all these systems make
about free-hand drawing — one that has received much crit-
icism — is the assumption that people complete each ob-
ject before moving on to draw the next one. Real-world data
shows this to be untrue. For example, our analysis of free-
hand analog electronic circuit diagrams collected from elec-
trical engineers shows that there are indeed cases where peo-
ple start drawing a new object before they complete the cur-
rent one. This drawing behavior, which we call interspersed
drawing, occurs in other domains as well [AL07], and the
ability to deal with interspersed drawing is recognized as a
major task that sketch recognizers should support [AL07].
This paper is focused on this issue, and shows how stroke
ordering information can be used for sketch recognition in
presence of interspersed drawing. Additional key features of
our recognition framework include its ability to learn vari-
ous kinds of temporal patterns from data, the ability to han-
dle multi-stroke objects and multi-object strokes, and sup-
port for continuous observable features.

Next, we formally define the sketch recognition task and
describe the interspersed drawing phenomena. In section 3,
we describe a recognition framework based on Dynamic
Bayesian Networks (DBNs) that models online sketching as
a stochastic process employing specialized constructs called
switching parents. Section 4 reports evaluation results show-
ing that a significant percentage of misrecognitions can be

http://www.eg.org
http://diglib.eg.org

T. M. Sezgin & R. Davis / Temporal Sketch Recognition in Interspersed Drawings

avoided by explicitly modeling interspersed drawing behav-
ior. We conclude with a broader discussion of the related
work and point out possible future directions.

2. Problem Definition

Informally, the goal of sketch recognition is to break up digi-
tal ink drawn by user into smaller pieces and assign labels to
groups that constitute objects in the domain. We focus here
on the domain of hand-drawn electronic circuit diagrams,
but our recognition algorithm is not specific to this domain.
Objects in our domain are wires, resistors, capacitors, npn-
transistors and batteries.

2.1. Terminology

We adopt the terminology and notation used in [SD07]. A
sketch S = S1,S2, ...SN is defined as a sequence of strokes
captured using a digitizer, preserving the drawing order. A
stroke is a set of time-ordered points sampled between pen-
down and pen-up events. Each stroke is broken into geomet-
ric primitives (e.g., lines, arcs) called primitives as part of the
preprocessing of the sketch.† Let P = P1:T = P1,P2, ...PT
be the sequence of time-ordered primitives obtained from
S , and O = O1,O2, ...,OT be the sequence of observations
(feature vectors) obtained from the primitives.

We use segmentation to refer to the task of grouping to-
gether primitives constituting the same object. Given a set of
classes C = {C1,C2, ...Cn}, classification refers to the task
of determining which object each group of primitives repre-
sents (e.g., a stick-figure or a rectangle). Segmentation pro-
duces K groups G = G1,G2, ...GK , and classification gives
us the labels for the groups L = L1,L2, ...LK , Li ∈ C . Each
group is defined by the indices of the primitives included in
the group Gi = ρ1,ρ2, ...ρm sorted in ascending order.

We define sketch recognition as the segmentation and
classification of a sketch. A simplifying assumption in most
sketch recognition systems is that a stroke can be part of only
one object. Our definition of segmentation in terms of prim-
itive groupings is more general than a definition based on
stroke groupings, and, as long as primitives are not shared
across objects, it allows a stroke to be part of multiple ob-
jects (e.g., using a single stroke to draw a resistor and the
wires on either side of it).

By interspersing we refer to the situation where the user
starts drawing one object but draws one or more other ob-
jects before it is completed. For example, Fig. 1 shows an
example in which two wires (#3 and #6) are interspersed
with the transistor.

† Because our domain does not have objects with curves, we only
work with line segments. However, our model is general, and sup-
ports features computed from any kind of primitive.

Figure 1: A diagram illustrating interspersing: The user
draws two other objects (wires #3 and #6) over the course of
drawing the transistor. Numbers indicate the drawing order.

More formally, suppose we have two objects A and B.
Assume the proper grouping of primitives forming A and
B are GA = ρ1,ρ2, ...ρm and GB = ρ′1,ρ

′
2, ...ρ

′
n. We say

that A is interspersed with B if ρ1 < ρ′i < ρm for 1≤ i≤ n
and |GA |+ |GB|= ρm−ρ1 +1. The model that we present
handles a more general case of interspersing where A can
be interspersed with multiple objects.

2.2. Desired Features of a Model

The main feature of our model is its ability to handle in-
terspersed drawing behavior. However, we also support the
following features identified as important in previous work.

2.2.1. Learning stroke-level and object-level patterns

Stroke orderings used in the course of drawing individual ob-
jects naturally contain certain patterns. For example, when
drawing arrows, one frequently seen temporal pattern is a
long line (the shaft) followed by two shorter lines (parts of
the arrow head). These are called stroke-level patterns be-
cause they capture the probability of seeing a particular se-
quence of strokes with certain properties when sketching an
object [SD07].

Another kind of temporal pattern present in online
sketches is an object-level pattern that captures the prob-
ability of seeing a certain sequence of objects being drawn
[SD07]. For example, when people draw box-connector di-
agrams (e.g., organizational charts, linked lists), boxes are
drawn before connectors. Our system learns stroke-level and
object-level temporal patterns of a domain from examples
and uses them in recognition.

16

© Association for Computing Machinery, Inc., 2007.

T. M. Sezgin & R. Davis / Temporal Sketch Recognition in Interspersed Drawings

2.2.2. Handling multi-stroke objects and variations in
encoding length

Users should be able to draw freely. For example, they
should be able to draw a square using three strokes instead of
four, or draw a resistor with five humps instead of six (thus
generating an encoding of the input with only five observa-
tions instead of six). We achieve this by explicitly modeling
whether the user has finished drawing an object.

2.2.3. Support for multiple drawing orders

We should be able to accommodate multiple drawing orders
instead of just one. For example, it should be possible to
draw a square starting with both horizontal and vertical lines.
Furthermore, if the user prefers one drawing order more fre-
quently than others, this should be accounted for as well.
This requires using training and classification methods that
can use such information.

2.2.4. Probabilistic matching score

We would like the result of matching an observation se-
quence against a model to be a continuous value reflect-
ing the likelihood of using that particular drawing order for
drawing that object. This is required if we are to have a math-
ematically sound framework for combining the outputs of
multiple matching operations for scenes with multiple ob-
jects such that, among plausible interpretations, those corre-
sponding to more frequently used orders are preferred.

2.2.5. Rich feature representation

One of the steps in applying machine learning techniques to
a problem is to decide on a set of features that are sufficiently
expressive given the problem at hand. In sketch recognition,
we deal with data that is most naturally described using geo-
metric features such as the shape of a stroke segment, length
and orientation of line segments, radii of circles etc. Some of
these features are categorical (e.g., shape of a stroke segment
can be arc, line etc.) and are best represented using dis-
crete variables. Other features such as length and orientation
are real-valued quantities and should be represented as such.
Therefore our algorithms support discrete and real-valued
features using appropriate representations such as discrete
conditional probabilities and Gaussian mixtures.

3. Recognition System

The requirements listed in section 2.2 collectively impose
constraints on the computational model used for sketch
recognition. In particular, we want our model to capture the
probabilistic relationships between features extracted from a
sketch, and to model the stroke-level patterns, object-level
patterns as well as the common interspersing behaviors ob-
served in a domain. We achieve this by specifying a joint
distribution over a set of random variables that collectively
define the dynamics and constraints of our computational

model of sketching. Equations describing these constraints
are tedious to list and hard to understand at best. Fortunately
there is a much simpler way of expressing them using the vi-
sual language of probabilistic graphical models. Therefore,
we describe our models using a class of probabilistic graphi-
cal models known as Dynamic Bayesian Networks (DBNs).
DBNs have successfully been used to model time series, and
are therefore appropriate for problems with a temporal na-
ture. Fig. 2 shows our DBN model for the analog circuits
domain. After a brief overview of DBNs, we describe it in
detail.

3.1. Dynamic Bayesian Networks and Switching Parents

Because our model of sketch recognition uses Dynamic
Bayesian Networks and a relatively unknown feature of
DBNs called switching parents, we briefly review them both.

3.1.1. Dynamic Bayesian Networks

Bayesian networks encode the joint probability of a set of
variables Z = {Z1, ...,Zn} where the graphical structure of
the network encodes the conditional dependencies among
the variables. DBNs extend Bayesian networks and model
joint distribution of a set of variables over time by represent-
ing the conditional dependencies between them using a pair
of Bayesian networks 〈B1,B�〉. B1 defines the prior for the
Zi values at time t = 1, and B� defines how variables at time
t +1 relate to each other and to those from time t.

3.1.2. Switching parents

Our model contains graphical notation (dotted and dashed
arrows in Fig. 2) indicating conditional dependencies that
change (switch) based on the value of a switching parent.
The use of switching parent mechanism (also known as
context specific independence or Bayesian multi-nets) al-
lows us to efficiently represent conditional dependencies that
change as a function of another node’s value [Bil00, GH96,
BFGK97]. Fig. 3 shows a simple example of switching par-
ents. In this network OBS has two parents P1 and P2, and a
switching parent MUX that controls which one of P1 or P2 is
activated. The semantics of the network indicates that:

P(OBS|P1,P2) = P(OBS|P1,MUX= 1)P(MUX= 1)+
P(OBS|P2,MUX= 2)P(MUX= 2)

We use switching parents as an efficient mechanism for se-
lecting the process corresponding to the active object in our
dynamic model of sketching. Specifically, only one of the
nodes N, R, C, B and W — the stroke-level models for the
npn-transistor, resistor, capacitor, battery and the wire ob-
jects — is activated at a given time based on the value of
the MUX node. The rest of our discussion assumes that the
reader is comfortable with DBNs and the DBN terminology
(an excellent review can be found in [Mur02]).

17

© Association for Computing Machinery, Inc., 2007.

T. M. Sezgin & R. Davis / Temporal Sketch Recognition in Interspersed Drawings

Figure 2: Dynamic Bayesian network representing our model that handles interspersed drawing.

Figure 3: Illustration of the switching parent mechanism.

3.2. Sketch Preprocessing and Feature Extraction

As in most sketch recognition systems, we first preprocess
an input sketch to extract features that characterize the input.
Given an input sketch, we preprocess each stroke and break
it into geometric primitives using the early sketch process-
ing toolkit described in [SSD01], then compute a number of
geometric features for each primitive.

To facilitate direct comparison of recognition rates with
previous work, we use the feature representation suggested
by [SD07]. For each primitive Pi, we obtain an observation
vector Ot represented as a five-tuple (lt ,∆lt ,θt ,∆θt ,sgnt)
where lt is the length of Pi; ∆lt is relative length (lt/lt−1, 1
for t = 1); θt is the angle with respect to the horizontal axis;
∆θt is the measure of relative angle between Pi and Pi−1
given by the magnitude of the cross product ~u×~v of vectors

~u, ~v, which in turn are length-normalized versions of Pi and
Pi−1 pointing in the direction of pen movement along each
primitive. The only discrete observable sgnt captures the di-
rection that the stroke turns when moving from Pi−1 to Pi. It
is set to 0 for negative values of~u×~v and 1 for non-negative
values (and for the observation at t = 1).

3.3. Model Description

The Dynamic Bayesian Network specifying our computa-
tional model of sketch recognition is shown in Fig. 2. It is
important to note that the figure shows only two frames (ini-
tial and repeating frames) of the DBN, as this is the con-
ventional way of representing a DBN. As is the case for all
DBNs, during classification the network is unrolled to pro-
duce as many frames as the number of observations.

3.3.1. Description of the nodes

Our network has three groups of nodes. First are the obser-
vation nodes OBSi that serve as the input to sketch recog-
nition. These are the only observable nodes during recog-
nition. Each observation OBSi is a feature vector computed
using primitive Pi.

The second group of nodes are the MUXi nodes which
are multi-valued discrete variables holding our hypothesis of
what object Pt is a part of and whether or not the user is inter-
spersing any two objects. Computing the set of assignments
to the nodes MUX1:T that maximize the joint probability of
the DBN for a set of observations gives us the classification
for each primitive. Hence the MUX1:T nodes provide the out-
put of sketch recognition.

The third group of nodes are auxiliary nodes. The ENDi

18

© Association for Computing Machinery, Inc., 2007.

T. M. Sezgin & R. Davis / Temporal Sketch Recognition in Interspersed Drawings

node is a discrete boolean node that reflects our belief about
whether the user has just completed drawing the current ob-
ject by drawing the primitive Pi. Explicitly modeling when
objects are completed allows us to support multi-stroke ob-
jects and variations in the encoding length as mentioned in
section 2.2.2. Because the training data is fully labeled, we
know when objects are completed. Thus the END nodes are
observable in training but hidden during recognition. The re-
maining nodes are always hidden and they capture the statis-
tics of the stroke-level patterns for domain objects. For ex-
ample, parameters of the R node encode the statistics of ob-
servations that are typically seen when users draw resistors.
Similarly, there are corresponding nodes for each object in
our domain (N, C, B and W for npn-transistors, capacitors,
batteries and wires). The nodes R’, N’, C’, B’ and W’ define
priors for these nodes, as we explain later. Because we have
such nodes for each object class in our domain, we will use
the generic notation Ci to refer to them. So, in the rest of our
discussion, we use C1 = N, C2 = R, C3 = C, C4 = B and C5 =
W.

3.3.2. Description of the model topology

Recall that the goal of sketch recognition is to assign labels
to primitives that constitute valid domain objects. The MUX
node in our model represents the label of the object being
drawn and the information of what objects are interspersed
when interspersing occurs. Its cardinality is equal to the sum
of the number of object classes and the number of objects
that can be interspersed. The semantics of MUXt= i is deter-
mined by the following:

i f 1≤ i≤ |C | =⇒ drawing object i, Ci active,
i f i > |C | =⇒ interspersing A and B, given by

the function Fint(i) = 〈A ,B〉.
The function Fint(i) maps values of MUX to a pair of object
classes 〈A ,B〉. We construct it based on the types of in-
terspersings seen in the training data. For example, in our
domain npn-transistors are interspersed with wires, so we
define Fint(6) = 〈N,W〉 where |C |= 5.

For each object class that we support, we have a node cap-
turing the dynamics of the stroke-level features (nodes C1,
C2, ... C|C |, shown by N, R, C, B and W in Fig. 2). Nodes
C′1, C′2, ... C′|C | are auxiliary nodes for ensuring that the
form of the conditional probabilities for nodes Ci in the
initial frame is the same as those in the repeating frame
(i.e., PB1(Ci|Parents(Ci)) = PB�(Ci|Parents(Ci)). Auxiliary
nodes have the same cardinality as their children (i.e., |C′i |=
|Ci|).
Conditional dependencies for the initial frame
The MUX node in the initial frame has no parents and it has
a prior that sums to 1 for values corresponding to object
classes, and 0 for values corresponding to object interspers-
ings. For example a plausible choice for the prior values is
to use a uniform distribution:

P(MUX1 = i) =

{
1/n if 1≤ i≤ |C |,
0 if i > |C |

The OBS node is conditioned on the MUX and one of the Ci
nodes as determined by the value of MUX. This is an example
of the switching parent mechanism. The distribution for OBS
can be broken into two cases depending on whether the user
is currently interspersing an object of class Cj with Ck given
by Fint(i) = 〈C j,Ck〉:

P(OBS|MUX= i,C1:n) =

P(OBS|MUX= i,Ci)
if 1≤ i≤ |C |,
drawing an object
of type Ci

P(OBS|MUX= i,Ck)

if i > |C |,
Fint(i) = 〈C j,Ck〉,
interspersing
C j with Ck

The interspersing function Fint(i) mapping values of MUX
to the range 1 ≤ i ≤ |C | is constructed prior to the training
as mentioned earlier. The use of switching parents in this
fashion also allows us to learn and share a single model
for objects that are interspersed (i.e., instead of learning
a wire model and an interspersed-wire model, we learn a
single wire model and reuse it). The END node also has
MUX as its switching parent: P(END|MUX= i,C1,C2, ...,Cn) =
P(END|MUX= i,Ci).

Each Ci node in the initial frame is conditioned on the MUX
and C′i nodes. The prior for the C′i nodes is represented by a
sparse conditional probability table that sets P(C′i = 1) = 1.‡
This is our way of saying all stroke-level processes are at
their beginning state when we enter the initial timeslice,
and based on the value of MUX only one of these nodes up-
dates its state using the inter-frame probability distribution
PB�(Ci,t |Parents(Ci,t)) = PB�(Ci,t |Ci,t−1,MUXt) substituting
the value of C′i for Ci,t−1. This allows the process selected
by MUX to change its state from its default begin state to a
state where it can generate the first observation OBS1. Using
the probability distribution function PB�(Ci,t |Parents(Ci,t))
learned over many examples in the first slice of our DBN is
another example of parameter tying. Ci nodes that are not
selected by the MUX node in the initial frame simply copy
values from C′i .

Inter-slice dependencies
The MUX node at time t is conditioned on MUXt-1 and
ENDt-1. Its value is updated based on the object-level tran-
sition probabilities if ENDt-1 indicates that the current ob-
servation marks the beginning of a new object (not nec-
essarily of a different class, but a different instance). The
MUX node can change state even if the ENDt-1 is f alse
(i.e., OBSt-1 does not mark the end of an object). These

‡ Note that we can get away with having only one auxiliary variable
C′i if all the Ci nodes have the same cardinality.

19

© Association for Computing Machinery, Inc., 2007.

T. M. Sezgin & R. Davis / Temporal Sketch Recognition in Interspersed Drawings

cases correspond to interspersings and P(MUXt= i|MUXt-1=
j,ENDt-1= f alse) > 0 only if we have seen objects of type
Ci being interspersed with another object in the training
data.§ The Ci,t nodes in the repeating frames are condi-
tioned on the MUXt and Ci,t-1 nodes. The conditional prob-
ability table for PB�(Ci,t|Parents(Ci,t)) is estimated from
the data subject to a few constraints that we specify prior
to training in the form of deterministic conditional prob-
ability tables [BZ02]. Specifically, we require PB�(Ci,t=
c|MUXt= m,Ci,t-1= c′) to be:

1 if m 6= i,1≤ m≤ |C |,c = 1
0 if m 6= i,1≤ m≤ |C |,c 6= 1)
1 if m > |C |,c = c′, and Fint(m) = 〈Ci,C∗〉
0 if m > |C |,c 6= c′, and Fint(m) = 〈Ci,C∗〉

where ∗ indicates a wild-card.

These constraints ensure that if the user is drawing an ob-
ject other than the one associated with the node Ci,t, the
state of that node is reset to the begin state, and if the user
has started interspersing an object of type Ci with any other
object, the state of the Ci node is passed on to the next slice.
This allows us to save the state of the process associated with
Ci so that it can resume after the interspersing is over.

3.4. Training and Recognition

The MUX1:T, END1:T, and OBS1:T nodes are observable dur-
ing training and we estimate the parameters of our DBN us-
ing these values. During recognition, only the OBS1:T val-
ues are observable. Using probabilistic inference, we com-
pute the assignments to the MUX1:T and END1:T nodes that
maximize the joint probability of the network. The MUX1:T
values give us the primitive labels, and END1:T give us the
object boundaries.

As mentioned earlier, we support continuous features.
This is done by representing the OBS1:T nodes using mix-
tures of Gaussians. We found Gaussians with three compo-
nents to work well for our domain. We also set the cardinal-
ity of the Ci nodes to be 6 based on our empirical observa-
tions and the criteria mentioned in [SD05].

4. Evaluation

We report recognition rates for our model on sketches from
the analog circuit diagrams domain to illustrate its perfor-
mance in absolute terms. We also measure the incremental
benefits of modeling interspersing by comparing the correct
recognition rates to those obtained using the recognition al-
gorithm reported in [SD07]. That algorithm is an appropriate

§ For 1 ≤ i, j ≤ |C | the conditional probability P(MUXt=
i|MUXt-1= j,ENDt-1= f alse) is 0 for i 6= j, and a non-zero value
for i = j, thus it can be represented using a sparse table.

Participant ID
1 5 6 7

x̄b 89.4 89.8 93.0 84.6
x̄i 92.9 92.2 95.6 87.7
∆err 33.0 23.5 37.1 20.1
max∆ 61.5 33.3 100.0 54.5

Table 1: Mean correct recognition rates for the baseline (x̄b)
and our system that models interspersings (x̄i). The percent-
age reductions in the error rates and maximum error reduc-
tions achieved for each user are also listed as percentages
(∆err and max∆). On average, handling interspersing pat-
terns always improves performance.

baseline because it does not handle interspersing, but oth-
erwise supports temporal sketch recognition, albeit using a
substantially different architecture.

To make the comparison to the baseline meaningful, we
ran our system on the same data set, which contains circuit
diagrams collected from 8 electrical engineers (10 sketches
per participant). Of the eight participants, participants #1,
#5, #6 and #7 produced interspersed sketches. Using exam-
ples from these subjects, we ran a series of hold-one-out ex-
periments. We trained specialized models for each individual
by using sketching examples from that user only.

4.1. Quantitative Results

We trained the baseline model using circuits with no in-
terspersings (because it cannot handle interspersing) and
trained our model using all the data. We tested both mod-
els using all the examples.

Table 1 shows the average correct recognition rates for
each participant obtained using the baseline and our system.
The table also shows the average and maximum reduction
values in the error rates in terms of percentages for each user.
As seen here, on average, handling interspersing always im-
proves performance, and allows 20%-37% of misrecognition
errors to be corrected. A paired t-test for the values in Ta-
ble 1 shows the difference to be statistically significant for
p < 0.05 and 3 degrees of freedom.

4.2. Qualitative examples and discussion

Fig. 4 shows an example illustrating how interspersed draw-
ing causes misrecognitions if not handled properly. This ex-
ample is particularly instructive because it shows that inter-
spersing only a single primitive can lead to a cascade of mis-
recognitions. In this example, the user drew the collector of
the transistor Q2 and the wire connected to it using a single
stroke (stroke #15, which is also an example of multi-object
stroke).

Two interpretations of the circuit are shown in Fig. 5.

20

© Association for Computing Machinery, Inc., 2007.

T. M. Sezgin & R. Davis / Temporal Sketch Recognition in Interspersed Drawings

Figure 4: One of the circuits used in the evaluation. Stroke
ordering for a fragment of the circuit is shown by numbers.

Fig. 5-a shows the interpretation obtained by running the
baseline. In this figure, there are two recognition errors. Q2
is misclassified as a set of wires, and the two wire segments
connected to the base are misclassified as a resistor.

Fig. 5-b shows that both errors are fixed by our model,
which learned that with probability 0.14 wires can be drawn
in the course of drawing a transistor. This not only allows the
transistor to be identified correctly, it also helps the two wire
segments to be classified correctly by using the knowledge
that transistors very rarely proceed resistors, P(MUXt=NPN |
MUXt-1=RESISTOR) ≈ 0. This example shows the benefits
of modeling both object-level patterns and interspersing.

The incremental benefits of using a more elaborate model
may at times appear to be small. Nevertheless, correcting
each misclassification requires effort on the part of the user
and gets in the way of the main task. Hence, we believe the
error reduction rates we have demonstrated are significant in
the context of a sketch-based user interface.

5. Related Work

Researchers have reported the existence of interspersed
drawing phenomena in other domains, and identified the
ability to deal with it as an important challenge [AL07].
However, so far, there has not been much work that specifi-
cally addresses the interspersing issue.

As briefly summarized in the introduction, there are a
number of systems that use temporal stroke orderings to per-
form sketch recognition [SD04,ABS04,SD05,SD07]. None
of these systems support interspersed drawing. Furthermore,
with the exception of [SD07], they do not support stroke
sharing across objects and support discrete features only.

There are also approaches to sketch recognition that
do not use temporal features (e.g., [AD04, MF02, HD04,
KBS04, CS05, GKS04, SVC04]). Some of these algorithms
rely on stroke orderings to aid segmentation or to narrow
down the search space during matching. These systems
either assume no interspersing or suffer high combinato-
rial search penalties to accommodate interspersings. Others

Figure 5: Interpretations of the interspersed circuit shown
in Fig. 4 by the baseline and our system. The baseline en-
counters a cascade of misclassifications due to interspersing
(top) while we correctly identifies the interspersing (bottom).

use image based representations, hence interspersing is not
an issue for these systems. However, to keep their search
tractable, they make some assumptions about the objects in
the domain (e.g., no objects have no more than 8 strokes,
or strokes constituting an object should be located within
a certain distance). These assumptions seem to work for
flowchart-like drawings where the connectors and objects
are sufficiently separated from one another, but the practi-
cality of these algorithms is yet to be demonstrated in gen-
eral for domains where objects vary in size and shape where
assumptions on the object size and scale may not hold.

6. Future Work

We see three immediate lines of further research. First, we
need to study drawing behaviors of real users in real world
conditions in a variety of domains to get a better understand-
ing of why people intersperse strokes and how the domain
affects the interspersing behavior. Our discussion with cir-
cuit design experts have revealed that the main cause of in-
terspersings wires with transistors could be a design conven-
tion called “following the current” which advocates draw-
ing from top (the positive voltage) towards the bottom of
the page (ground). Further research is needed to see how

21

© Association for Computing Machinery, Inc., 2007.

T. M. Sezgin & R. Davis / Temporal Sketch Recognition in Interspersed Drawings

and why people intersperse strokes in other domains. Re-
searchers have already started exploring this avenue [AL07].

It is also important to explore how properties of the user
interface affect the interspersing behavior. For example, our
domain contained fewer interspersings compared to the dig-
ital logic diagrams domain studied by [AL07]. Part of the
difference might be due to reasons intrinsic to the domain,
however properties of the sketching user interface might also
have an effect (e.g. the existence of an undo button). Affects
of the interface design on the degree of temporal regularities
and the interspersing behavior is worth exploring.

Finally, we need find ways of handling interspersed draw-
ing within other recognition frameworks. We have adopted a
computational model of sketching that defines sketching as
a stochastic generative process. This in turn shaped the way
we addressed the interspersing problem. Further research is
needed to find ways of addressing the problem within other
frameworks. It is quite likely that the nature of the solution in
each case will depend on the specifics of the recognition al-
gorithm in use (e.g., template matching, image based recog-
nition). Establishing ways of handling interspersing within
other recognition frameworks would make it possible to rate
the robustness of each system with respect to interspersing
and — with a better understanding of which domains show
more interspersing — would allow us to choose the appro-
priate algorithm for a given domain.

References

[ABS04] ANDERSON D., BAILEY C., SKUBIC M.: Hid-
den markov model symbol recognition for sketch-based
interfaces. AAAI Fall Symposium Series Making Pen-
Based Interaction Intelligent and Natural (2004).

[AD04] ALVARADO C., DAVIS R.: Sketchread: A multi-
domain sketch recognition engine. Proceedings of UIST
(2004).

[AL07] ALVARADO C., LAZZERESCHI M.: Properties of
real world digital logic diagrams. Submitted to 1st Inter-
national Workshop on Pen-based Learning Technologies
(2007).

[BFGK97] BOUTILIER C., FRIEDMAN N., GOLD-
SZMIDT M., KOLLER D.: Context-specific independence
in bayesian networks. Uncertainty in Artificial Intelli-
gence (1997).

[Bil00] BILMES. J. A.: Dynamic bayesian multinets. In
Proc. of the 16th conf. on Uncertainty in Artificial Intelli-
gence. (2000).

[BZ02] BILMES J., ZWEIG G.: The graphical models
toolkit: An open source software system for speech and
time-series processing. IEEE ICASSP. Orlando Florida
(2002).

[CS05] COWANS P. J., SZUMMER M.: A graphical model

for simultaneous partitioning and labeling. AI & Statistics
(January 2005).

[GH96] GEIGER D., HECKERMAN D.: Knowledge rep-
resentation and inference in similarity networks and
bayesian multinets. Artificial Intelligence, 82:4574
(1996).

[GKS04] GENNARI L., KARA L. B., STAHOVICH T. F.:
Combining geometry and domain knowledge to inter-
pret hand-drawn diagrams. AAAI Fall Symposium Se-
ries, Making Pen-Based Interaction Intelligent and Nat-
ural (2004).

[HD04] HAMMOND T., DAVIS R.: Automatically trans-
forming shape descriptions for use in sketch recognition.
AAAI (2004).

[KBS04] KRISHNAPURAM B., BISHOP C., SZUMMER

M.: Generative bayesian models for shape recognition.
IWFHR ’04, Japan (2004).

[MF02] MAHONEY J. V., FROMHERZ M. P. J.: Three
main concerns in sketch recognition and an approach to
addressing them. AAAI Spring Symposium: Sketch Un-
derstanding (2002).

[Mur02] MURPHY K.: Dynamic bayesian networks.
Chapter in Probabilistic Graphical Models by Michael
Jordan (2002).

[SD04] SIMHON S., DUDEK G.: Sketch interpretation and
refinement using statistical models. Proceedings of the
15th Eurographics Symposium on Rendering (EGSR 04)
(2004).

[SD05] SEZGIN T. M., DAVIS R.: HMM-based efficient
sketch recognition. Proceedings of the 10th international
conference on Intelligent User Interfaces, San Diego, Cal-
ifornia, USA (2005), 281 – 283.

[SD07] SEZGIN T. M., DAVIS R.: Sketch interpretation
using multiscale models of temporal patterns. IEEE Com-
puter Graphics and Applications (2007), vol. 27, no. 1,
pp. 28–37, Jan/Feb,.

[SSD01] SEZGIN T. M., STAHOVICH T., DAVIS R.:
Sketch based interfaces: Early processing for sketch un-
derstanding. Proceedings of PUI (2001).

[SVC04] SHILMAN M., VIOLA P., CHELLAPILLA K.:
Recognition and grouping of handwritten text in diagrams
and equations. Frontiers in Handwriting Recognition,
2004. IWFHR-9 (2004).

[Tve99] TVERSKY B. G.: What does drawing reveal about
thinking? Invited talk at First International Workshop on
Visual and Spatial Reasoning in Design, Cambridge, MA.
(1999).

[vS84] VAN SOMMERS P.: Drawing and cognition. de-
scriptive and experimental studies of graphic production
processes. Cambridge University Press (1984).

22

© Association for Computing Machinery, Inc., 2007.

