
EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2006)
Thomas Stahovich and Mario Costa Sousa (Editors)

Automatic interpretation of proofreading sketches

J.A. Rodríguez, G. Sánchez and J. Lladós

Computer Vision Center (Computer Science Department, Universitat Autonoma de Barcelona, Spain)

Abstract

We present a sketch-based system for proofreading documents. The gestures and words drawn by the proofreader

on a document view are translated into high-level actions that represent editions such as replace, insert, delete

and others. Our particular system is not restricted to a predefined alphabet of gestures. Instead, any symbol can

be employed for striking out words or drawing inserts. This provides more flexibility and adaptability to the user.

In contrast to other similar works, our interface integrates interpretation and recognition of handwritten words.

The described system has been implemented for proofreading digital documents on screen but also for paper

documents printed on Anoto paper and annotated using a digital pen.

Categories and subject descriptors: I.7.5 [Document capture]: Graphics recognition and interpretation,

Document analysis.

1. Introduction

Despite the exponential increase of use of computers in
many aspects of the daily life, there are still many usual sit-
uations in which the computer appears as a non-ergonomic
and technically complex device. We still roll back to pen and
paper in situations like fast sketching of an idea, taking notes
or annotating documents.

Some digital devices exist that provide a natural pen in-
terface not achievable by keyboard and other usual input pe-
ripherals. These devices such as palmtop and tablet comput-
ers, pen mice or digital pen and paper, allow systems accept-
ing gestures [Rub91] and handwriting [PS00] as input. These
devices open new possibilities such as document edition or
proofreading based on sketches.

There are previous works that address this problem us-
ing various approaches. The automatic correction of printed
documents was already addressed in [MB97] but from the
image-based point of view. The advantage of this system is
that the correction can be done with pen on paper, the most
natural interface, but lacks of the on-line counterpart. The
same authors have proposed an on-line version [BGM97]
but it is based on menus and not on sketches. In [HKB93]
a sketch-based system for on-line text editing is presented
but it only supports delete, insert and move operations. Each
of the actions is denoted by a specific gesture. This system

only allows basic edition with restricted gestures. Another
sketch-based proofreading system with a set of 11 gestures is
reported in [AR99]. Even if the set of gestures is wider, there
are a few items that break the naturality provided by hand
movement: words must be inserted by typing and the user
must click after finishing each gesture. Finally, a number of
other pen-based system exist for annotating documents with-
out or with little recognition capability, like [BM03, SW04],
and even systems [Gui03] using emerging devices such as
Anoto [Ano03] paper and digital pen .

In this paper we present a sketch-based system for proof-
reading documents. Our system interprets the sketched
marks and words and translates them into high-level edition
actions, such as replace, insert, delete, swap words, etc. It is
possible, at the end of the process, to generate a new ver-
sion of the document that is updated with the editions of the
proofreader. Our system presents some advantages with re-
spect to the discussed previous works. First, it is able to rec-
ognize handwritten input, determining the word label and as-
sociating it to the correct annotation. Second, our system has
been implemented for tablet computers but also for proof-
reading documents printed on Anoto paper. The couple of
Anoto paper and digital pen results in an emerging device
that closes the loop between paper and digital documents.
Finally, we let the user the possibility of striking out a word
with any symbol rather than with a specific one. This makes

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org


J.A. Rodríguez & G. Sánchez & J. Lladós / Automatic interpretation of proofreading sketches

the problem more complex but provides an open, usable and
intuitive interface.

The rest of the paper is structured as follows. In Section 2
the sketch alphabet of our system is presented, which allows
to formulate the problem formally in Section 3. Then, in Sec-
tion 4 the designed system is described in detail. In Section 5
we discuss the results of some tests of performance. Finally,
in Section 6 the conclusions are commented.

Figure 1: Document excerpt annotated by a proofreader us-

ing a sketching interface

2. Sketch alphabet

Our automatic proofreading interpreter accepts sketches
drawn using the typographic conventions used by proof-
reading professionals. In Figure 1 a sample text fragment
is shown. The proofreading sketches on this text follow the
rules summarized in Figure 2. These rules provide gestures
for the following actions: replace a text by another text,
delete text, insert text, swap words, swap non-contiguous
words, indent a line, merge two words and split a word in
two.

Figure 2: Proofreading notation used by the presented sys-

tem.

On the one hand, there is a set of actions (SWAP, BRO-
KEN SWAP, INDENT, MERGE and SEPARATE) that we
will call direct actions since they are directly encoded by a
specific gesture. On the other hand, the actions REPLACE,
DELETE and INSERT need annotations at the margin. For
instance, to replace some word by another, the proofreader
must strike out the word with a symbol. Then this symbol is
repeated at the page margin (normally in reduced size) and
finally the correct word is handwritten next to the repeated
symbol. For deleting, the process is the same except that no
text is written at the margin. Inserting works analogue to re-
place, with the obvious difference that instead of striking out
a word, a symbol is placed at the position where the new text
should be appended.

One novelty with respect to existing systems is the pos-
sibility of specifying these strike outs or insert symbols for
REPLACE, DELETE and INSERT using any symbol. We
take advantage from the fact that they appear in pairs to al-
low a more open and intuitive interface. The advantages of
using an unrestricted alphabet of gestures for these cases are:

• The necessary previous knowledge of the particular sys-
tem is reduced.

• The proofreader is more flexible to use preferred or im-
provised symbols.

• Different symbols can be used if the same edition action
has to be repeated in a different part of the text, so that
there is no possibility for confusion (in fact, this is a "best
practice" in some proofreading conventions).

3. Formulation of the problem

From a formal viewpoint, proofreading consists of encoding
a set of actions that affect the document contents into a set
of sketches that can be either gestures or text. Let us denote
the set of actions

A = {Ak} (1)

with k = 1 . . .NA where NA is the number of actions. Each
action Ak is an action from the following alphabet

Ak ∈ {REPLACE, DELETE, INSERT, SWAP
BROKEN SWAP, INDENT, MERGE,
SEPARATE}

(2)

The sketches on the document are represented by a set of
strokes

S = {Si}, i = 1 . . .NS (3)

with NS the number of strokes in S. Each stroke can be de-
scribed by the set of points sampled by the sketching device
between each pen down and pen up events:

Si = {~p j},~p j = (x j,y j), j = 1 . . .NSi
(4)

or, alternatively, by the segments that link these points:

Si = {s j},s j = seg(~p j−1,~p j), j = 2, . . .NSi
(5)

c© The Eurographics Association 2006.



J.A. Rodríguez & G. Sánchez & J. Lladós / Automatic interpretation of proofreading sketches

Figure 3: System overview

where NSi
is the number of points sampled in stroke Si and

seg(~p,~q) designs the segment that starts at point ~p and ends
at point~q. The automatic proofreading interpretation process
can be formalized as finding the decoding f that converts S

to A

A = f (S) (6)

As the document sketches are processed as a whole and not
one by one, this decoding implies a coupling of the following
problems:

• Symbol recognition
• Handwriting recognition
• Layout analysis

Of special interest is the problem of symbol recognition. As
discussed in section 2, one can find two categories of sym-
bols. On the one hand, there are the symbols that appear in
pairs and that belong to an unrestricted alphabet that will
be called Wu. On the other hand, there will be the symbols
whose shape provides a direct meaning. These symbols are
from a restricted symbol alphabet denoted Wr from now on.

Additionally, in the set of direct symbols there are sym-
bols that have a fixed shape (SEPARATE, MERGE) and
some others whose shape will vary depending on the words
on which they act.

The specific details about the whole automatic proofread-
ing system can be read in the following sections.

4. System architecture

Figure 3 shows an overview of the system. A user annotates
either a printed document with digital pen or a PDF doc-
ument on-screen, obeying the syntax explained in Section
2. A proofreading engine interprets the annotations and ex-
tracts all the contents affected by the corrections and the ac-
tions to apply to these contents. From this output it is possi-
ble to refactor the annotated document, obtaining an updated
version where the output edition actions have been applied.

The system can be logically divided into input, processing
and output blocks. The processing block can be further sub-
divided into a layout segmentation module, a symbol recog-
nition module and a handwriting recognition module.

The system must be robust to multiple annotations in the
same paragraph end even in the same line, and to multiple
line text annotations; and must support the different symbols
from Wu that the proofreader might write but at the same
time it must permit sketching the actions with the same sym-
bol class if they are clearly separated.

The implementation of the system has been developed
with the Java programming language, supported by a Java
platform for handling digital ink that has been programmed
by the authors.

4.1. Input

The input of the system is the set of all strokes drawn by a
corrector with a sketching device. As stated previously, we
implemented the possibility of annotating using a digital pen
on PDF documents printed on paper enabling Anoto func-
tionality. And we also designed an on-screen editor which
accepts mouse strokes. This possibility becomes useful for
tablet computers or when using a pen mouse. In any case,
the stroke format is unified and the coordinates refer to the
document sheet. This is a device independent approach that
allows future extension of the input possibilities.

4.2. Layout segmentation

The layout segmentation module is devoted to the analysis
of the spatial information. Instead of trying to directly rec-
ognize symbols or groups of symbols and assigning them
to one of the categories in Figure 2, one must take into ac-
count that the particular problem we are trying to solve is ex-
tremely context-dependent. So it is more interesting to first
try to extract the highest possible amount of context informa-
tion. Then, the recognition step will be conducted more ef-
fectively according to this context information (this can help
e.g. in selecting the appropriate recognition method, discard-
ing some classes, etc.)

As the context is encoded in the spatial information this
step can be called layout segmentation. In this step, the
strokes are grouped into symbols, they are then categorized
into text and margin symbols and finally blocks of symbols
that will be processed as a whole in subsequent modules are
found.

The first step is to group the strokes into symbols using
a connected component labelling. Two strokes S and S′ are
considered to be connected if

∃i, j such that
√

(xi − x′j)
2 +(yi − y′j)

2 < dTC (7)

where dTC is a threshold distance that is empirically deter-
mined. For a more realistic connectivity determination, addi-

c© The Eurographics Association 2006.



J.A. Rodríguez & G. Sánchez & J. Lladós / Automatic interpretation of proofreading sketches

tional points were linearly interpolated for each stroke when
evaluating the expression in Equation 7.

Once a symbol S has been obtained from a set of con-
nected strokes, it is categorized into the group of symbols on
the text and the group of symbols on the margin (shortly, text
symbols and margin symbols) with the following criterion:

S ∈

{

TEXT xmin < XMARGIN

MARGIN otherwise
,xmin = min

(xi,yi)∈S
xi

(8)
where XMARGIN is the x-coordinate on the document where
the margin starts at.

The final step in the layout segmentation is to divide the
paper vertically into blocks that contain annotations that
are close to each other. We experienced that a high fre-
quency of annotations in the same paper zone tends to pro-
duce blocks of margin symbols (shortly, margin blocks). If
(xBB,yBB),(x′BB,y′BB) are the points defining the bounding
box of a block, then the text zone with a vertical coordinate
y such that yBB < y < y′BB is called the influence zone of this
block. In Figure 4 we present an example of a situation with
two annotation blocks and their influence zones.

This figure illustrates how finding margin blocks and their
influence zones simplifies the processing. On the one hand,
if a text symbol S is not on any influence zone, we will con-
sider that S ∈Wp. On the other hand, the the symbols Sa in a
block such that Sa ∈Wu must have a matching text symbol,
which is expected to be in the influence zone.

The procedure to build blocks is also a connectivity la-
belling. Two symbols are considered to be connected if the
vertical distance between their bounding box center is be-
low a threshold dT B. The influence zone of each symbol is
determined as already explained.

Processing the annotation blocks separately rather than
the whole document is advantageous since it reduces the
number of matches to evaluate in further steps and thus the
probability of confusion.

4.3. Symbol recognition

A number of elaborate techniques exist for recognizing sym-
bols using different strategies [LVSM02]. However, with the
layout already segmented, the sketches on the document can
be decoded into actions taking much advantage of the avail-
able context, relying less on the symbol recognition itself.
The strategy to follow is: first, from each influence zone the
text symbols that match with the margin symbols are found.
Then, the remaining symbols and the symbols that are not
inside any influence zone are recognized using a particular
symbol classifier.

Search for matching symbols

First, we subdivide each of the margin blocks into lines, us-
ing again a labelling of connected components. For this pur-

pose we consider that two symbols belong to the same line if
their bounding box center is separated by a distance shorter
than a threshold dT L, where, obviously dT S < dT L < dT B.
This labelling results in a set of lines L = L1 . . .LNL

where
each line Li contains a set of symbols Li = {S j}. From each
line Li, the symbol with smallest horizontal projection is ex-
tracted:

S
le f t
i = argmin

∀ j
xBB(S j) (9)

where xBB(S) stands for the x-coordinate of the S-bounding

box. Notice from Figure X. that each S
le f t
i can be either a

symbol S le f t
i ∈Wu or S le f t

i ∈ H

Denote Sk the set of symbols on the influence zone of a
block and d(S,S′) some distance measure between symbols
S and S′. Then a matrix D is built where each element is
computed as

Dki = d(Sk,S
le f t
i ) (10)

We search for the lowest distance value Dk′i′ in matrix D.
The indices (k′, i′) are stored in a list and columns i and j are
removed from matrix D. The process of finding the lowest
distance is repeated until all remaining distance values in the
matrix are below a threshold dM , or until there are no more
columns or rows in the matrix. At this moment we have a list
of index pairs (k′, i′) that indicate a REPLACE, DELETE or

INSERT action coded by Sk on the text and its pair S le f t
i at

the page margin.

The rest of the symbols in line Li are considered to be
words (or pieces of words). If in the consecutive following
line Li+1 it happens that S le f t

i+1 had no match with any Sk then
it is considered to be the continuation of text from the pre-
vious line, and so with every consecutive line. If the number
of word symbols is greater than 0, we have decoded a RE-
PLACE or an INSERT action. Both actions are distinguished
from whether the involved symbol Sk intersects some printed
words or not. In case that the number of words at the margin
is 0, then we encounter a DELETE action. For each action,
the complete set of words will be send to the handwriting
recognition module preserving their spatial relations.

If a block only contains one line and its influence zone
only contains one text symbol (lowest annotation in Fig-
ure 4), the correspondence is directly done and the matching
process with matrix D is omitted.

Matching with Hausdorff distance

The symbol matching is performed using the line segment
Hausdorff Distance [GL02]. This is a generalization of the
Hausdorff distance between two point sets for computing
distances between segment sets.

Let us define a distance between two segments s and s′,
which takes into account the angle between the segments,

c© The Eurographics Association 2006.



J.A. Rodríguez & G. Sánchez & J. Lladós / Automatic interpretation of proofreading sketches

Figure 4: Concept of annotation blocks. The symbols in the margin are clustered into blocks of similar position. The zone in

the text overlapping each block represents the influence zone. The influence zone defines the region where the potential matches

of the annotation symbols are.

and the distance in horizontal and vertical projections:

d(s,s′) =
√

W 2dθ(s,s′)2 +d2
‖
(s,s′)+d2

⊥(s,s′) (11)

where W is a parameter that is empirically determined,
dθ(s,s

′) is the tangent of the rotation angle for aligning the
shortest segment with the longest one, and d‖ and d⊥ are the
respective distances in parallel and normal direction with the
shortest segment already aligned.

With this definition, the line segment Hausdorff distance
between two sets of segments S and T is defined as

H(S,T ) = max(h(S,T ),h(T,S)) (12)

where

h(S,T ) =
1

∑si∈Slsi

∑
si∈S

lsi min
t j∈T

d(si, t j) (13)

with lsi the length of segment si. Equation 13 is called di-
rected distance and it is an improvement of the expression
used in the classical Hausdorff distance.

A symbol is a set of strokes that can be represented as
segments (Equation 5). If two symbols S and T are aligned,
then H(S,T ) can be interpreted as a dissimilarity measure.
For computing the dissimilarity or, simply, distance between
two symbols, first their coordinates will be scaled and shifted
to a predefined bounding box and then equation 12 will be
applied.

Predefined symbol recognition

Text symbols without matching margin annotations and text
symbols outside influence zones of blocks are classified into
the set Wp of predefined symbols using a two-stage symbol
classifier.

First, note that the some segments of the SWAP and BRO-
KEN SWAP symbols have different lengths as a function
of the words they involve. Moreover, it is allowed that both
symbols appear reflected. The selected strategy is first to try
to classify a symbol using the directional information of the
sketches to match predefined templates; and for imperfect or
unrecognized symbols apply a secondary classifier based on
the symbol shape.

In the first stage the strokes of the symbol to recognize
are approximated to straight segments using the method de-
scribed in [HN04]. The angles of the resulting segments are
quantized in one of eight possible directions (N, NE, E, SE,
S, SW, W, NW) and a chain is build from these direction
codes. The direction codes are matched against predefined
templates with a certain tolerance.

For the imperfect strokes that do not match the prede-
fined templates, a Zernike moment descriptor classification
using support vector machines is performed using library
hhreco [HN04]. A previous training process is necessary for
this classifier. One of the advantages of Zernike moments is
that they are invariant to rotations and it is possible to detect
the rotated versions of the SWAP symbols and even rotations
of other symbols due to imperfect sketching.

The final Zernike moment classifier is also able to reject
doubtful samples so that no proofreading decision is taken at
all for very suspect symbols.

4.4. Handwritten word recognition

A handwriting recognition module is necessary to translate
the words written by the proofreader at the margin. Several
methods [PS00] as well as commercial engines are avail-
able. For this particular application a commercial module
that supports on-line cursive handwriting has been used.

c© The Eurographics Association 2006.



J.A. Rodríguez & G. Sánchez & J. Lladós / Automatic interpretation of proofreading sketches

4.5. System output

A list of proofreading actions is generated as a result of the
interpretation method. The actions include on which text to
apply and, when necessary, which new text is attached. From
this action list we can generate a new version of the docu-
ment which includes all modifications that come from the
proofreading interpretation. In the next section, some exam-
ples will be shown.

5. Experiments

The experiment sections shows both evaluation experiments
used to design the system and evaluation of the system per-
formance.

5.1. Evaluation of matching measures

In 4.3 the line Hausdorff distance was introduced. Our sys-
tem uses this dissimilarity measure for the matching mecha-
nism. The decision for the Hausdorff distance is taken after
the study that we present now.

On a dataset of 700 samples from a single writer we have
computed a modified Dunn’s index [BP98] for different dis-
tances. The modified Dunn index gives an idea of the separa-
bility of classes given a distance measure between elements:

ν = min
1≤s≤c

{

min
1≤t≤<c

{

δ(Xs,Xt)

max1≤k≤c ∆(Xk)

}}

(14)

where δ(Xs,Xt) represents some distance between classes Xs

and Xt and ∆(Xk) is a definition of the diameter of class Xk.
We have taken

δ(S,T ) =
1

NSNT
∑

x∈S,y∈T

d(x,y) (15)

and

∆(S) =
1

NS(NS −1) ∑
x,y∈S,x 6=y

d(x,y) (16)

where NS is the number of elements in class S and d is the
evaluated distance measure. Higher values of the modified
Dunn index indicate more class separability for distance d.

In table 5.1 we present the Dunn index computed for dif-
ferent distance measures. As you can appreciate there, the
measure with highest performance among the tested ones is
the line segment Hausdorff distance.

The Line Segment Hausdorff distance appears as a very
useful distance method between symbols, especially suited
for on-line recognition as the extraction of the segments
from the strokes is natural.

5.2. Performance of the automatic system

This section describes the experiments carried out to mea-
sure the performance of the automatic proofreading inter-

Distance ν

Line segment Hausdorff distance (W=0.25) 1.73
ED between Geometric moments (L=1) 1.10

ED between Line moments [LN96] (L=1) 1.01
ED between Zernike moments (L=13) 0.87

ED between Line Legendre moments [LN96] (L=1) 0.74
ED between Legendre moments (L=1) 0.66

Table 1: Modified Dunn indices computed for different dis-

tance measurements. ED stands for Euclidean distance. W

is the parameter of the Hausdorff distance and L is the mo-

ment order. Only the best result for each distance among all

the parameter variations is shown.

Position Action Replaced text New Text
0 REPLACE Fisics Physics
50 REPLACE who that
188 REPLACE this (188) these
203 MERGE
316 DELETE #
386 REPLACE simmetry symmetry
492 DELETE The
546 REPLACE phenomenons phenomena
581 SWAP
679 REPLACE fisics physics
711 SEPARATE
721 INSERT with
877 INSERT the

Table 2: List of actions obtained from the automatic proof-

reading interpreter for the previous sample. Position is an

index for locating the word characters inside the document

contents.

preter. In these experiments, users were given a text docu-
ment with some errors and were told to proofread it obey-
ing the explained notation. The sketches of the users were
done with digital pen. For this purpose, the PDF document to
annotate was printed on digital paper enabling Anoto func-
tionality. One of the samples is presented in figure 5. This
benchmark resulted in a set of 33 documents filled out by 9
different proofreaders.

The most important point in our system is the association
of annotations in the margin with their corresponding text
symbol. It is clear that it is not the main target of this work
to develop a symbol or a text recognizer. Therefore, we con-
centrate on measuring the degree of correctness with which
the similar symbol pairs are matched and the annotation text
correctly associated, and also the cases where this is not ac-
complished and for which reasons. Therefore, in each of the
33 outputs, we examine all annotations that have margin con-
tents (REPLACE, DELETE and INSERT) and classify them
in one of the following cases:

• Correct association: The text symbol has been associated

c© The Eurographics Association 2006.



J.A. Rodríguez & G. Sánchez & J. Lladós / Automatic interpretation of proofreading sketches

Figure 5: Document annotated by a proofreader. The PDF document was printed on digital paper and the proofreading marks

were sketched with digital pen.

Correct associations 90.1 %
Incorrect associations 4.5 %
Missing associations 5.4 %
Number of documents with 100% correct actions 22

Table 3: Results of the evaluation of correct association of

annotations with text at the margin.

with the corresponding margin symbol and the annotation
text has been associated correctly.

• Incorrect association: The text symbol has been associ-
ated with a non-corresponding margin symbol, or the text
has not been correctly association.

• Missing action: The text symbol is not associated with any
symbol and has been processed as a symbol from Wp.

Results are summarized in table 3.

It can be observed that 90.1% of these annotations are cor-
rectly associated. Recall that for correctly associating an-
notations first a correct layout segmentation is necessary

and then symbol pairs extraction from the set of all-with-all
possible pairs, where additionally the symbol form is unre-
stricted, so that 90.1% is a good result for this first prototype.
It should be noted that this 90.1% correctness is not a regu-
lar observation in most documents. On the contrary, it is due
to few samples with unacceptable result. Observe in Table
3 that 22 out of the 33 documents had 100% correct asso-
ciations (these are document containing an average of 6.5
annotations with margin, the smallest with 4 and the highest
with 11 annotations with margin).

Regarding the reos of actions (direct actions), 83% of the
symbols were correctly recognized, with 8.4% errors and
4.6% rejections. This not so high recognition rate may be
due to the fact that the SVM classifier was trained with sam-
ples from a single writer. A recent experiment with the sym-
bols extracted from the 33 documents, using the half for
training and the half for test, increased the recognition rate
to 95.0% with 5% error rate and 0% rejection rate.

From the analysis of the incorrect samples we observe that
in most cases it happened that imperfect sketching increased

c© The Eurographics Association 2006.



J.A. Rodríguez & G. Sánchez & J. Lladós / Automatic interpretation of proofreading sketches

the Hausdorff distance between symbols and prevented them
from being matched correctly. At this point we believe that
it would be of great help to have a method for discrimina-
tion between symbols and words. The additional informa-
tion provided by this system for each symbol could help in
the match search process and would increase the 90.1% ac-
curacy.

6. Conclusions

We have presented a system that automatically interprets
digital ink annotations that proofreaders sketch on docu-
ments. The system successfully recognizes the set of pro-
posed gestures and recognizes the associated handwritten
notes, something that is not usual in similar works. More-
over, a part of the actions can be specified using gestures
from an unrestricted alphabet. With this, we have general-
ized the problem and have performed a step towards the ideal
system that interprets any document annotation.

The Line Segment Hausdorff distance appears as a very
useful dissimilarity measure between aligned sketched sym-
bols. This distance behaves robustly to imperfect writing of
the symbols.

For improving the performance of the automatic inter-
preter a text/symbol discriminator could be implemented for
being applied to each of the symbols at the margin. This
would provide supporting information just in the layer be-
tween layout segmentation and symbol recognition.

Under the performance conditions of such a system, a val-
idation screen would be helpful for the proofreader to accept
the interpreted actions. If the proofreader is also enabled to
perform changes in the validation screen, this information
could serve as new ground truth for retraining the processes
involved in the refactoring.

Acknowledgements

This work has been partially supported by the Spanish
project CICYT TIC2003-09291.

References

[Ano03] ANOTO: Development guide for services enabled
by Anoto functionality, 2003.

[AR99] ANDRÉ J., RICHY H.: Paper-less editing and
proofreading of electronic documents. In EuroTeX ’99

Proceedings (1999).

[BGM97] BUNKE H., GONIN R., MOERI D.: A tool for
versatile and user-friendly document correction. In Pro-

ceedings of the 4th International Conference on Docu-

ment Analysis and Recognition (1997), IEEE Computer
Society, pp. 433–438.

[BM03] BARGERON D., MOSCOVICH T.: Reflowing dig-
ital ink annotations. In CHI ’03: Proceedings of the

SIGCHI conference on Human factors in computing sys-

tems (2003), ACM Press, pp. 385–393.

[BP98] BEZDEK J. C., PAL N. R.: Some new indexes of
cluster validity. IEEE Transactions on Systems, Man and

Cybernetics 28, 3 (June 1998), 301–315.

[GL02] GAO Y., LEUNG M. K. H.: Line segment Haus-
dorff distance on face matching. Pattern Recognition 35,
2 (2002), 361–371.

[Gui03] GUIMBRETIÈRE F.: Paper augmented digital doc-
uments. In UIST ’03: Proceedings of the 16th annual

ACM symposium on User interface software and technol-

ogy (2003), ACM Press, pp. 51–60.

[HKB93] HARDOCK G., KURTENBACH G., BUXTON

W.: A marking based interface for collaborative writing.
In UIST ’93: Proceedings of the 6th annual ACM sympo-

sium on User interface software and technology (1993),
ACM Press, pp. 259–266.

[HN04] HSE H., NEWTON A. R.: Sketched symbol
recognition using Zernike moments. Proceedings of

the 17th international conference on pattern recognition

(ICPR’04) 01 (2004), 367–370.

[LN96] LAMBERT G., NOLL J.: Discrimination proper-
ties of invariants using the line moments of vectorized
contours. In Proceedings of ICPR’96 (1996), pp. 735–
739.

[LVSM02] LLADÓS J., VALVENY E., SÁNCHEZ G.,
MARTÍ E.: Symbol recognition: Current advances and
perspectives. In GREC ’01: Selected Papers from the

Fourth International Workshop on Graphics Recognition

Algorithms and Applications (2002), Springer-Verlag,
pp. 104–127.

[MB97] MÖRI D., BUNKE H.: Automatic interpretation

and execution of manual corrections on text documents.
Handbook of Character Recognition and Document Im-
age Analysis. World Scientific, 1997, pp. 679–702.

[PS00] PLAMONDON R., SRIHARI S. N.: On-line and
off-line handwriting recognition: a comprehensive survey.
IEEE Transactions on Pattern Analysis and Machine In-

telligence 22 (2000), 63–82.

[Rub91] RUBINE D.: Specifying gestures by example.
In SIGGRAPH ’91: Proceedings of the 18th annual con-

ference on Computer graphics and interactive techniques

(1991), ACM Press, pp. 329–337.

[SW04] SHILMAN M., WEI Z.: Recognizing freeform
digital ink annotations. In Document Analysis Systems

(2004), pp. 322–331.

c© The Eurographics Association 2006.


