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Abstract
In this paper we address both automatic recognition of sketched symbols and the construction of the correspond-
ing models from user drawn examples. Our approach is based on a two stage process. In a first phase we use an
Adjacency Grammar to express topological properties of the symbol. In order to be able to further disambiguate
topologically similar configurations on the rules of the grammar that are triggered by the recognition process
produce a set of local geometric invariants is defined. The combination of both steps results in an efficient recog-
nition method for user drawn sketches. Furthermore, we show that the same approach can easily be adapted for
the generation of Adjacency Grammars from user provided and hand drawn examples.

Categories and Subject Descriptors(according to ACM CCS): I.5.1 [Computer Graphics]: Structural Model Gener-
ation based on sample users I.5.5 [Interactive systems]: Pen-Based Interfaces.

1. Introduction

Shape description is one of the important steps in sym-
bol recognition. Depending on the primitives used to repre-
sent the shape, we may distinguish between two major cat-
egories on shape recognition, Contour-Based and Region-
Based. The former bases the description on the contour or
the edges of the image, while the latter is based on the whole
image or on closed regions of the image. Inside these two
categories we may distinguish between two methodologies:
Structural and Global descriptors. Global descriptors calcu-
late global features on the images. Inside this category we
may find basic descriptors as: Area, Perimeter, Compact-
ness, etc. and some other descriptors are based on moments
and signal processing approaches like Zernike, Legendre,
Fourier,etc.or based on grids as in Zoning.

On the contrary, Structural methods use features based
on attributed primitives and the relations among them. As
Structural methods we may find several different approaches
as string-based methods, chain codes, polygonal approxima-
tion. Within this methodology we may further distinguish
(among others) Syntactic methods. These methods are based
on the representation of shapes applying techniques of for-
mal language definition. In this paper, we focus more pre-

cisely on this last category of shape description. A review on
shape description techniques is presented in [ZL04].

Although this techniques are widely used and deeply stud-
ied, one of the main problems and recurring difficulties of
shape description is to cope with ambiguity. There always
exist situations in which symbols cannot be disambiguated
without addition of extra knowledge. This is most often due
to the fact that all approaches need to be robust to noise and
distortions on one hand, and need to be sufficiently discrim-
inant on the other.

Some works presented in the literature try to describe
sketches using an structural approach. Veselova in [VD04],
captures the relevant characteristics describing a shape and
formulate three heuristics to apply to this characteristics
based on human perception. Using them they extract the con-
straints to create the final shape description based on a global
threshold. Mankoff in [MHA00] presents a shape descriptor
based on sketched GUI. It solve the problem of ambiguity
by asking the user to chose among a set of possible models.

The work presented in this paper is based on a structural
contour based descriptor, and more precisely on a syntac-
tic approach defined by an Adjacency Grammar. An Adja-
cency grammar describes a symbol as a set of primitives and
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the relations among them. The description of each model is
obtained by a learning process based on a set sketched in-
stances. This allows us to infer the constraints forming the
shape based on an adaptative learning instead of based on a
global threshold as Veselova in [VD04].

The method therefore is able to cope with high distortion
representations of the reality. Working with sketches intro-
duces distortions on the relations among the primitives and
also generates the difficulty of having to handle different
chronological drawing of the strokes composing a symbol.
Further more, as we shall further show in this paper, there are
some intrinsic ambiguity problems related to the description
method itself.

The purpose of the work is to improve the method pre-
sented in [MLSL06] with the capability to disambiguate be-
tween shapes. This method solve the ambiguity problem
computing some invariants related to the constraints defin-
ing the shape, instead of asking the user as in the method pre-
sented by Mankoff in [MHA00]. On this paper we define two
ambiguous shapes as topological identical. We consider two
shapes being topological identical if they can be expressed
with the same constraint set. Trying to disambiguate among
shapes we we create a specific vector of invariants associ-
ated to any relation. This description contrary to the work
presented by Veselova in [VD04], is rotated and scaled in-
variant.

The paper is organized as follows: In the next section we
present the sketch based interface that has been used as envi-
ronment for our experiments. Section3 refers to the basis of
the methodology used to learn the description of a symbol.
Section4 presents the method used to cope with the ambigu-
ities, section5 presents the experimental results and finally
conclusions are presented on section6.

2. Framework

The experiments described in this paper are developed under
a sketch based environment. The application is named PVPC
(Virtual Prototyping of Projects under Construction) and it is
a sketch environment to design architectural floor plans. The
user interacts with the system by means of drawings on a
Wacom Tablet or a Tablet PC or using a digital pen & paper
protocol (e.g.as the Digital IO Pen from Logitech [Log04]).

The application tries to recognize the different structural,
furniture and services symbols that appears on it. More de-
tails on the application itself can be found in [SVL∗04].
The method described in this paper is based on grammati-
cal rules, expressed with respect to image primitives. How-
ever, before being able to manipulate the primitives that form
a drawing, we need to extract them from the strokes of the
user. Furthermore, when drawing, one single stroke may rep-
resent more than one primitive. We therefore pre-process
the strokes with polygonal approximation as the presented
in [TASD∗00]. This approximation divides them by using

the high curvature points and also checks if the primitive is
an arc or a segment. In this paper we restrict ourselves to
segments although the method may be readily extended to
arcs as well.

The method presented in this paper may be easily inte-
grated in applications allowing users to define their own set
of symbols to recognize. This may be a valuable add-on for
applications in the architectural world, since there exists no
standard in this area. The environment is also suitable for
other kinds of applications like design of electrical circuits,
physical blueprints,etc.

3. Adjacency Grammars

Adjacency grammars allow to describe 2D-shapes on a lin-
ear way, describing it in terms of a set of primitives and
the relations among these primitives. Adjacency grammars
were first introduced in [JG95]. The reader can also re-
fer to [MSL05] for further details on the use of Adjacency
Grammars for sketched symbol recognition.

3.1. Symbol Description Model

Figure 1: From left to right: incidence, adjacency, intersec-
tion

The main idea is to segment the sketch into primitives (e.g.
line segments and curved arcs). For each pair of primitives
(A,B), a number of constraints (as depicted in Figure1) are
evaluated using a normalized associated uncertainty degree
δ = [0. . .1] which measures the degree of distortion with re-
gard to an ideal shape. Values close to 0 indicate that the
constraint is satisfied, while values close to 1 mean that the
constraint makes no sense. We currently associate the fol-
lowing constraints and functions:

• Parallel(A,B)→ 2
π

∣∣∣Â,B
∣∣∣
[0... π

2 ]
• Perpendicular(A,B)→ 1− 2

π

∣∣∣Â,B
∣∣∣
[0... π

2 ]
• Incident(A,B) → min. distance between segments and

endpoints
• Ad jacent(A,B)→ min. distance between endpoints
• Intersects(A,B)→ min. distance between midpoints

This may then be used to describe symbols within the Ad-
jacency Grammar. For instance, a rectangular triangle, made
out of three line segmentsA,B andC, is described as follows:

Triangle(A,B,C)





Ad jacent(A,B)
Ad jacent(B,C)
Ad jacent(A,C)
Perpendicular(A,C)
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3.2. Automatical Model Generation

This approach is not only well suited for description and
recognition, it can also be easily adapted to automatically in-
fer and construct the models from sample sketches provided
by the user.

Simply taking into account the constraints with the lowest
associated cost may be sufficient to describe a symbol from
a given sketch. However, notice that we work with sketched
instances of symbols, which are rough expressions of the re-
ality, containing a high degree of distortion with respect to
an ideal model. Therefore, we need more than one single in-
stance to correctly and automatically infer the ruleset of our
adjacency grammar that describes the symbol. Not doing so
would invariably lead to over- or underconstrained rulesets.

To correctly infer a sketched symbol we need several in-
stances to cope with the possible distortions that may appear.
To reach this description we build on the method presented
in [MLSL06]. This method is divided into three steps:

• Ruleset Generation
• Ruleset Normalization and Primitives Alignment
• Factorization

The first step tries to keep those constraints which are
sufficiently realistic sorting them by value. Fitting a normal
distribution over the data allows to easily find the most ap-
propriate and statistically salient features that compose the
model.

The second step considers that drawing two instances of
the same symbol not necessarily results in an identical num-
bering of primitives and that the resulting ruleset may con-
tain different, but geometrically equivalent rules. This re-
quires an explicit primitive alignment such that we obtain a
correspondence among the primitives of different instances.

The last step is dedicated to levelling out differences be-
tween generated rulesets from different examples, occurring
from drawing deformations. It constructs the final constraint
set based on a majority voting scheme between all the in-
stances of a model.

Table 1 represents the constraint set that was automati-
cally inferred from the instance presented on Figure2. Note
that perpendicularity was deduced for primitives 4 and 5 (the
crossing diagonals) for this particular instance, although the
lines themselves aren’t really perpendicular. Further samples
may contribute to enforcing or rejecting this rule.

This method works well for several kinds of symbols. But,
as we shall show in the next section, there exist some config-
urations where the generated rulesets are not precise enough
to distinguish between configurations that are geometrically
different, but share the same topology. Two of those con-
figurations are shown in Figures3 and4. The next section
presents a way to cope with this kind of ambiguities.

Figure 2: Instance sample.

Adjacent(primitive0, primitive5)

Adjacent(primitive0, primitive4)

Adjacent(primitive0, primitive3)

Adjacent(primitive0, primitive1)

Adjacent(primitive1, primitive2)

Adjacent(primitive1, primitive4)

Adjacent(primitive1, primitive5)

Adjacent(primitive2, primitive3)

Adjacent(primitive2, primitive5)

Adjacent(primitive2, primitive4)

Adjacent(primitive3, primitive4)

Adjacent(primitive3, primitive5)

Intersects(primitive4, primitive5)

Parallelism(primitive0, primitive2)

Parallelism(primitive1, primitive3)

Perpendicular(primitive0, primitive3)

Perpendicular(primitive0, primitive1)

Perpendicular(primitive1, primitive2)

Perpendicular(primitive2, primitive3)

Perpendicular(primitive4, primitive5)

Table 1: Inferred Constraint Set for the instance of Figure2

4. Overcoming Topological Ambiguities

The previously described method fails to distinguish be-
tween topological similar configurations, simply because of
the fact that the rules only embed very poor geometrical in-
formation (mainly parallelism and perpendicularity). On the
other hand, these very loose geometric constraints make the
method very well suited for recognizing and capturing hand
written distortions. The main challenge therefore is to cor-
rectly distinguish between sufficiently different configura-
tions, whilst maintaining robustness to deformations that are
proper to sketch based interfaces. We use geometric invari-
ants [GBB98] to solve this dilemma.

4.1. Geometric Invariants

Two forms are considered topologically equivalent if there
exists a continuous deformation (possibly non-rigid) that
projects the first in the second. Invariants such as connexity,
incidence and holes are the only properties that are preserved
in this case. Since purely topological descriptions are too
poor to account for more or less subtle differences between
forms (e.g.a square and a circle are topologically equivalent)

c© The Eurographics Association 2006.



J. Mas & B. Lamiroy & G. Sanchez & J. Llados / Automatic Learning of Symbol Descriptions Avoiding Topological Ambiguities

Figure 3: A Plug, an Arrow and a Triangle, all three sharing
the same ruleset

Figure 4: A square and a rectangle: topologically identical
but geometrically different.

it is imperative to embed more geometrical information into
the symbol descriptions. Two forms are considered geomet-
rically or rigidly equivalent, if there exists a rigid transform
projecting the first into the second. The advantage of geo-
metric transforms (translation, rotation, similarity, affinity,
projective, ...) is that they very neatly enter in a completely
computationally controlled mathematical framework. On the
other hand, their great drawback is that they do not capture
all deformations that occur in image analysis, and more par-
ticularly in sketched based environments.

Rather than searching for full rigid equivalence between
forms, we propose to only use geometrical invariants on
very local configurations. Furthermore, we restrict them to
similarity transform invariant values (i.e. scale, rotation and
translation invariant). Skew is rather considered as an arte-
fact related to the hand drawn distortions.

4.2. Associating Invariants with Grammar Rules

We proceed by associating a vector of invariant measures to
each rule in the ruleset of a symbol, based on either of the
following:

• the length ratio between the primitives triggering the rule,
• the angle between the primitives,
• the relative normalized distance between the primitives.

Figure 5: A T and a L Shapes.

This classification lead us to define a set of specific in-
variants for each rule to cope with different configurations.
For instance, as we see in Figure5 the represented shapes
differ by the position of their incidence point of one of the
segments to the other, while the constraint set obtained from
these two samples are the exposed on table2.

It is noteworthy to mention here that we slightly differ
from the approach in [MLSL06] and which we presented
in the introduction, in the sense that we do not use the rule

Incident(P1,P2) Incident(P1,P2)

Perpendicular(P1,P2) Perpendicular(P1,P2)

Table 2: Constraint Set corresponding the samples on Fig-
ure5.

of Adjacency. Adjacency is just seen as a particular case of
incidence. Furthermore, not all invariants are computed for
all kinds of rules. Some make more sense than others, and
in some cases, the confidence measure of a rule already uses
one of the mentioned invariants.

4.3. Length Ratio

The length ratio invariant is defined as the difference of
length between the primitives forming the rule. Calculation
is based on the following equation:

ratio = min

(
length(P1)
length(P2)

,
length(P2)
length(P1)

)
(1)

The obtained value is guaranteed to be 0 and 1. This in-
variant is associated with all rules, and allows to distinguish
between topological equivalent shapes as in Figure4 : the
square has a ratio near 1 among all its primitives ; on con-
trary, the rectangle has ratio near to 1 among the primitives
that are parallel one to another, and it is different than 1
among the perpendicular ones.

4.4. Angle

The angle invariant only associated with the intersection and
incidence rules. Since it is defined as the minimum angle
between the primitives forming the rule, it is fairly useless
to use it in the case of parallelism or perpendicularity. This
angle is calculated taking one of the segments as reference
and based on the cosines theorem such that the angle is al-
ways less or equal toπ. This invariant allows to distinguish
between topological equivalent shapes as in Figure3.

4.5. Normalized Distances

According to the considered rule, two kinds of distances are
measured. In the case ofIncidence, we compute the relative
position of the virtual incidence point with respect to the ex-
treme of the segment, as shown in Figure6. The relative dis-
tance of the two primitives is already accounted for in the
uncertainty degree that is associated with the rule itself.

On the contrary, in case of aParallelismrule, the previous
measurement makes no sense, since there is no virtual inci-
dence point between both primitives (or at best it’s a badly
conditioned one, prone to noise). Figure6 shows how the
distances are calculated in this case :DX represents distance
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Figure 6: Distances calculated between incident segments
(left) and parallel segments (right)

between the two lines supporting the segments, andDY rep-
resents the relative distance between their respective mid-
points, measured following the direction of the segments.

All computed distances are normalized with respect to the
length of the longest primitive, in order to remain invariant
to scale.

Two special cases for this invariant are described in Fig-
ure7(a) and (b). The particularity of Figure7(a) is that there
is a collinearity between the two segments. In this case the
DX distance will be near 0. On the contrary, in Figure7(b)
the two segments are parallel and are aligned by their mid-
points, theDY distance will be near 0 for this case.

(a) (b)

Figure 7: Particularities on axis distances.

4.6. Rules and Invariant Vectors

For any inferred constraint we can now define a specific vec-
tor with some of the previously mentioned invariants :

• the Incidencerelation is associated with ratio, angle and
the relative distance of the incidence point with respect of
the extreme of the intersected segment.

• theParallelismrelation is defined by the ratio and the dis-
tances used for parallelism :DX andDY.

• Perpendicularis associated with the ratio and the dis-
tance.

• Intersectsis defined by the angle between the primitives
that form the rule.

The constraint set presented in table3 shows the con-
straints with the corresponding parameters onratio, angle
anddistance. We may observe as we explained before that
in this case, the angle parameter, allows to distinguish be-
tween the topological equivalent samples.

Constraint Plug Ratio Angle Distance

Incident(0,1) 0.776 1.097 1.229∗10−13

Incident(1,2) 0.266 2.616 3.714∗10−14

Incident(0,2) 0.343 2.571 4.771∗10−13

Constraint Arrow Ratio Angle Distance

Incident(0,1) 0.844 0.961 2.942∗10−15

Incident(1,2) 0.348 0.414 0.016

Incident(0,2) 0.412 0.546 0.017

Constraint Triangle Ratio Angle Distance

Incident(0,1) 0.942 1.071 0.008

Incident(1,2) 0.939 1.010 0.036

Incident(0,2) 0.931 1.061 0.020

Table 3: Constraints Sets corresponding to shapes of Fig.3

4.7. Model Generation by Learning Invariants

Once we have defined how to avoid ambiguities between
symbols which are topologically identical, we need to define
a method or a way to learn the invariants from user provided
samples.

Symbols are inferred from several instances, and the vari-
ability of their associated invariants is simply qualified by
their average value and standard deviation. Average and
standard deviation are computed onad hocmodels. From
the experience we notice that the the angle invariant follows
a normal distribution and that the ratio and the distance fol-
low a χ2-law.

4.8. Sketch Recognition

Once we have trained the system with the instances of the
different symbols we want to recognize, we need a recogni-
tion process that, given an unidentified input, tells us what
symbol that we have learnt is more similar. The process
works as follows: given an input we calculate the value of the
cumulated uncertainty degree, obtained by parsing the rules
that are associated to our models. And we sort the resulting
models by this value. Not all the rules are evaluated since
we evaluate those rules that have the same number of prim-
itives as the input. We then cross-verify the validity of the
invariants in order to disambiguate among the rules that give
very similar results. We select the model that minimizes both
the cumulated uncertainty value of the rules and respects the
invariants constraints.

5. Experiments

Experiments show how our approach improves the method
presented in [MLSL06] and they show how it works when
trying to describe two symbols with the same topology but
being geometrically different. We also show that it is able to
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Figure 8: User Drawn Samples.

differentiate between symbols that are made up out of dis-
connected parts.

As said in section1, we consider that two symbols are
topologically identical if they may be expressed with the
same constraint set.I.e., the shapes in Figure3 are topolog-
ically identical and may be described with the constraint set
presented on table3. Figure9 shows some other symbols
that are difficult to differentiate due to this fact.

Figure 9: Some samples of our experiment set

For the first experiment we consider the three shapes of
Figure3 with 10 hand drawn instances for each shape. From
the instances of the symbols we have calculated the expected
value of the distribution and standard deviation for each in-
variant between the pairs of primitives. These expected and
standard deviation values are showed on Figure11 for each
pair of primitives of the obtained ruleset (as shown also in
Table3). The big values on some of the standard deviations
show that the user provided instances contained a high dis-
tortion level. Figure10shows some of the samples.

Figure 10: Distorted samples on the experiment image set.

The information to take into account is the one contributed
by the invariants. If we look to theratio invariant we may see
that the shape representing the Triangle is easily discrimi-
nated from the other two by using this value. The ratio is near
1 on all the pair of primitives, while the Arrow and the Plug

have two primitives that have the same length but this length
is approximatively 1/3 of the length of the other primitive.

On the other hand, if we look to the angle invariant we
may see that it is the most discriminating invariant of the
three shapes. The shape representing meanwhile the Arrow
have the angles among the primitives that have not the same
length lesser than 90 degrees the Plug has the angles greater
than 90 degrees. Referring to the triangle the three angles
are approximatively the same. We may conclude that the an-
gle invariant disambiguates among the shapes of Figure3.
The shapes with the corresponding primitive numbering are
showed on fig.12

Figure 12: Numbering of primitives for shapes: Plug, Arrow
and Triangle.

The second experiment tries to enforce the use of the in-
variant ratio. In order to enforce this invariant we have made
the system to learn 2 shapes with 10 instances any represent-
ing and square and a rectangle.

The values obtained from the inference of the grammar
are presented on Figure13. As we may see we have pre-
sented the ratio and angle for any of the shapes. The values
represented are the expected value of the distribution and
standard deviation. Looking at the angle invariant we may
observe that on both shapes are approximatively the same.
We may observe two parallelism and four perpendiculars.

On contrary if we observe results on ratio invariant, we
may distinguish between the two shapes in terms that the val-
ues on the shape representing the square, denoted as QUAD,
are approximatively near 1 and the values on the other shape
are near 0.4 between segments that are perpendicular and
near 1 on segments that are parallel. Also if we take into ac-
count the ranks defined by the standard deviation we may
seen that there not exists overlapping between the values ac-
cepted on by the ranks. This fact, take us to consider that the
method will disambiguate between the two shapes.

Finally, the last experiment allows us to show if the
method presented is able to distinguish between two shapes
with disconnected parts as are the shapes of fig.14. On Ta-
ble 4 we may seen how the system will disambiguate be-
tween the two shapes taking into account the invariant dis-
tance.

If we look to the values on the ratio and angle invari-
ant we may see that they are similar for the two shapes.
The distance invariant on parallelism constraint calculated
as we explained before let us to disambiguate between the
two shapes. If we look the values forParallelism con-
straint we observe that forParallelism(P1,P2)the values
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(a) (c) (e)

(b) (d) (f)

Figure 11: Comparative among the ratio and the angle invariant for shapes: Plug, Arrow and Triangle.

(a) (b)

(c) (d)

Figure 13: Comparative among the ratio and the angle invariant for shapes: Quad and Rectangle.

Constraint Ratio Angle Distance1 Distance2

Incident(P0,P1) 0.813±0.116 1.584±0.045 1.63∗10−14±2.9∗10−15 -

Incident(P2,P3) 0.905±0.067 1.590±0.079 1.47∗10−14±2.26∗10−15 -

Parallelism(P1,P2) 0.887±0.074 3.084±0.050 0.129±0.083 3.607±0.643

Parallelism(P0,P3) 0.810±0.106 0.030±0.028 4.516±0.545 0.186±0.173

(a)

Constraint Ratio Angle Distance1 Distance2

Incident(P0,P1) 0.920±0.051 1.611±0.067 0.0 -

Incident(P2,P3) 0.920±0.041 1.604±0.046 4.98∗10−15±1.47∗10−15 -

Parallelism(P1,P2) 0.891±0.066 3.090±0.040 1.205±0.264 3.809±0.688

Parallelism(P0,P3) 0.838±0.098 0.041±0.028 4.705±0.567 0.132±0.081

(b)

Table 4: Results related to the shapes of fig.14 (a) Corresponds to fig.14(a) and fig.14 (b)
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(a) (b)

Figure 14: Special case: (a) Corners with collinear seg-
ments and (b) Corners without collinearity among segments.

are 0.129±0.083 and 3.607±0.643 on table.4(a), on con-
trary for the same constraint on table.4(b) the values are
1.205±0.264 and 3.809±0.688. There exists a big differ-
ence between the two values what makes the system to reach
its aim. The numbering of primitives follows the same con-
figuration of fig.14.

6. Conclusions

The aim of the method presented in this paper is to improve
the description method presented in [MLSL06], allowing the
differentiation among symbols which have the same topol-
ogy although they are geometrically different. In order to
achieve this, we have considered a set of invariants, based
on the observation of the different confusions that we have
observed. The Invariants that has been chosen are:Ratio, An-
gleandRelative Distances.

Results obtained from the conducted experiments show
that the method is able to distinguish among topological
identical but geometrically different symbols. Even when
symbols contain disconnected parts the proposed method is
able to distinguish them. This is the case for the symbols
presented on Figure14. The two corners in Figure14(a)
share collinear segments while in Figure14(b) this collinear-
ity does not exist.

We may observe that the description method based on two
steps: a first step consisting in anAutomatic construction
of a Constraint Set[MLSL06], followed by aParametriza-
tion of the inferred constraints based on invariantsallows to
describe forms, and construct models, avoiding the user to
specify in a formal way the set of symbols she wants to use.

The use of additional attributes likeratio, angleanddis-
tanceinvariants also improves the alignment of primitives.
This information helps to reduce the intrinsic complexity of
the method.

Furthermore, the work is integrated in a sketch based
framework, allowing the user to define the set of symbols
it wants to use. These symbols may have or have not a func-
tional background,i.e. the user can define a set of symbols
that allows to interact with the framework by means of se-
lecting, moving, rotatingetc.

Future work will be related to define an on the fly recogni-
tion method that is able to recognize symbols while drawing
(and possibly before completion). It will take into account
the constraints forming the symbol and the invariants defined
between any pair of primitives.
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