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Abstract

We present a GPU–based Computational Fluid Dynamics solver for the purpose of fire engineering. We apply a

multigrid method to the Jacobi solver when solving the Poisson pressure equation, supporting internal boundaries.

Boundaries are handled on the coarse levels, ensuring that boundaries will never vanish after restriction. We

demonstrate cases where the multigrid solver computes results up to three times more accurate than the standard

Jacobi method within the same time. Providing rich visual details and flows closer to widely accepted standards

in fire engineering. Making accurate interactive physical simulation for engineering purposes, has the benefit

of reducing production turn-around time. We have measured speed-up improvements by a factor of up to 350,

compared to existing CPU-based solvers. The present CUDA-based solver promises huge potential in economical

benefits, as well as constructions of safer and more complex buildings. In this paper, the multigrid method is

applied to fire engineering. However, this is not a limitation, since improvements are possible for other fields as

well. Traditional Jacobi solvers are particulary suitable for the methods presented.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.1]: Graphics processors—
Computer Graphics [I.3.1]: Parallel processing—Computer Graphics [I.3.5]: Physically based modeling—
Computer Graphics [I.3.7]: Animation—Mathematics of Computing [G.1.8]: Multigrid and multilevel methods—

Keywords: Smoke simulation, Fire engineering, GPU, Multigrid solver

1. GPU Acceleration for Fire Engineering

The implementation and use of performance-oriented appli-
cations and regulations within recent years, has lead to an
increased design freedom for constructing more spectacular
and complex buildings. These buildings push the structural
design to the limit of what is possible, but also the structural
response during a fire and the needs for improving the safety
and reliability of buildings in such an event. In general, the
main purpose of Computational Fluid Dynamics (CFD) sim-
ulations in this context, is to predict the spread of smoke
through a building space and the effectiveness of smoke ven-
tilation to restrict that spread. The results are then assessed
using some form of “tenability” criteria, typically based on a
combination of visibility and temperature. All of this is used
as a means of estimating the “available safe egress time”.

Our approach to implement a fast solver for smoke prop-
agation is therefore very attractive. There has been sev-

eral approaches to construct fast smoke solvers for com-
puter graphics [Sta99,Har04,KC07], but only a very few for
actual smoke propagation for engineering purposes. How-
ever, interest in fast CFD solvers has increased over the
last few years as the available software and hardware have
evolved. Our solution can be applied for fast and rough
check and thereby evaluate new designs quickly. Further-
more, the speed of the present solver makes it possible to
analyse different locations of the fire sources, thereby im-
proving and making the buildings safer within short time.
Supporting computational grid sizes of 256 × 256 × 256,
makes the current solver very attractable. Within fire en-
gineering, the size of the computational grids range from
500.000 to 4.000.000 cells in most case. If more compu-
tational power was available, additional details and larger
models could be analyzed. The main limitation is the overall
computational time required to complete a simulation, rang-
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Figure 1: We have improved state-of-art computer graphics methods for computational fluid dynamics on GPUs with a multi-
grid method. The improved interactive physical simulation method yields an accuracy improvement that is up to three times
better than the standard Jacobi method, with the same time consumption. The improved accuracy makes it possible to do smoke
simulation for fire engineering with a speedup factor of 350 on the production turn-around time. The images are post-processed
using photon mapping and smoke data from three various setups.

ing from several hours to several days, even when a parallel
simulation is applied on a cluster of computers.

Fire engineering is in use every day in engineering busi-
nesses, and the application of computer simulation is neces-
sary in order to provide information about the safety level
inside a building. Software for fire engineering simulation,
regarding smoke propagation, includes the Fire Dynamics
Simulator (FDS) developed by NIST [fds09]. Due to the in-
dustrial application of our work [Gli09], the main focus is
on a fast, interactive smoke propagation. Both the present
solver and FDS apply uniform regular grids. Thus, we dis-
regard smoothed particle hydrodynamics methods [BT07],
methods for unstructured grids [KFCO06,ETK∗08], and lat-
tice Boltzmann methods [LFWK06].

Many works have been done in computer graphics us-
ing computational fluid dynamics on regular grids for an-
imation [BMF07, Bri08]. An Eulerian approach to 3D fluid
simulation was used in [FM96,FM97] demonstrating advan-
tages over earlier work using particle systems, and 2D simu-
lations. In [Sta99] a semi-Lagrangian implicit time stepping
method was introduced to deal with convection. In [FF01] a
liquid surface was tracked using a combination of particles
and a signed distance field. A physically consistent vortic-
ity confinement term to model small scale rolling features of
smoke were used by [FSJ01]. Large scale simulation were
addressed in [RNGF03] using high resolution tiled 2D ve-
locity fields. To capture the small scale visual details, octrees
were presented in [LGF04]. Numerical methods for handling
discontinuities in density and viscosity field, as well as pres-
sure jump conditions, were developed in [HK05]. A projec-
tion method was introduced by [LSSF06] to deal with multi-
ple interacting fluid flows. To counter the excessive false dif-

fusion made by the stable fluid method, an unconditionally
stable MacCormack method was presented in [SFK∗08].

Most previous work focuses on producing animations for
film production with rich visual detail [MCPN08] or real-
istic game scenes [KC07]. They prefer visual quality on
the expense of correct physical behavior of the flow. The
work [Sta99] inspired a long range of GPU based fluid
solvers, exploiting the massive parallelism of the modern
graphics hardware architecture. The interactive frame rates,
obtained with these computer graphics solutions, imply that
one can build pre-production tools for reducing turn-around
time in other application areas than graphics. Thus, we have
chosen to concentrate on GPU acceleration using CUDA, in
order to create a feasible production tool for fire engineer-
ing. A wide variety of test cases exist for CFD verification.
In this paper we have used the results presented by Ghia et
al. [GGS82] as reference.

Multigrid CFD methods in engineering applications are
well-known [GGS82,FP02]. However, they do not deal with
the issues of making a GPU implementation and handling
internal boundaries, which we address in this work. GPU-
based multigrid methods for CFD is slowly starting to ap-
pear. To our knowledge, the only other work similar to ours,
is by Molemaker et. al. [MCPN08, MC09]. They present a
staggered approach, using a QUICK advection scheme in
combination with an algorithm called Iterated Orthogonal
Projection. Solid boundaries are ignored at the course levels
of the multigrid solver. Though the authors guarantee con-
vergence, ignoring boundaries may lead to spurious behav-
ior near thin obstacles. In fact, we demonstrate in Figure 2
that ignoring boundaries in the pressure field may lead to
very incorrect flow behavior.
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2. The GPU Friendly Method

Fast and rough check of smoke propagation for fire engi-
neering is of great interest [Gli09]. Thus, we do not con-
sider compressibility, smoke particles, combustion, nor tur-
bulence models etc. Instead it suffices to solve the incom-
pressible version of the Navier-Stokes as partial differential
equations. Treating smoke as an incompressible fluid, is a
fair assumption when it moves at velocities apparent at fire
scenes. The Navier-Stokes equations as solved in this paper
have the form,

∂u

∂t
= −(u ·∇)u+ν∇2

u−
1
ρ
∇p+ f , (1a)

∇·u = 0, (1b)

where u is the velocity field, ν is the dynamic viscosity, ρ is
the constant density, p is the pressure field, f is the external
forces, and ∇ is the spatial differential operator.

The primary computational effort in most CFD solvers
is solving linear systems for diffusion and pressure correc-
tion as outlined below. Standard computer graphics GPU-
based methods use an iterative Jacobi method to solve the
systems of linear equations [Har04, KC07], due to ease of
implementation on a GPU. However, as we will explain be-
low and show later in Section 3.1, the poor convergence
rate of the Jacobi method makes it unattractive for interac-
tive purposes. The Gauss-Seidel method is known to have
better convergence properties than the Jacobi method. How-
ever, the convergence rate is linear [Saa03] as for the Jacobi
method, so little is gained. Besides, parallelized operations
call for a red-black Gauss-Seidel method, which is more dif-
ficult to implement than the simple Jacobi method. Meth-
ods such as Conjugate Gradient converges faster than the
Jacobi method [Saa03], but are not as easily implemented
on the GPU. The multigrid method has the advantage that it
converges well, and that any iterative solver can be reused,
minimizing the implementation modifications. Thus, in our
work we have utilized a multigrid approach. In the follow-
ing we will first give a short presentation of the fractional
step approach for solving the Navier-Stokes equations, then
we outline the standard Jacobi method, which serves as the
basis for our multigrid extension presented in Section 2.1.

Higher order schemes or staggered grids are less bene-
ficial, compared to more accurate solutions to the Poisson
equation. Adaptive grids are disregarded as they are not eas-
ily mapped to the GPU. A collocated regular grid representa-
tion of all fields has been chosen, because it fits the GPU pro-
gramming model well. Spatial derivatives are approximated
using first order central differences. The discrete gradient at
location i, j,k of a field p is approximated by,

∇pi, j,k =






pi+1, j,k−pi−1, j,k

2∆x
pi, j+1,k−pi, j−1,k

2∆y
pi, j,k+1−pi, j,k−1

2∆z ,




 (2)

where ∆x, ∆y, and ∆z are the cell sizes in their respective

direction. Using a fractional step method, each of the four
fractions on the right hand side of (1a) is handled individu-
ally, yielding four sequential updates at each time step,

∂u1

∂t
= f , (3a)

∂u2

∂t
= −(u1 ·∇)u1, (3b)

∂u3

∂t
= ν∇2

u2, (3c)

∂u4

∂t
= −

1
ρ
∇p. (3d)

The continuity constraint from (1b), must be satisfied after
the last fractional step, ie. ∇ · u4 = 0. The continuity con-
straint is upheld using pressure projection presented later.
External forces are modeled as the sum of gravity and ther-
mal buoyancy, using the Boussinesq approximation,

f = αρz+β(T −T0)z, (4)

where ρ is the smoke fraction, z =
[
0 0 1

]T
, T0 is

the ambient temperature, and α and β are constant coeffi-
cients controlling the contribution of gravity and buoyancy.
High temperatures and smoke fractions originate from static
smoke sources and are also updated every time step as,

∂T

∂t
= −(u ·∇)T +κ∇2

T, (5a)

∂ρ

∂t
= −(u ·∇)ρ, (5b)

where κ is thermal diffusivity. Advection of both the
velocity, temperature and smoke fraction fields is ap-
plied using the unconditionally stable semi–Lagrangian ap-
proach [Sta99]. When solving the diffusion fraction we also
use an implicit approach to ensure stability,

(

I −∆tν∇2
)

u3 = u2, (6)

where I is the identity matrix and ∆t is the discrete time step.
This is a system of linear equations, which we solve using
the iterative Jacobi method. The velocity field obtained af-
ter the first three fractional steps may be divergent. For in-
compressible flows we use the pressure field to force con-
tinuity, ie. create a pressure projection of the divergent ve-
locity field into a divergence–free field. Using explicit Euler
on (3d) yields,

u4 = u3 −
∆t

ρ
∇p. (7)

The question is how to find a p such that u4 becomes
divergence–free when subtracting the pressure term from u3.
If we apply the divergence operator to both sides of (7), the
left hand side will be zero by definition,

∇·u4
︸ ︷︷ ︸

0

= ∇·u3 −
∆t

ρ
∇

2
p (8a)

∇
2

p =
ρ

∆t
(∇·u3). (8b)
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The latter equation is a Poisson equation where the only un-
known variable is p. Once (8b) is solved for p, we insert it
back into (7) and calculate the projection that will make u4
divergence–free. The two constant density fractions in (7)
and (8b) cancel out each other, simplifying the equations.
One simulation time step is summarized as,

1. Apply external forces, advection, and diffusion to arrive
at u3.

2. Solve ∇
2 p = ∇·u3 for p.

3. Calculate the projection u4 = u3 − ∇p to make u4
divergence–free.

It should be clear that the solution to the pressure field is re-
lated to the satisfaction of the continuity constraint and con-
sequently the presence of dissipation. Hence, there is an ob-
vious motivation to solve the Poisson pressure equation ac-
curately. Using central difference approximations, the com-
putational stencil of a Jacobi iteration becomes,

p
n+1
i, j,k =

pn
i+1, j,k + pn

i−1, j,k

α(∆x)2 +
pn

i, j+1,k + pn
i, j−1,k

α(∆y)2 +

+
pn

i, j,k+1 + pn
i, j,k−1

α(∆z)2 −
∇·u3

α
, (9)

where n represents the iteration number and α = 2
(∆x)2 +

2
(∆y)2 + 2

(∆z)2 . Notice that each update only uses the adjacent

values in each coordinate direction. Consequently, informa-
tion is only spread one cell after each update. This reduces
convergence when the grid resolution is high and if the true
solution is low frequent [BHM00]. These facts motivate to
use an alternative approach to reduce inaccurate flow behav-
ior.

2.1. The Multigrid Method

The Jacobi method delivers poor convergence towards the
true solution, primarily due to slow information distribu-
tion. A poor solution to the pressure field causes the flow to
be divergent and thus dissipative. Nevertheless, it has been
the primary choice in many applications presented in litera-
ture [Har04, KC07]. In this section we present the multigrid
technique, using the Jacobi solver as the relaxation scheme.
The improvement enables our CFD solver to be more use-
able for engineering purposes, as results show in Section 3.1.
Multigrid has the primary advantage that it fits the GPU
programming model well, and it makes any iterative solver
reusable. A general description of the multigrid technique
can be found in [BHM00].

The basic idea of a multigrid approach is to perform few
iterations on restricted systems of linear equations, and then
interpolate corrections back into the original system. Re-
member that in our case, the linear system is given from the
pressure and velocity values in the simulation grid. Let Ωh

denote the finest grid, Ωh2 the second finest grid, with half

as many cells in each direction, and so on. A projection op-
erator I, taking a vector x, from one grid to another is defined
as,

xh = I
h
h2xh2 (10a)

xh2 = I
h2
h xh. (10b)

For the restriction operation, every second cell in each direc-
tion simply remains. Averaging adjacent values are some-
times used, but the cost of reading multiple values from
global device memory is not optimal. Thus, we prefer the
solution that minimizes access to global memory. Interpo-
lation is a bit more difficult, because most of the values in
the fine grid have no equivalents in the coarse grid. As the
name suggests, interpolation should be performed for these
grid points. In three dimensions, the following four scenarios
occur for interpolation to a finer grid.

1. The new value can be copied directly from the coarse grid
2. The new value must be interpolated from two coarse grid

points
3. The new value must be interpolated from four coarse grid

points
4. The new value must be interpolated from eight coarse

grid points

The Poisson equation (8b) is a system of linear equations.
Rewriting it into to the general form of linear systems yields,

Ax = b. (11)

The error ε, between the true solution and the solution after
n iterations is related to the residual as,

Aε = b−Ax
n = r. (12)

Restricting the residual enables us to express a new system
of linear equations, where the error is the unknown,

rh2 = I
h2
h rh (13a)

Ah2εh2 = rh2, (13b)

where Ah2 still corresponds to the Laplacian operator (∇2).
Thus, the matrix is still implicit and is never actually con-
structed, which enables us to reuse the same Jacobi solver to
perform relaxation of εh2. When a solution to εh2 is found
after a few iterations, the fine grid solution can be corrected
with the interpolated error as,

x̃h = xh + I
h
h2εh2, (14)

where x̃h is the new adjusted guess. This list summarizes the
multigrid method using one restriction:

• Relax Ahxh = bh with initial guess x0
h.

• Compute the residual rh = bh −Ahxh

• Restrict the residual rh2 = Ih2
h rh

• Relax Ah2ε2h = rh2
• Interpolate the error εh = Ih

h2εh2
• Adjust the fine grid solution x̃h = xh + εh
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• Relax Ahxh = bh with the updated x̃h as new start guess.

There is no need to stop after just one restriction, in fact
multigrid often gives the best results if it continues until the
coarsest grid is reached. The whole process might also be
repeated two or more times with a different number of re-
strictions. One repetition of restrictions and interpolations is
called a V-cycle. In Section 3.1 we present some compar-
isons of different V-cycles.

Static obstacles and outer boundaries are both represented
using a grid of the same resolution as the simulation do-
main. A 2D example is given in Figure 3. Using a collo-
cated grid, causes the boundaries to be implicit, meaning that
they are located in between discrete values. We use Dirichlet
boundary conditions to control the implicit values. To han-
dle corners and edges we calculate an average, based on the
n adjacent non-boundary cells. The pressure term should not
cause acceleration across the boundary, so the gradient at the
boundaries should be zero. This is achieved with the follow-
ing Dirichlet condition,

pin =
1
n

n

∑
i=0

p
i
out, (15)

where “in” represents the discrete value inside the boundary
cell and “out” represents the values outside the boundary.
Upholding boundary conditions should be performed after
any alternation of the pressure field, to ensure that pressure
is not built up across boundaries. If boundaries are ignored at
the restricted levels of the multigrid method, pressure is in-
terpolated back across boundaries, causing the flow to travel
through obstacles. Figure 2 illustrates the problem. If the
boundary field is naively restricted along with the pressure
field, thin obstacles might vanish in the coarse grids, result-
ing in the same problem. Our solution is to let boundaries
dominate the restriction process. In three dimensions, eight
cells becomes one after restriction. If any of these eight cells
are marked as a boundary, then the restricted cell will also be
a boundary cell. The difference between naive and dominant
restriction is illustrated in Figure 3.

Dominant restriction of the boundaries ensures that they
will never vanish, but it does not ensure that boundaries be-
come one cell thick. This is sometimes a problem in combi-
nation with collocated grids, because there is only one cell
to represent the two implicit boundaries on each side. We
have not handled the issue in this work, and will therefore
avoid setups where such cases would appear. In fire engi-
neering, this is rarely an issue because thin obstacles are not
common. Besides, higher resolutions remove the issue.

Our CFD solver was implemented using the CUDA pro-
gramming model, targeting the highly parallel architecture
of the GPU. Care must be taken to achieve optimal GPU per-
formance. There are several restrictions and guidelines on
how to acces device memory [NVI09]. CUDA threads are
organized in block structures, which is again organized in
grids. To our knowledge no best practice has been presented

���������	
��	��
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�
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Figure 2: A ventilator is placed to left while an obstacle

splits the room in two. On the left side of the obstacle there

is a passive smoke layer. The top images illustrate the slice

from the center of the velocity field after two time steps. The

bottom images illustrate the smoke propagation after 1 sec-

ond of simulation. Naive restriction causes the flow to pene-

trate the obstacle, creating incorrect movement on the right

side of the obstacle.

on how to set up CUDA blocks and grids for 3D problems.
We have chosen to allocate all scalar and vector fields using
the 3D structures provided by CUDA. Thus, a kernel call
should process each entry in the 3D field once. To achieve
this, we organize threads in a 1D block with the same size as
the x-resolution of the fields. Blocks are then organized in a
2D grid, with dimensions equal to the y- and z-resolutions.

The total amount of threads then add up to the same as
the resolution of the simulation grid. This approach is very
flexible, it requires minimal index calculations in the ker-
nels, and it allows variables along the x-direction to be writ-
ten into shared memory for fast access. This is useful when
for example finite difference operations are performed. An-
other approach was presented in [BP08], potentially allow-
ing more variables to be written into shared memory. Unfor-
tunately their approach requires complex index calculations
and the acces pattern from global memory does not respect
the guide lines given in [NVI09]. Consequently we believe
our approach to be superior, though comparisons hereof have
not been performed.

Current GPUs have a limitation of 512 threads per block,
thus a natural limitation for simulation resolutions arises at
this point using our approach. However, another problem of
limited device memory also arise around this point, for even

c© The Eurographics Association 2009.

15



S. L. Glimberg & K. Erleben & J. C. Bennetsen / Smoke Simulation using GPU and Multigrid

������ ����	�	


��������	
���
��	����
��������	
���
��	����
����
��	���������

Figure 3: 2D illustration indicating the implicit bound-

aries and the difference between naive and dominant re-

striction. The 16 crosses indicate the cells that are restricted

to the coarser level. Since none of the crosses are internal

boundaries, naive restriction causes the obstacle to vanish.

For dominant restriction, the green crosses are considered

boundary cells and thus the obstacle remains.

the most modern GPUs with 4GB of memory. We therefore
find this limitation to be acceptable.

3. The Multigrid Method Accuracy Improvements

We first present the results obtained using the multigrid
approach. Results are compared to the traditional Jacobi
method. For the solver to be useful for engineering purposes,
it must handle real-like scenarios within reasonable accu-
racy. Reference results have been presented in literature for
many years, we present a comparison of our results to the
results presented by Ghia et al. [GGS82].

3.1. The Multigrid Method vs the Jacobi Method

To compare the multigrid method with the simple Jacobi
method, we set up an initial divergent velocity field. The
Poisson pressure equation solves for a pressure field that re-
moves this divergence. Hence, good solutions to the pres-
sure field will cause the velocity field to be divergence-free
within less iterations. The multigrid approach delivers a set
of parameters, such as the number of restrictions, iterations
at each level and the number of repeated V-cycles. In this
test we use a 128× 128× 128 grid resolution and vary the
number of restrictions. The maximum number of restrictions
used is four, which cause the coarsest grid resolution to be
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Figure 4: The norm of the residual, calculated after each it-

eration for both the Jacobi method and the multigrid method.

The peaks in the multigrid plots are caused by the restric-

tions and interpolations, which change the sizes of the resid-

uals, and thus the norms. Notice how every V-cycle cuts of

an considerable amount of the norm when it returns to the

finest grid. The most restrictions yield the best convergence.

8× 8× 8. At each iteration, the norm of the residual is cal-
culated and plottet over time, as shown in Figure 4. From the
multigrid plots we clearly see that the number of restrictions
is related to the rate of convergence, with the best improve-
ment for the most restrictions. We have observed similar re-
sults for various grid resolutions, where only the GPU mem-
ory limits the grid sizes. In the following tests we use 25
iterations for the Jacobi method and two V-cycles of four re-
strictions, which requires roughly the same amount of time,
as shown in Figure 4.

The previous test indicate that the multigrid method pro-
vides better accuracy, using the same time. In this next
test we examine the impact on the divergence. Since the
solution to the Poisson pressure equation is directly re-
lated to the preservation of the continuity constraint, the
velocity divergence indicates how good the solution actu-
ally is. Figure 5 illustrates the divergence field at the cen-
ter slice of the z-direction. Light grey represents positive di-
vergence and dark grey represents negative divergence. The
setup consists of two ventilators, one at the bottom left and
one at the top right, a static obstacle in the middle and a
smoke source at the bottom. Both illustrations indicate high-
frequency disturbance, but only the Jacobi method suffers
from low-frequency errors. This underlines the purpose of
the multigrid method, namely to reduce the appearance of
low-frequent errors.

Finally we examine whether the improvements yield bet-
ter visual details. A visual representation of the same setup

c© The Eurographics Association 2009.

16



S. L. Glimberg & K. Erleben & J. C. Bennetsen / Smoke Simulation using GPU and Multigrid

��������� 	
��
�

Figure 5: Example of the velocity divergence from the cen-

ter slice in the z-direction. The Jacobi method to the right

suffers from low-frequent divergence, indicated by the cir-

cles.
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Figure 6: Visual comparison of the Jacobi and multigrid

methods. The multigrid method creates finer vortices an bet-

ter details. The smoke is more diffuse in the Jacobi case.

as before is illustrated in Figure 6. There is a general ten-
dency, that the Jacobi method causes the smoke to be thicker
and more diffuse, whereas the multigrid method generates
finer circular movements. One can think of the Jacobi iter-
ations as a diffusion process of the initial guess. When the
process is stopped before total convergence, the solution is
left in a diffusive state. Since the multigrid method converges
faster, the pressure field contains less diffusive behavior.

3.2. False Diffusion

False diffusion is numerical inaccuracy, introduced by the
advection term. Though diffusion is a natural part of the
Navier-Stokes equation, diffusion caused by advection is
not. To test for false diffusion we turn off true diffusion and
add cold and hot ventilators to the left and bottom sides of
a cube. The ventilators blow in the same diagonal direction
and the opposite sides are open, see Figure 7.

If there was no false diffusion we would expect a sharp
transition between the cold and hot fluid along the diagonal.
In [BMF07] the authors show that advection of a quantity q,
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Figure 7: Setup for the false diffusion test. Cold and hot ven-

tilators blow in the diagonal direction. Mixing of tempera-

tures along the diagonal will indicate the presence of false

diffusion.
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Figure 8: False diffusion using three different grid reso-

lutions. Semi-Lagrangian advection yields a clear relation

between high resolutions and less false diffusion. Thus we

expect false diffusion to influence low resolution simulations

and should therefore use high resolutions when possible.

using the Semi-Lagrangian approach equals,

∂q

∂t
= −(u ·∇)q+u ·∆x∇

2
q. (16)

This is advection plus an extra diffusion-like term, scaling
with the grid cell sizes ∆x. I.e. a fine grid yields less false
diffusion than coarser grids. Figure 8 illustrates how our so-
lution mixes the hot and cold temperatures due to false dif-
fusion. As expected, false diffusion appears regardless of the
resolutions, though better results are achieved for fine reso-
lutions. Figure 9 shows a diagonal plot of the temperatures,
which again concludes that false diffusion is most dominant
in coarse resolutions. For future work, false diffusion could
be minimized if the advection scheme was exchanged with a
higher order accurate scheme, such as MacCormack [KC07]
or QUICK [MCPN08].

3.3. Shear-Driven Cavity Flow

The cavity flow test includes separation and reattachment of
the flow, which often appear in practical situations of engi-
neering interest [Ben99,GGS82]. It is an important property
of the solver, to reproduce these scenarios correctly. The cav-
ity setup is illustrated in Figure 10.

One primary vortex should appear in the middle to-
gether with two secondary vortices in the lower corners. We
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Figure 9: Temperature profile measured perpendicular to

the flow direction. The fine grid resolutions cause less false

diffusion. The black line indicates the optimal solution.
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Figure 10: A cubic cavity with a constant moving lid at ve-

locity u = [ulid,0,0]T . The characteristic size of the cavity is

L.

will compare our results to the ones presented by Ghia et
al. [GGS82], using a Reynolds number as,

Re =
ulidL

ν
= 1000 (17)

where ulid and L are the characteristic velocity and size of
the cavity setup. The results in [GGS82] are all obtained
from two dimensional simulations, so we apply free-slip
conditions to the walls in the third direction, which should
make the third dimension irrelevant. Figure 11 illustrates
streamlines for the cavity flow using a 128×128×128 grid.
We obtain a flow that is very similar to the one presented
in [GGS82]. For comparison, the sizes of the secondary vor-
tices V 1 and V 2 are measured. Results are listed in Table 1.

The results summarized in Table 1 and the velocity profile
measured along the vertical center line, illustrated in Fig-
ure 12, are quite good compared to the references. Reso-
lutions of 128× 128× 128 and above, yield very close re-
sults, whereas the lower resolutions suffer from smoothing.

Res. 643 1283 2563 Ghia et al. (1292)

V 1
x 0.16 0.19 0.22 0.22

V 1
y 0.12 0.14 0.16 0.18

V 2
x 0.29 0.30 0.31 0.30

V 2
y 0.36 0.36 0.35 0.35

Table 1: The x- and y-lengths of the two secondary vortices

compared to [GGS82]. As the resolution increases the re-

sults become closer to the reference. All lengths are relative

to L.
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Figure 11: Streamlines for the cavity flow, using a 128×
128 × 128 resolution. One primary vortex appears in the

middle and two secondary vortices V 1 and V 2 in the bottom

corners.
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Figure 12: The y-component velocity profile measured at

the vertical center line. The high resolutions fit the reference

well.
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As previously underlined, there is a strong connection be-
tween low resolutions and the numerical errors, caused by
finite difference approximations.

4. Conclusion

We have combined the power of multiprocessor architec-
tures on GPUs, with a fractional step method for solving the
Navier-Stokes equations. The convergence rate of the Pois-
son solver has been improved with a multigrid solver and
we presented our approach to handle internal boundaries at
the coarse levels, without suffering from flow penetrations
across boundaries. Our multigrid method compares well to
referenced results of engineering standards.

The present solver is still in an early state and improve-
ments are possible as future work. Dissipation caused by the
spatial approximations are significant when resolutions are
low, whereas higher resolutions minimize dissipation quite
well. Thin boundaries limit the multigrid restrictions, due to
collocated grids in combination with the current boundary
conditioning approach. Fortunately, both of these issues can
be avoided when the resolution is high, which the solver has
shown to perform well at.

Rambøll Denmark A/S has already shown great interest,
based on the intermediate results presented. Though accu-
racy is not as high as current CPU-based solvers, the present
CUDA solver can be applied for fast and rough check and
thereby evaluate new building designs quickly. Furthermore,
the speed of the present solver makes it possible to analyse
several different locations of fire sources, thereby improving
and making buildings safer. Figure 13 illustrates an exam-
ple of the time consumption for the solver currently used
at Rambøll and our CUDA based solver. At resolutions of
128× 128× 128 we have observed performance speedups
of more than 350. The number of frames pr second for vari-
ous grid resolutions are plotted in Figure 14.

GPU-based solutions, as the one we have just presented,
open for the possibility of utilizing multiple GPUs. Thus,
additional performance speedups are attainable with a lim-
ited amount of modifications and extra hardware. Currently
we are investigating this topic, though no results are ready
yet. Based on previous observations, we have found three
primary targets for other future improvements.

• Incorporating a turbulence model, such as Large Eddy
Simulation (LES) [RFBP97].

• Changing to a staggered grid and higher order difference
schemes, to improve further on false diffusion.

• Using a multigrid method for the implicit diffusion equa-
tion.
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