
Workshop in Virtual Reality Interactions and Physical Simulation VRIPHYS (2008)
F. Faure, M. Teschner (Editors)

Unified Processing of Constraints for Interactive Simulation

Christophe Guébert, Christian Duriez, Laurent Grisoni

LIFL, INRIA Lille-Nord Europe, IRCICA/CNRS, University of Lille 1, France

Abstract

This paper introduces a generic way of dealing with a set of different constraints (bilateral, unilateral, dry fric-
tion) in the context of interactive simulation. We show that all the mentioned constraints can be handled within a
unified framework: we define the notion of generalized constraints, which can be derived into most classical con-
straints types. The solving method is based on an implicit treatment of constraints that provides good stability for
interactive applications using deformable models and rigid bodies. Each constraint law is expressed in constraint
subspace, making constraint evaluation much easier. A global solution is calculated using an iterative process
that takes into account the mechanical coupling between the constraints. Various examples, from basic to more
complex, show the practical advantage of using generalized constraints, as a way of creating heterogeneously
constrained systems, as well as the scalability of the proposed method.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism
Keywords: physically-based animation, constraints, collision, rigid bodies, deformable models, interactive appli-
cations, modified Gauss-Seidel

1. Introduction

Using physical laws in computer graphics simulations is
more and more common; it enables the inclusion within the
scenes of objects that would otherwise be difficult to han-
dle (e.g. realistically moving liquids, deformable objects),
and also provides much more freedom than classical, ex-
plicit, animation techniques. In the specific case of inter-
active applications, physical-based simulation can take into
account user interaction, without specific, script-based, ani-
mation laws. User interaction is classically integrated within
virtual scenes using some specialized object, which move-
ment is constrained by the user, using some specific devices.
This object, as well as all the others, can interact with the
rest of the scene through numerical simulation of physical
laws. In the case of an haptic device being used, forces that
are applied to the user’s virtual object are classically used
as a basis for force feedback. Each object can potentially
collide with other objects, in this case accurate contact treat-
ment is classically needed, or being enclosed in a more com-
plex structure, in which case the animation of the whole has
to combine each object behavior with the additional con-

straints. In most practical cases, virtual scenes need numer-
ous constraints definition and numerical handling.

In Virtual Reality applications, one has to face prac-
tical simulation cases where constraints are dynamically
changing, and can be of very different types. Most con-
straints are non-holonomic, i.e. involve time-derivate of de-
grees of freedom. A constraint is holonomic if the corre-
sponding equation only involves 0-th order derivatives of
the degrees of freedom: it must be expressible as a func-
tion f (x1,x2, ...,xN , t) = 0, depending only on the coordi-
nates x j and time t, not on the velocities. Combining the
two types of constraints within the same simulation usu-
ally implies the use of explicit time integration [WGW90],
which is known to provide poor stability. This lack of flex-
ibility makes heterogeneous constraint combination hard to
reach within the context of interactive simulation, and Vir-
tual Reality. Such issues aside, one can also point out the
fact that little has been done on constraining deformable ob-
jects, whereas much more has been done on constraints for
rigid objects; see Section 2 for relevant work on deformable
and rigid bodies.

In this article we propose a method for combining and

c© The Eurographics Association 2008.

http://www.eg.org
http://diglib.eg.org

Guébert et al. / Unified Processing of Constraints for Interactive Simulation

processing both holonomic (e.g. fixed point, sliding point)
and non-holonomic constraints (e.g. contact, dry friction),
compatible with implicit integration schemes. We show that
the proposed method can handle both rigid and deformable
objects in the context of interactive simulation.

This article is organized as follows: Section 2 provides
references on related works. Section 3 proposes a unified
definition of classical constraint, in particular of bilateral,
unilateral, and friction constraints. Section 4 defines the
space in which numerical evaluation is reduced for each con-
straint: all together, constraints are coupled using the numer-
ical method introduced in Section 5. Finally, examples and
performance measures are provided in Section 6, showing
that the proposed method can be used for achieving interac-
tive simulations.

2. Previous Works

Constraint process has already been well studied in the field
of interactive simulations and computer graphics. Several so-
lutions already exist that we describe in the following.

First, numerous works have reused and optimized the La-
grange multipliers method. It is a tool for finding the min-
imal energy of the function of movement in a mechanical
system subject to one or more constraints. The method we
use consists in adding a new equation in the matrix sys-
tem formed by the mechanics. When the matrix system is
solved, the constraint is automatically respected and the so-
called Lagrange multiplier provides the reaction force on the
constraint. However, the method requires the use of specific
solvers because of the presence of null terms in the diagonal
of the obtained matrix. Moreover, the choice of the place of
the constraint equation in the matrix system can be some-
times tricky to keep good properties (band matrix, sparse
matrix) for an efficient solving process [LF04]. In [Bar96],
Lagrange multipliers are used to express constraints in artic-
ulated figures. By sorting the constraints into n primary and
k auxiliary constraints, sparse matrices are obtained, which
can be solved in O(n)+ O(nk). This method is fast and ex-
act, but the systems simulated need to have a linear structure,
with few branching. The system is inefficient for constraints
between deformable bodies, as k > n. [LF04] presents a
constraints management with Lagrange multipliers for het-
erogeneous simulation of both rigid and deformable bod-
ies. They decompose the system into 3 equations: free mo-
tion, constraints resolution in the constraints space, and a
correction motion. The matrices are efficiently updated be-
tween time steps. The method could be extended to uni-
lateral method using status algorithm [DLC07] which adds
or removes the constraint equations during an iterative pro-
cess to obtain only positive reaction force on the Lagrange
multiplier. However, it increases the computations and this
method is usually not suitable for nonhonolomic constraints
like friction.

Holonomic constraints reduce the number of degrees of

freedom of the system; a second method consists in trans-
forming the coordinate system, in order to work with fewer
variables. In Lagrangian mechanics, the use of generalized
coordinates allows to eliminates the coordinates that are not
independent because linked by a constraint expression. This
method is often used for efficient simulation of articulated
bodies [Fea99].

A third method consists in projecting the constraints dur-
ing an iterative process, like a conjugate gradient method.
A very simple way, with bilateral constraints, is to enforce
the velocity of the constrained points at each iteration step
[WGW90]. When dealing with unilateral constraints, veloc-
ity can not be enforced on all constrained points. Hence, the
Rosen’s method uses a gradient descent method that uses an
active set strategy. [RA02]

Another solution based on QP allows for mixing bilat-
eral and unilateral solvers. Redon [RKC02] uses the Gauss’
least constraints principle for the simulation of rigid-bodies.
Constraints are solved very efficiently by a QP solver. How-
ever, with deformable bodies, the extension of such a method
would provide huge QP problems and the resolution would
be demanding. Moreover, Gauss’ principle does not extend
to friction constraints.

In [Mur97], it is shown that the QP formulation can be
equivalent to a linear complementarity problem (LCP) for-
mulation. Contact constraints can be easily described and
solved as a LCP. This formulation was introduced in the
computer graphics community by Baraff [Bar89] who pro-
pose an algorithm for the computation of frictionless con-
tact forces between solid objects. It is based on the Dantzig
algorithm, related to pivoting methods for solving LCP’s.
Ruspini et al. [RK00] describe the collisions in the contact
space, express the contact equations and the impulse force
in this space. They use an inverse contact space inertia ma-
trix to describe the dynamic relationship between the contact
points. They identify in their equation a term of free motion,
representing the contact space acceleration that would occur
if no contact existed. Contact forces are solved through the
resolution of a LCP problem.

The LCP formulation, based on unilateral constraints has
been extended to contact with dry friction between rigid ob-
jects [APS99]. The Coulomb’s friction cone is approximated
by a pyramidal cone in order to maintain a LCP formulation.
However, it strongly increases the size of the LCP and makes
the method no more suitable for real-time applications.

Moreau [MJ96] introduced some specific solver to deal
with the non-linear complementarity problem of dry fric-
tion between rigid objects. This approach is based on the
exact friction cone model and on a specific iterative solver
(Gauss-Seidel type). The use of this approach in the context
of interactive simulation of deformable bodies has been pro-
posed in [DDKA06]. These last approaches are efficient but
are limited to friction contact constraints. This paper aims at
presenting a more flexible method which allows using and

c© The Eurographics Association 2008.

22

Guébert et al. / Unified Processing of Constraints for Interactive Simulation

combining different types of constraints on both rigid and
deformable objects.

3. Generalized constraints

In this section we describe the unified formalism we use in
order to handle, within a single simulation framework, the
constraints we are interested in. All these constraints share
a common set of basic parameters: the constraint dimension
(which we will, somewhat abusively, call dimension in the
remainder of this article: it is equal to the number of degrees
of freedom involved by the constraint), direction(s) and vio-
lation. The main difference between them is the underlying
law that rules the constraint. We detail here each constraint
type, and show that all of them can be fully defined using
dimension, direction and violation specification.

3.1. Bilateral constraints

Bilateral constraints are often used to simulate fixed points
or articulations. They can be expressed by projecting the
constraint on some predefined directions (using reduced co-
ordinates technique): for each dimension, movement is con-
strained along a specific direction. Depending on the number
of dimensions of the constraint, different applications can be
created: the point constrained on a plane corresponds to a
constraint of dimension 1, the sliding constraint which en-
ables a point to move along a line or a spline is represented
using a constraint of dimension 2, the fixed point in space
or to another object is a constraint of dimension 3. Dimen-
sion can be higher, although less classical: e.g. constraints
involving position and rotation can raise dimension up to 6.

Figure 1: Bilateral constraints may use multiple directions
depending on the application. For a 2D fixed point, any com-
bination of 2 orthogonal vectors is valid.

To define a bilateral constraint, we first have to define its
dimension ; if not all degrees of freedom are constrained, the
direction of each dimension needs to be given (see Figure 1).
In addition to that, for each dimension the violation δ of the
constraint is computed. It is associated to a vector on the
constraint direction, oriented so that, considered as a force,
it tends to make the constraint being fulfilled. Classically, δ

is the distance between the two objects before the resolution
of the system, and should ideally be equal to zero after this
time-step resolution.

3.2. Unilateral constraints

Unilateral constraints could appear, at first sight, simpler,
since it involves only one dimension (see Figure 2), but the
law that drives the unilateral constraint is non-smooth. They
are classically used for collision response, as this behavior
means that the interpenetration of two objects will be cor-
rected by the constraint resolution, but will not make them
stick together back again when they separate during resolu-
tion. It perfectly models frictionless contacts.

Figure 2: Unilateral constraints define one direction n per-
pendicular to the contact surface.

A strong difference with bilateral constraint is the follow-
ing fact: for unilateral constraints, the sign of the violation
on the direction is of major importance to the resolution
scheme. Indeed, It dictates if the constraint is actually ac-
tive or not. Solving a simple contact constraint when the vi-
olation is negative is equivalent to a bilateral constraint res-
olution. For a positive violation, the two objects are not in
contact anymore, and the force computed during resolution
has to be zero.

3.3. Dry and Dynamic Friction constraints

Dry friction constraint is usually combined with a bilateral
or a unilateral constraint: it provides the dissipative behavior
along the tangential direction(s). One may want to include
friction when sliding a point along a line, or for modeling
friction contact between objects. Adding friction requires the
value of the force along the normal direction, i.e. the direc-
tion(s) of the bilateral or unilateral constraint associated with
the friction constraint (see Figure 3).

Figure 3: Friction constraints use the normal n as for con-
tacts constraints, and additional directions t tangential to
the contact surface.

c© The Eurographics Association 2008.

23

Guébert et al. / Unified Processing of Constraints for Interactive Simulation

To model dry friction, we propose to use Coulomb’s fric-
tion law (see Figure 4) which states that if the tangential re-
sponse forces f~T are less than the normal force f~n scaled by a
friction coefficient µ, objects stick together as tangential dis-
placement δ~T is null. Otherwise, objects slip (δ~T 6=~0) , and
the response forces are scaled back to a dissipative behavior
f~T =−µ || f~n||~T (dynamic friction). As we use an integrated
Coulomb model, we are working in displacement, not speed.

Figure 4: Coulomb’s friction law. The reaction force is
strictly inside the cone when objects stick together, and on
the cone’s border when they slip.

4. Constraints space

We have seen that all constraints can be defined by a direc-
tion along which a force will be applied in order to respect
the constraint. Parameters used on constraint laws:

• violation measure (bilateral)
• interpenetration measure (unilateral)
• tangential displacement, normal force (friction)

are defined along the constraint directions. Thus it is much
more easier to solve the constraints if we have a direct access
to these parameters during the resolution process.

Moreover, expressing the behavior of the constrained ob-
jects along the constraints directions should enable us to take
into account the coupling between the constraints.

In [RK00], Ruspini et al. introduce the contact space as
the local solution space in which unilateral constraints have
to be computed, through the set of parameters that locally
describes the relative motion of the bodies during contact
and collision. For a pair of bodies interpenetrating, a colli-
sion detection algorithm identifies a set of potential contact
points, and provides for each of them the contact normal n,
perpendicular to the contact geometry. Using the direction n,
we can express the relative distance δ

f ree between the two
contact points.

By generalizing this idea to other constraints and their pa-
rameters, we introduce the notion of constraint space. In this
space, it is possible to express constraints with a finite life
span (e.g. collision response constraints, see section 3.2).

Writing constraint laws in this space is often easier than it
would be in the motion space, and opens the door to more
complex constraints.

The constraints space parameters are often not indepen-
dent, and we need to express the dynamic relationship be-
tween them. A mapping function linking the positions in the
motion space to the constraints space is often non-linear. In
the general case, the problem is reduced to a linear problem
using a Jacobian H evaluated at time t around the constraint
position. This matrix is used to construct the operator w, that
expresses the mechanical coupling in the constraint space:

w = HCHT

In that expression, matrix C is the compliance matrix, com-
puted as:

C =
[

M
h2 +

B
h

+K
]−1

Its properties are presented in more details in [SDCG08].
M, B and K are respectively the matrices of mass, damp-
ing and rigidity. Depending of the nature of the object, this
matrix can be obtained easily (rigid objects), with a specific
band-matrix solver (wire-like deformable object) or with a
precomputation step like in [SDCG08] (3D linear or corota-
tional deformable objects).

For real-time simulation of constrained deformable bod-
ies, the number of degrees of freedom is usually much larger
than the amount of constraints applied to them. In that con-
text, solving the problem in the constraints space presents
the benefit of significantly reducing the size of the system
to compute. However, in the case of pure rigid body dynam-
ics, which is out of the scope of this article targeted on con-
straining both rigid and deformable objects, and if many con-
straints are applied, a solving strategy in the motion space
could be more relevant, as each body typically has no more
than 6 DOF.

A local strategy consists in first solving the motion of
the bodies without applying the constraints (free motion
phase), then solving constraints in the constraints space δ =
w f +δ

f ree, and finally computing a correction motion. Next
section describes these issues.

5. Resolution

Before coupling, a constraint only needs to compute the cor-
rection force depending on the constraint violation (and on
the normal force, for friction constraint). This description
can be applied for all the constraints, the specifics of this
relation describing their behavior. We propose a solution to
express the constraint-specific behavior independently from
the resolution algorithm.

c© The Eurographics Association 2008.

24

Guébert et al. / Unified Processing of Constraints for Interactive Simulation

5.1. System resolution

There must be some preparations before constraints resolu-
tion, and the result of the computation needs to be reinjected
into the system before integration. We will present here the
different steps of our method:

We start by simulating a time-step of the system, in or-
der to see how the bodies would move if there were no con-
straints at all, hence the name of Free Motion. It is necessary
in order to compute the various parameters of the constraints
(interpenetration for contact constraints, violation of bilat-
eral constraints, etc.). Figure 5.a shows the initial configu-
ration of two rigid objects linked with a bilateral constraint,
before computation of the free motion. Bodies could have
been in contact at the previous time-step, or have moved and
there can be some potential collision we have to look for.
Here, we take for granted that a geometric collision detec-
tion process is available. We then create the constraints in
response to the collision detection output, and the other con-
straints defined by the scene, either statically known at the
scene design or dynamically created after some predefined
events. If needed, additional computation is performed in or-
der to find all the information needed by the constraints for
their resolution (in particular, the δ

f ree parameter, see Fig-
ure 5.b). Once the constraints directions and parameters are
expressed, we can define the constraints space, from which
the operator w can be deduced.

Once all the prerequisites are computed, we then use the
constraints solving algorithm, taking into account the me-
chanical coupling between them. From a time-step to the
next one, it is possible to use time coherency to improve
computation: by storing constraints results, one can use them
as the initial parameters at the next time-step.

From the forces computed as the constraints contribution
to the system, we define corrective motions for the points
where constraints where applied. Finally, system is inte-
grated. We use an implicit Euler solver, as we already com-
puted the rigidity matrices of the bodies for the mechanical
coupling of constraints. Figure 5.c shows the result of the
constraints resolution for a simple scene.

(a) free motion (b) violation (c) resolution

Figure 5: Different steps of a bilateral constraint resolution.
The dashed outline represent the initial position of the ob-
ject.

5.2. Constraint-specific treatment

Constraint resolution without coupling consist in computing
the response force f in relation to the parameters of the con-
straint. The violation of the constraints is noted δ f ree before
resolution, and δa during the resolution as it can change mul-
tiple times if we use iterative methods. Here are examples of
this resolution for some of the constraints we want to simu-
late:

• Bilateral constraints. Resolving a bilateral constraint con-
sist in adding a force proportional to the violation, and of
opposite direction.

f =−δa/w

• Unilateral constraints. If the violation is negative, the
force is proportional to it, else the force is set to zero.

if δa < 0 then
f =−δa/w

else
f = 0

end
• Friction. The constraint is linked to a bilateral or unilat-

eral constraint. When this constraint is solved, the friction
constraint get the resulting force, that is considered as the
"normal" force. Then, we compute the tangential forces
using Coulomb’s friction law as described in 3.3.

5.3. Modified Gauss-Seidel

For the complete simulation of a complex system, we need to
couple the constraints, as the resolution of one often change
the parameters of its neighbors constraints. This will be done
by the constraint solving algorithm, using the mechanical
coupling expressed in the space we introduced.

We use a modified Gauss-Seidel algorithm, but another
iterative constraint solver could have been tested (Jacobi, re-
laxation, etc.), as long as the resolution of a particular con-
straint can be isolated from the mechanical coupling. Our
Gauss-Seidel is very close to the modification done for con-
tacts by Moreau and Jean; we generalize it to all types of
constraints.

The Gauss-Seidel algorithm has the added benefit of be-
having well with redundant constraints like multiple contacts
between 2 objects. In Figure 6.b we added redundant con-
straints; the algorithm converge in all cases, the solution and
the number of iterations before convergence depend only on
the order in which the constraints were defined.

During one iteration, we compute each constraint dimen-
sion by blocking all other constraints and summing their
contribution relative to the dimension we are considering:

δa
(k)
i = δ f reei + ∑

j<i
wi j f (k)

j + ∑
j>i

wi j f (k−1)
j (1)

c© The Eurographics Association 2008.

25

Guébert et al. / Unified Processing of Constraints for Interactive Simulation

Figure 6: Rigid cubes connected together with (a) 2 bilateral
constraints represented here as points; (b) 20 overly redun-
dant constraints. The speed of convergence is the same for
the two scenes.

The computation of δai uses the f (k)
j dimensions that have

already been computed, and the f (k−1)
j dimensions that have

yet to be updated.

After the current violation δai of a particular constraint
has been computed, we can call its specific treatment, pass-
ing as parameters this violation δai and the previous force
f (k−1)
i , which is usually needed for the constraints with fric-

tion. The result of a constraint resolution is a new response
force f (k)

i , replacing immediately the previous one. Note that
wi j does not have to be given each time, as it is constant for
one system resolution.

We compute the error as err = ∑i wi j(f (k)
i − f (k−1)

i) and
stop iterating the Gauss-Seidel when it goes below a cer-
tain tolerance, or a maximum number of iterations has been
reached.

The modified Gauss-Seidel can be synthesized as:

repeat
reset error
forall constraints dimensions do

store previous force for error computation
compute δa from Eq. (1)
call the constraint-specific treatment
save new force
compute and add error

end
until error < tolerance ;

This method can handle closed loops as shown in Fig-
ure 7, but is restricted to non-conflicting constraints, which
should not happen if the they are carefully defined.

Note that adapting other iterative algorithms to the pro-
posed method should be straightforward.

Figure 7: A scene where bodies are constrained in a closed
loop.

5.4. A note on software architecture

On the implementation side, we use the object oriented pro-
gramming paradigm which enables us to define a general
constraint used by the resolution algorithm, and derive from
it a family of constraints, each with its own behavior and
data. This has shown a few advantages over a global con-
straints resolution algorithm:

Each individual constraint can store data, its own parame-
ters. When it needs to compute the response force created by
a constraint, the resolution algorithm only supply δa and f
defined at this time of the resolution. The operator w doesn’t
change and is known at the start of the constraints resolu-
tion.
Additional parameters are stored locally by the constraint
object for its internal use. For example, contact constraints
with friction store their friction coefficient, which can be dif-
ferent for each constraint. It is then possible to simulate con-
tact between objects with various surface friction.

Usually, a Gauss-Seidel algorithm computes the resolu-
tion one line at a time, each line representing a constraint di-
mension. It is not a problem for simple contact constraints,
or for multiple dimensions bilateral constraints which can
be transformed into multiple one-dimensional constraints.
However, friction contacts or sliding points with friction
need to work with at least 3 dimensions at once, and so the
resolution algorithm is usually adapted to this need.
We propose that the decision to use one or multiple lines is
not for the resolution algorithm to make, but that each con-
straint will inform the algorithm of its need. This way, sim-
ple contact constraints will use one line at a time, whereas

c© The Eurographics Association 2008.

26

Guébert et al. / Unified Processing of Constraints for Interactive Simulation

more complex constrains will have access to the additional
dimensions they require.

One aspect of the previous statement is that we can op-
timize constraints resolution for faster convergence of the
algorithm. What we mean is that for multiple dimensions
constraints like 3D fixed point constraint, we will opt for a
resolution per 3 by 3 bloc (instead of per line), even if they
can be constructed as 3 one-dimension constraints. We com-
pute for all dimensions f = wb

−1
δa, with wb the 3 by 3 bloc

matrix and wb
−1 being precomputed.

This approach makes possible the simulation of nonholo-
nomic or nonlinear constraints. We are also not limited to
constraints which can be expressed as a simple mathematic
relation between responce force and displacement. Contact
constraints can be deactivated during resolution if the objects
have been separated by other constraints, friction constraints
can be sticking or slipping depending of their own parame-
ters.
This opens a whole set of possibilities, and we can imagine
constraints which completely change their behavior during
resolution.

The design of the method was thought in order to pro-
mote the creation of new types of constraints. Indeed, adding
a new constraint is often limited to describing its law of be-
havior. The constraints resolution algorithm does not need to
be changed in any way, as it manipulates only generic con-
straints. We do not restrain the constraints to abide by strict
rules, as they choose their number of dimensions, and the
data they need for their resolution.

6. Results

We integrated our method into the SOFA framework [SOF],
and used the collision detection and integration schemes it
proposes. The measures we present for the example scenes
were done on a bi-Xeon 2.66Ghz.

6.1. Sliding constraint

As a way of testing the framework, we created a new type of
constraint: the sliding constraint, whose purpose is to main-
tain an object on a curve. It is a bilateral constraint, defined
between a curve described as a set of connected segments
and a set of points which are to be constrained.

At each time step, we compute the closest point to the ob-
ject on the curve, and the tangential direction of the curve at
this point. A bilateral constraint is then created along the 2
orthogonal directions (see Figure 8), the violation of the con-
straint being the distance between the object and the curve.

The tangential direction is not constrained, so the object is
able to move along the curve during the free motion, and is
only projected back to the closest point. During the compu-
tation of the projected point, we detect if it would be outside

Figure 8: Sliding constraints define a direction toward the
closest point on the curve.

the boundaries of the current segment, and continue onto the
next segment of the curve in this direction. This is done in-
stead of searching only for the closest segment, and allows
for complex paths, loops and sharp angles.
We detect when the object is at one end of the curve, and
depending on the parameters of the scene, either a new uni-
lateral constraint is created preventing the object from falling
off the curve, or we disconnect the object from the curve and
destroy the sliding constraint of this particular point. A spe-
cialization of this sliding constraint has been created, adding
friction in the tangential direction, depending on the force
pulling the object on the curve.

6.2. Examples

The purpose of our method is to be able to represent com-
plex interactions between heterogeneous bodies, for real-
time simulations.

We first present 2 simple scenes. Figure 9.a shows the use
of bilateral constraints, more precisely 3d fixed points, and
contact. The top cube is fixed, the others are then attached to
each other, all bodies are rigid. Collision detection can create
contact constraints, as shown here between the two cubes at
the bottom.

Figure 9: (a) Rigid cubes constrained with bilateral con-
straints. (b) Collision with friction and fixed point constraint.

Figure 9.b illustrate contact constraints with friction. Two
rigid cubes are connected with a 3d fixed point constraints,
and fall freely on a inclined plane. By varying the friction

c© The Eurographics Association 2008.

27

Guébert et al. / Unified Processing of Constraints for Interactive Simulation

of constraints 15
Free motion 0.6 ms
Collision detection 0.3 ms
Constraints creation 0.08 ms
Resolution 0.02 ms
Movement correction 0.05 ms

Table 1: Measures for the scene of Figure 9.a

coefficient, we can have either slipping or sticking contact.
The user can interact with the objects, and stack the cubes as
shown here.

of constraints 27
Free motion 0.2 ms
Collision detection 0.4 ms
Constraints creation 0.09 ms
Resolution 0.9 ms
Movement correction 0.04 ms

Table 2: Measures for the scene of Figure 9.b

These 2 scenes are compatible with complete haptic feed-
back, as the mechanic resolution runs at 1kHz.

We finally show a more complex simulation, using all the
constraints we introduced, and different types of bodies. Fig-
ure 10.b presents the configuration of this scene. We used
more detailed, rigid and deformable bodies, sliding on a de-
formable wire modeled with beams. This cable is fixed at its
extremities by bilateral constraints, and collision detection
dynamically create contact constraints with friction.

This simulation runs at interactive rates, approximately
20 fps. Note that the computations added by our method,
namely constraints creation and resolution and movement
correction are still relatively fast. The bottleneck in this
scene is the collision detection, which is offered by the
framework we used.

of constraints 60
Free motion 26 ms
Collision detection 41 ms
Constraints creation 3 ms
Resolution 0.5 ms
Movement correction 2 ms

Table 3: Measures for the scene of Figure 10

7. Conclusion

We have presented a generalized method for resolving dif-
ferent types of constraints for real-time simulations. We pre-
sented how we modified an existing Gauss-Seidel algorithm,
with minimal overhead. We have shown that new constraints

Figure 10: All constraints in a complex scene with de-
formable and rigid bodies.

Figure 11: The same scene with (a) 2 rigid bodies; (b) 2
deformable models (see dragons’ faces contact).

c© The Eurographics Association 2008.

28

Guébert et al. / Unified Processing of Constraints for Interactive Simulation

of all kinds can easily be added to the framework and that
interactive rates are achieved, even for complex interactions.

In the future, we would like to continue creating new con-
straints, for applications in medical simulations, in particu-
lar suturing tasks. The high rates at which the mechanic is
solved open perspectives in haptic feedback research.

In the method we presented, the constraints are always de-
stroyed at each time step, and the Gauss-Seidel has no initial
guess to start the resolution. We want to investigate the pos-
sibility of optimizing the constraints creation and resolution
by storing results between time steps.

8. Acknowledgements

The Authors would like to thank reviewers for useful com-
ments on the submitted work. SOFA development team also
provided useful support. This work is partially funded by
ANR project VORTISS ANR-2006-MDCA-015 and ANR
project Part@ge ANR-06-TLOG-031.

References

[APS99] ANITESCU M., POTRA F., STEWART D.: Time-
stepping for three-dimentional rigid body dynamics.
Computer Methods in Applied Mechanics and Engineer-
ing, 177 (1999), 183–197.

[Bar89] BARAFF D.: Analytical methods for dynamic
simulation of non-penetrating rigid bodies. In SIG-
GRAPH ’89: Proceedings of the 16th annual conference
on Computer graphics and interactive techniques (New
York, NY, USA, 1989), ACM, pp. 223–232.

[Bar96] BARAFF D.: Linear-time dynamics using la-
grange multipliers. In SIGGRAPH ’96: Proceedings of
the 23rd annual conference on Computer graphics and in-
teractive techniques (New York, NY, USA, 1996), ACM,
pp. 137–146.

[DDKA06] DURIEZ C., DUBOIS F., KHEDDAR A., AN-
DRIOT C.: Realistic haptic rendering of interacting de-
formable objects in virtual environments. IEEE Trans-
actions on Visualization and Computer Graphics 12, 1
(2006), 36–47.

[DLC07] DEQUIDT J., LENOIR J., COTIN S.: Interactive
contacts resolution using smooth surface representation.
In MICCAI (2) (2007), pp. 850–857.

[Fea99] FEATHERSTONE R.: A divide-and-conquer
articulated-body algorithm for parallel o(log(n)) calcula-
tion of rigid-body dynamics. The International Journal of
Robotics Research 18, 9 (1999), 876–892.

[LF04] LENOIR J., FONTENEAU S.: Mixing deformable
and rigid-body mechanics simulation. Computer Graph-
ics International, 2004. Proceedings (June 2004), 327–
334.

[MJ96] MOREAU J.-J., JEAN M.: Numerical treatment of
contact and friction : the contact dynamic method. Engi-
neering Systems Design and Analysis, vol 4 (1996), 201–
208.

[Mur97] MURTY K.: Linear complementarity, linear and
nonlinear programming. internet edition, 1997.

[RA02] RENOUF M., ALART P.: Conjugate gradient type
algorithms for frictional multi-contact problems: applica-
tions to granular materials. Computer Methods in Ap-
plied Mechanics and Engineering, 18-20 (2002), 2019–
2041 vol.194.

[RK00] RUSPINI D., KHATIB O.: A framework for multi-
contact multi-body dynamic simulation and haptic dis-
play. Intelligent Robots and Systems, 2000. (IROS 2000).
Proceedings. 2000 IEEE/RSJ International Conference
on 2 (2000), 1322–1327 vol.2.

[RKC02] REDON S., KHEDDAR A., COQUILLART S.:
Gauss’ least constraints principle and rigid body simula-
tions. Robotics and Automation, 2002. Proceedings. ICRA
’02. IEEE International Conference on (2002), 517–522
vol.1.

[SDCG08] SAUPIN G., DURIEZ C., COTIN S., GRISONI

L.: Efficient contact modeling using compliance warping.
In Computer Graphics International Conference (CGI)
Istambul, Turkey, (june 2008).

[SOF] Simulation open framework architecture. http:
//www.sofa-framework.org.

[WGW90] WITKIN A., GLEICHER M., WELCH W.: In-
teractive dynamics. SIGGRAPH Comput. Graph. 24, 2
(1990), 11–21.

c© The Eurographics Association 2008.

29

http://www.sofa-framework.org
http://www.sofa-framework.org

