An Efficient Trim Structure for Rendering Large B-Rep Models Supplemental Material

Frédéric Claux ${ }^{1,2}$, David Vanderhaeghe ${ }^{1}$, Loïc Barthe ${ }^{1}$, Mathias Paulin ${ }^{1}$, Jean-Pierre Jessel ${ }^{1}$, David Croenne ${ }^{2}$
${ }^{1}$ IRIT - Université de Toulouse $\quad{ }^{2}$ Global Vision Systems

1. Multiresolution access

To find a quadtree node covering less than a screen pixel (see the above Figure), we approximate the footprint of the pixel in parametric space with a parallelogram P defined by the two following vectors:

$$
q=\left(\frac{\partial u}{\partial x}, \frac{\partial v}{\partial x}\right) \text { and } r=\left(\frac{\partial u}{\partial y}, \frac{\partial v}{\partial y}\right)
$$

We are searching for the largest side length s of an axis aligned square in parametric space that fits inside P. Such a square can be defined with the following properties:

- its center C is at the intersection of the diagonals of P
- its half diagonal length is equal to the shortest length of segments that start from C, in one of the four direction $(\pm 1, \pm 1)$, stopping at the intersection with P

Let C be the frame center, with coordinates $(0,0)$. The four points $P_{0}, P_{1,2}, P_{3}$ of P have the following coordinates in this frame:

$$
\begin{aligned}
& P_{0}=-a-b \\
& P_{1}=a-b \\
& P_{2}=a+b \\
& P_{3}=-a+b
\end{aligned}
$$

with $a=.5 q$ and $b=.5 r$. We derive the intersection computation and after simplification we obtain that the side lengths of the cubes corresponding to the four intersecting segments

