
Vision, Modeling, and Visualization (2012)
M. Goesele, T. Grosch, B. Preim, H. Theisel, and K. Toennies (Eds.)

Interactive Geometry-Aware
Segmentation for the Decomposition of Kaleidoscopic Images

O. Klehm1,2 I. Reshetouski1,3 E. Eisemann2,4 H.-P. Seidel1 I. Ihrke1,3

1MPI Informatik 2Intel Visual Computing Institute 3Saarland University 4Delft University of Technology / Télécom ParisTech

Figure 1: a) Input: Kaleidoscope image. b) User-drawn mask (green checkerboard pattern). c) User-drawn mask isolated. d)
Approximate visual hull generated from (c) using image-based shading. e) Resulting labeling via visual hull.

Abstract

Mirror systems have recently emerged as an alternative low-cost multi-view imaging solution. The use of these systems
critically depends on the ability to compute the background of a multiply mirrored object. The images taken in such
systems show a fractured, patterned view, making edge-guided segmentation difficult. Further, global illumination and
light attenuation due to the mirrors make standard segmentation techniques fail.
We therefore propose a system that allows a user to do the segmentation manually. We provide convenient tools that
enable an interactive segmentation of kaleidoscopic images containing three-dimensional objects. Hereby, we explore
suitable interaction and visualization schemes to guide the user. To achieve interactivity, we employ the GPU in all stages
of the application, such as 2D/3D rendering as well as segmentation.

Categories and Subject Descriptors (according to ACM CCS): I.4.6 [Image Processing and Computer Vision]:
Segmentation—Region growing, partitioning

1. Introduction

Until recently, surround multi-view imaging has required the use
of hardware-parallel multi-camera systems [NRK98,WJV∗05]
or the time-sequential acquisition of different view points by
moving the camera around the object [GGSC96]. An initial
study that employed inter-reflections in mirror systems to
acquire a surround light field view of a flat surface was presented
by Han and Perlin [HP03]. The short-coming of their technique
is that extended three-dimensional objects cannot be easily
handled. The main challenge for using so-called kaleidoscopic
images of extended three-dimensional objects is the occlusion
of the virtual copies of an object by the object itself or by
some other virtual copy, see Fig. 1a). Recently, Reshetouski et
al. [RMSI11] presented a geometrical solution to this problem.
The authors developed a segmentation scheme that is based on

the approximation of the object geometry by means of visual
hull reconstruction, Fig. 1d). The approximate geometry is then
used to determine visibility of the object to different virtual
perspective projections generated by the mirror system, Fig. 1e).

Their method relies on a segmentation of the kaleidoscopic
image into foreground and background. The background pixels
are used to determine the object geometry by space carving.
The accuracy of this approach is determined by the quality
of the image segmentation. The complexity of images in a
mirror system makes automatic segmentation a non-trivial
task. Using edges [RKB04, UPT∗08] is difficult due to the
numerous non-object edges arising from mirror boundaries.
Standard background subtraction, taking a background image
and subtracting it from the image containing the object, is
challenging due to changing global illumination conditions.

c© The Eurographics Association 2012.

DOI: 10.2312/PE/VMV/VMV12/009-014

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/PE/VMV/VMV12/009-014


O. Klehm, I. Reshetouski, E. Eisemann, H.-P. Seidel, I. Ihrke / Interactive Geometry-Aware Segmentation for Kaleidoscopic Images

Similarly, color-based segmentation is difficult because of the
attenuation introduced by the mirror surfaces.

For these reasons, we propose an intuitive environment to
perform the segmentation manually, Fig. 1c). However, even for
humans the task is usually non-trivial and tedious. Our interactive
application enables a fast manual foreground/background
segmentation of kaleidoscopic images for high-quality results
by guiding the user and giving constant feedback Fig. 1b). In
summary:

• We present an application, that allows for manual fore-
ground/background segmentation and provides feedback to
the user in the 2D kaleidoscope domain as well as the 3D
domain of the visual hull.
• We describe an on-line technique for estimating the visual

hull of an object inside a kaleidoscope system of arbitrarily
positioned planar mirrors.
• We explore suitable interaction schemes and visualization

techniques that guide the user in rapidly creating an accurate
segmentation.
• We handle the heavy computations of drawing, rendering,

visual hull derivation, and labeling by exploiting the GPU.

2. Related Work

Mirror systems are an attractive low-cost alternative to
multiple-camera systems for the acquisition of multi-view im-
agery. Early work included virtual stereoscopic systems and the
analysis of single camera/mirror configurations for the design of
catadioptric camera systems. Han and Perlin [HP03] pioneered
the use of kaleidoscopic imaging systems for recording a large
number of virtual views with a low number of mirrors, exploiting
inter-reflections inside the system. They used the system in a
bi-directional manner by projecting light into it, which enables re-
flectance scanning. However, the imaged surface had to be flat in
order to avoid self-occlusion of the object and its virtual counter-
parts. Levoy et al. [LCV∗04] allow for three-dimensional objects
by positioning the mirrors such that no inter-reflections, and there-
fore no occlusion can occur. In this setting, a separate mirror for
every virtual camera is required. Alternatively, inter-reflections
can be allowed, but the object needs to be positioned such that
overlap in the camera image [FNJV06] is avoided, restricting
flexibility. Two-mirror systems have also been used in an active
illumination context [LCT09] and it has been shown that mirror
systems with flexible object/camera positioning can be used for
multi-view imaging [RMSI11] by decomposing the image into its
constituent virtual views. The basis of the computation exploits
the visual hull of the object under investigation from a single sil-
houette image. The method can be extended to decompose active
illumination patterns such that they strike the object from a single
direction only [IRM∗12]. The applicability of such flexible new
imaging techniques depends heavily on an accurate segmentation
of the kaleidoscope image into foreground and background.

Segmentation is one of the fundamental problems in computer
vision. In spite of its importance it is not considered a solved topic.

The reason for this is that, usually, semantic information dictates
the goal of a segmentation algorithm. Often, these goals are
user-dependent. Since the topic is vast, we can only give a coarse
overview. The earliest approaches to the problem were based
on color classification schemes and thresholding, e.g. in suitable
color spaces and by exploiting histogram information [SS04].
Region-based approaches are based on identifying areas of
similar color, an example is watershed segmentation [VS91]. A
major step in the development of segmentation algorithms came
with the introduction of active contours [KWT88], deformable
curves that adapt to edges while minimizing some energy func-
tional such as the length of the boundary curve of the segmented
region. Initially, these energies were minimized using parametric
curve models. Geodesic active contours [CKS97] formulated the
task as a level set problem which allows for arbitrary topology
of the segmented parts. The energy functionals can, e.g., be
minimized with graph cuts [BJ00] but also with convex relax-
ation schemes [UPT∗08]. Since the goals of the user are usually
not known beforehand, a number of interactive segmentation
methods utilizing the energy minimization schemes described
above have been developed [RKB04,CFRA07,UPT∗08]. Finally,
alpha matting [CCSS01] can be regarded as a continuous-valued
segmentation of the image whereas the techniques discussed
before result in a binary segmentation.

The ultimate goal of our paper is an interactive multi-valued
segmentation of an image taken within a system of planar
mirrors, Fig. 1e). The image is to be decomposed into a number
of virtual views that are present in the image. Each pixel is to
be assigned a view-projection matrix for the corresponding view.
The basis for this is a silhouette image, a binary segmentation of
the camera image in conjunction with the calibration parameters
of the camera/mirror system [RMSI11], Fig. 1a, c). We employ
a high-level symmetry prior (the kaleidoscope geometry) in
this work in contrast to the above techniques. In the case of
kaleidoscopic image segmentation it is not sufficient to apply
the low-level prior of preferring strong edges while maintaining
a short length of the boundary curve. There are two main
reasons. First, many fractured multiply mirrored intersection
lines between mirrors result in a high total count of strong edges
that do not demark object boundaries. Second, on the order of
hundreds of virtual objects are present in a single kaleidoscopic
camera image, resulting in rather long and inhomogeneous
boundaries between foreground and background.

Cosegmentation has recently been introduced as a novel tool
for segmenting a large number of images showing similar
objects simultaneously. The task usually explored in this area
is the segmentation of internet image collections. Exemplary
works use scribbles in a number of images in order to segment
a much larger collection [BKP∗10,KBCC10].

While an interesting avenue for future work towards an
automated solution, currently none of the proposed techniques
are applicable to our problem. We therefore aim our efforts at
developing an easy to use manual tool for the kaleidoscopic
segmentation problem that provides instant feedback and thus
enables high-quality segmentation results.

c© The Eurographics Association 2012.

10



O. Klehm, I. Reshetouski, E. Eisemann, H.-P. Seidel, I. Ihrke / Interactive Geometry-Aware Segmentation for Kaleidoscopic Images

Kaleidoscope mirror
virtual mirror (1 re�ection)
virtual mirror (2 re�ections)
mirror axis
object

Figure 2: Unfolding of the ray trajectories in the kaleidoscope
results in virtual camera and object positions.

3. Overview

We start by describing the setting of our system. We assume to
have a calibrated setup consisting of a camera C, a kaleidoscope
S containing planar mirrors, and an object O with unknown
geometry inside of it. Due to reflections, the camera image
K, taken by C, contains a combination of several views that
are fused together into a single multi-view image. As shown
in [RMSI11], K can be decomposed into parts that correspond to
a single virtual view of the object. This decomposition is called
a labeling L of K (see Fig. 1e) ).

The principle of a kaleidoscope is illustrated in Figure 2. It
shows a number of reflected ray paths of different reflection
orders shown in different colors. The unfolding procedure
introduced in [RMSI11] straightens the ray paths by mirroring
the physical system instead of the rays, creating a representation
of the virtual mirror world. In this representation, the physical
camera is being multiplied into a number of virtual counterparts
illustrated by the dashed lines, each describing a different virtual
view. The virtual camera rays correspond to reflected view rays
of the actual camera that is used to capture K.

We use the method of [RMSI11] to obtain the total set of
virtual cameras {C1,C2, ...,Cn} in conjunction with their view-
projection matrices. A virtual-camera image C can be used to
store for every pixel in the kaleidoscope image K an associated
set of potential virtual cameras, i.e., for every pixel p(C), we have
a set of associated virtual cameras: Cp = {Cp1,Cp2, ...,Cpnp},
np <N, where N is the maximum level of reflections that we take
into account in the decomposition (typically N = 7), which is rea-
sonable because each mirror attenuates the image. We refer to the
set of pixels that are potentially assigned to a virtual camera as its
footprint. This set can be precomputed, as it only depends on the
configuration of S and C. Any cone through a pixel from the cam-
era center can be followed through S. Care has to be taken when
a cone is near the border between two mirrors. Here, it is split
into two different light paths and our assumption of a virtual cam-
era would fail. Hence, we exclude these pixels entirely from our
considerations. The process is fast and maps nicely on the GPU.

As soon as we have an object O, rays might not follow their
original path inside the kaleidoscope S, but might be intercepted

Kaleidoscope mirror
case 1
case 2

Figure 3: Placing an opaque object inside the mirror system
determines the virtual camera that sees the object from a set of
potential cameras C1,C2,C3. For the blue object position, the
ray undergoes two reflections before hitting the object resulting
in camera C3 to be the virtual view. For the red object position
there is only a single physical reflection event before hitting the
object, resulting in the virtual camera C2 to be the virtual view.

by O. The ray path of the camera pixels are usually shorter than
the maximum ray path utilizing all N reflections. The presence
of O, hence, reduces the actual sequence of virtual cameras for
pixel p(C): {Cp1,Cp2, ...,Cpn′p}, where n′p ≤ np. In Fig. 3, we
show how the insertion of an object into the kaleidoscope can
determine a particular virtual camera from Cp for a pixel p.

The goal of this paper is to develop an interactive technique
for determining the correct assignment of one virtual camera
(Cpn′p) to every image pixel in a kaleidoscope image K. Hence,
the kaleidoscopic image can be decomposed into its constituent
views, enabling the application of standard multi-view geometry
reconstruction techniques as a post-process. Hereby, the origin
of the multi-view data is abstracted and makes it appear as if
it had been recorded with a physical system of a large number
of physical cameras.

We rely on a semi-automatic process for labeling with suitable
editing and visualization tools that help the user to interactively
achieve the goal with little effort. In the following, we will detail
the steps of our algorithm.

The input to our algorithm is the kaleidoscope image K with
the associated virtual-camera image C. Our goal is to label
the pixels of K; a pixel in the resulting label image L is either
classified as background or we associate the corresponding
virtual camera (Cpn′p). Determining L manually is difficult; one
would not know which virtual camera to associate. Instead, we
offer a simpler solution; one only marks background pixels
(those not showing any part of the object). We propose an
easy-to-use and efficient user interface (Sec.3.1) because despite
the input being binary, automatic methods are likely to fail.

Internally, our algorithm uses the background-pixel input to
update and determine the labeling (Sec. 3.2). The principle is
to employ a space-carving process [RMSI11]. In fact, every ray
corresponding to a background pixel can be used to determine
empty regions of the bounding box B of O, i.e., where there is
no object. By marking sufficiently many background pixels and

c© The Eurographics Association 2012.

11



O. Klehm, I. Reshetouski, E. Eisemann, H.-P. Seidel, I. Ihrke / Interactive Geometry-Aware Segmentation for Kaleidoscopic Images

removing the corresponding regions from B, the visual hull of
the object is reconstructed on the fly. Using the visual hull, a
labeling can be determined. At the same time, we inherit the
limitations of [RMSI11] by using the visual hull instead of the
true object geometry.

Because our solution interactively updates a 3D reconstruc-
tion, we can use it directly to guide the user when marking
background pixels (Sec.3.2). Further, we can shade the model
with a novel image-based technique, that applies surface
color from K, capturing even view-dependent effects, to ease
understanding of the shape (Sec.3.3).

3.1. User Interaction

In theory, the user could click on each pixel in K and associate
it to the background or the object. In practice, such an approach
would be cumbersome. Instead, we propose an on-the-fly
computation of the visual hull while attributing pixels to the
background. Hereby, the user can visualize the influence
of his indications on the reconstruction and then add pixel
classifications only where needed.

Our interface offers various means to mark regions, including
tools, such as different brushes and brush sizes, eraser, magic
wand, flood fill, and undo. These tools are used to mark pixels
in K as background. Starting with the magic wand and flood
fill, one can then rely on larger, afterwards finer brush strokes.
Every change, triggers visual hull updates (Sec.3.2), which are
illustrated efficiently (Sec.3.3) and we overlay the resulting label
image L on the canvas K.

While it would be possible to store a single mask, it is more
user friendly, to store the regions defined by one of the previous
drawing operations in a so-called patch. These patches are small
textures that are kept together with an offset to localize them
in K. All patches are shown with a small preview in a sidebar
of the interface and the user can simply decide to remove a
patch by deleting it from the sidebar. The second advantage
of keeping these interactions in patches is that we can employ
various resolutions for the different patches, in case sub-pixel
drawing is necessary. Technically, we store the patches as binary
textures and their content is ORed when being splat into the view.
Usually, each brush stroke can be added with a single splat, yet,
when deleting a brush stroke, all patches are splat. In practice,
this operation remains fast enough to not disturb the user.

Each time a new background pixel is added, we read
its underlying camera set Cp. We can conclude that the
corresponding viewing rays of all cameras missed the object.
This observation implies that a single background pixel actually
delivers information about various viewing rays at once. In
order to make use of this insight, we compute and display the
reconstructed visual hull. With this visualization, the user can
easily decide whether a sufficient amount of pixels have been
classified (see Fig. 4). Vice versa, a click on a voxel in the
current 3D reconstruction reveals all its corresponding pixels
in K. We further allow the user to re-fill voxels. Here, the user

clicks on a voxel and spans a sphere. We then back-project all
voxels inside the sphere to K and erase the background mask
at those pixels. We will see how to perform the visual hull
reconstruction from the background mask and how to even shade
the resulting 3D model convincingly in the following sections.

3.2. Efficient Visual Hull Reconstruction and Labeling

The visual hull is initially represented by a voxel volume defined
by B. All voxels are initialized to one. For each viewing ray result-
ing from a background pixel, we can carve (set to zero) several
voxels from the volume. Consequently, only a few region indica-
tions are often enough to yield a good reconstruction of the model.
To understand this point, one can consider a simple example.
When no object is placed in the kaleidoscope, all rays are back-
ground. Marking only those that are in the footprint of one cam-
era is often sufficient because, then, B will be found to be empty.

To keep the updates of the visual hull efficient, we make use
of several observations. First, changes to the visual hull only
occur where the user placed a background brush stroke. Hence,
we do not reconstruct everything in each frame, but restrict
the visual hull update to this particular region. To perform the
voxel carving for a given background pixel p, we perform a ray
marching procedure following the corresponding straightened
viewing ray for each of the virtual cameras in Cp. The use of the
virtual camera concept avoids intersection computations with
the mirror planes and we can simply intersect the bounding box
of the object with each camera ray in order to determine the ray
marching region. The per pixel, virtual camera ray marching
can be performed in parallel, even without the need for memory
synchronization, making it highly suitable for the GPU.

Care has to be taken to not miss voxels. So, instead of
performing a fixed-step ray marching, we rely on an accurate
method [AW87], which can be efficiently implemented on the
GPU. The idea is to advance from one plane along the principle
axes to the next, where all planes are defined by the voxels’
faces. For every voxel traversed by the ray, we update the visual
hull (represented as a 3D texture) and set the corresponding
voxel value to zero.

To compute a labeling using the visual hull, we go over C
and launch for each virtual camera and pixel a corresponding
ray against the visual hull in a shader. Starting with the lowest
camera index (the least reflections), we can stop the loop per
pixel, as soon as a tested ray leads to an intersection. The
corresponding camera index is then stored in L.

We experimented with various implementations. Ultimately,
the best performance was reached, when storing all virtual
camera matrices as a group of four vec4 in a 1D texture
buffer. The voxel volume was best represented with an 8bit
3D texture containing a single color channel and updated
using the new OpenGL image-load-store extension. To reduce
memory consumption, we also tried solutions that pack groups
of voxels into bit sequences [ED08, SS10], e.g. packing a
group of 4x4x4 voxels in a RG32UI texture. Unfortunately, this

c© The Eurographics Association 2012.

12



O. Klehm, I. Reshetouski, E. Eisemann, H.-P. Seidel, I. Ihrke / Interactive Geometry-Aware Segmentation for Kaleidoscopic Images

requires read-write synchronization (atomic texture access) for
the visual hull computation, which makes the computation slow.
Furthermore, despite the lower bandwidth, even the display of
the visual hull, as explained in the next section, proved too slow
because the bit sequences needed to be reinterpreted.

3.3. Visual Hull Display

Having a visual hull representation efficient display methods
are needed for visual feedback. We provide two different ones;
a direct rendering of the visual hull via ray marching, as well
as an advanced mode that shades the model via an image-based
solution using derived normals.

The standard mode that shows the volume as a semi-
transparent object is useful when wanting to illustrate all
its intersections with virtual rays corresponding to a drawn
patch (see Fig. 4). Here, we apply a simple emission and
absorption model, giving the voxels specified colors and
densities depending on whether they are part of the visual hull,
the current patch, or the intersection of both.

In order to produce a realistic view, we make use of K to
shade the object. Here, we apply a deferred rendering approach.
In a first rendering pass, we create a position and normal image
of the first visible layer of the visual hull for the current view
camera. The images are used in a second pass, where we
perform the actual shading, accessing K. Finding the first visible
layer is again achieved via ray marching. While voxels have 6
different normals (one for each face) that we can directly use for
visualization purposes, better results are obtained by computing
normals from an isosurface of a downsampled volume. In other
words, we compute an average density of the voxels in a small
neighborhood. Next, we compute a normal via finite differences.
Depending on the neighborhood size, these surface normals are
usually of sufficient quality. In the second pass, we project the
first visible voxel V to all virtual camera views. For each view,
we check via L whether V is classified as being visible by this
view. For each corresponding color value Cc

i from view i, we
compute a weight wi and display the color ∑wiCc

i on the screen.
If V is not visible (label is not valid) for camera i, the surface
normal n is opposing the virtual camera direction Cω

i , or the
virtual camera direction is opposing the view camera direction
ωp, then wi is zero. Else, we define wi := (Cω

i ·ωp)(Cω
i ·n).The

first factor favors virtual-camera views close to the current view
(to capture specular effects), the second term ensures that no
false views are considered. Fig. 4 shows results of this method.

4. Results

Our software provides the possibility of direct user feedback
on a standard computer system with an NVIDIA GeForce
560Ti. Even when just hovering the mouse, the application
shows the effect of the potential drawing operation in 3D,
see Fig. 5. During drawing, the visual hull visualization is
constantly updated, giving the user instant feedback in the 3D
domain. This gives a clear advantage over drawing with standard

Figure 4: Semi-transparent mode (left): Depending on its
state, each voxel is assigned color and density: part of the visual
hull (white, low density), covered by the brush (blue, medium
density), intersection of both (red, high density; top part of
image). Image-based shading (middle and right): Color values
are transferred from the kaleidoscope image.

Figure 5: Showing the application in action: The user draws
in the window on the right side. Already drawn patches are
rendered with a green checkerboard pattern and are listed in a
widget at the right border. The current visual hull and a preview
of the current brush are rendered in the left window.

image-editing tools like Photoshop and performing a blind visual
hull reconstruction as in previous work. Further, the labeling can
be quickly recomputed after each operation and visualized in
the 2D kaleidoscope image (although this particular step is not
optimized in our current implementation, it takes less than 400ms
for a 20MP image). Via the feedback, the user is guided towards
areas where a refinement of the background mask is useful,
making the entire labeling very simple. Similarly, the concurrent
3D visualization and label image help the user in adjusting false
background markings. In such a case not just the 3D visualiza-
tion will look incorrect, also the labeling does not correspond
to the kaleidoscope color image anymore. Direct feedback
mechanisms enable quick and correct background markings.

While the labeling is a two-dimensional feedback, the 3D
visual hull can be useful as well. If the user marks pixels in K, the
corresponding ray bundles can affect many parts of the 3D space
at once. The semi-transparent rendering of the visual hull and the
ray bundles enables the user to quickly estimate the voxels part
of the ray bundles in relationship to the voxels of the visual hull.

The application itself scales well with a high number of
strokes. Memory consumption is kept low as stroke data is stored
in form of compact patches. Further, visual hull updates are fast,
especially when limiting to the bounding box of a stroke, leading
to instant feedback of the 3D visual hull (less than 200ms).
Operations like undo, erasing, or deleting strokes are slightly

c© The Eurographics Association 2012.

13



O. Klehm, I. Reshetouski, E. Eisemann, H.-P. Seidel, I. Ihrke / Interactive Geometry-Aware Segmentation for Kaleidoscopic Images

Figure 6: Left: Labeling result for the angel. Right: Correspond-
ing visual hull rendered with image-based shading.

more costly as they require to process all strokes and, hence, a
full reconstruction of the visual hull. Here, the computation time
may reach around a second, and a delay can be experienced.
Nonetheless, we observed that those operations are not very often
performed and the entire labeling process stays user-friendly.

Overall, the system allows a user to rapidly segment an object
and the examples in this paper all involved less than 15 minutes
(usually 10-15) of user interaction. The effectiveness is best
illustrated in the accompanying video. An additional example
is shown in Fig. 6.

5. Conclusions

Kaleidoscope systems have many advantages over multi-camera
systems; they are cheap and easy to use. Nonetheless, separating
the fused views can be difficult. Our solution is an easy-to-use
system that allows a user to rapidly segment object pixels from
the background. The input is automatically transferred to other
parts of the image by relying on tests against an on-the-fly
construction of the visual hull of the object. We presented
an efficient algorithm to perform these computations and
various rendering strategies to support the user in its task. With
our system, the use of kaleidoscope imagery can become an
interesting alternative to more complex multi-camera setups.

An interesting area for future work is the extension of our
solution by adding more automation to the segmentation process.
This can be done, for example, by incorporating user-supervised
cosegmentation or GraphCut-based approaches into the existing
system.

Acknowledgements

This work was supported by the German Research Foundation
(DFG) through the Emmy-Noether fellowship IH 114/1-1 and
by the Intel Visual Computing Institute (IVCI) at Saarland
University.

References
[AW87] AMANATIDES J., WOO A.: A Fast Voxel Traversal

Algorithm for Ray Tracing. In Eurographics ’87 (1987), pp. 3–10. 4

[BJ00] BOYKOV Y., JOLLY M.-P.: Interactive Organ Segmentation
using Graph Cuts. In Proc. of MICCAI, LNCS 1935 (2000), Springer,
pp. 276–286. 2

[BKP∗10] BATRA D., KOWDLE A., PARIKH D., LUO J., CHEN
T.: iCoseg: Interactive Co-segmentation with Intelligent Scribble
Guidance. In Proc. CVPR (2010), pp. 1–8. 2

[CCSS01] CHUANG Y.-Y., CURLESS B., SALESIN D., SZELISKI
R.: A Bayesian Approach to Digital Matting. In Proc. CVPR (2001),
pp. 264–271. 2

[CFRA07] CREMERS D., FLUCK O., ROUSSON M., AHARON
S.: A Probabilistic Level Set Formulation for Interactive Organ
Segmentation. In Proc. of SPIE Medical Imaging (2007). 2

[CKS97] CASELLES V., KIMME R., SAPIRO G.: Geodesic Active
Contours. IJCV 22, 1 (1997), 61–79. 2

[ED08] EISEMANN E., DÉCORET X.: Single-Pass Solid Voxelization
for Real-Time Applications. In Proc. of Graphics Interface (2008). 4

[FNJV06] FORBES K., NICOLLS F., JAGER G. D., VOIGT A.:
Shape-from-Silhouette with two Mirrors and an Uncalibrated Camera.
In Proc. ECCV (2006), pp. 165–178. 2

[GGSC96] GORTLER S. J., GRZESZCZUK R., SZELISKI R., COHEN
M. F.: The Lumigraph. In Proc. SIGGRAPH (1996), pp. 43–54. 1

[HP03] HAN J. Y., PERLIN K.: Measuring Bidirectional Texture
Reflectance with a Kaleidoscope. In Proc. SIGGRAPH (2003),
pp. 741–748. 1, 2

[IRM∗12] IHRKE I., RESHETOUSKI I., MANAKOV A., TEVS A.,
WAND M., SEIDEL H.-P.: A Kaleidoscopic Approach to Geometry
and Reflectance Acquisition. In Proc. Workshop on Computational
Cameras and Displays (2012), pp. 1–8. 2

[KBCC10] KOWDLE A., BATRA D., CHEN W.-C., CHEN T.:
iModel: Interactive Co-segmentation for Object of Interest 3D
Modeling. In Workshop on Reconstruction and Modeling of
Large-Scale 3D Virtual Environments (2010), pp. 1–14. 2

[KWT88] KASS M., WITKIN A. P., TERZOPOULOS D.: Snakes:
Active Contour Models. IJCV 1, 4 (1988), 21–31. 2

[LCT09] LANMAN D., CRISPELL D., TAUBIN G.: Surround
Structured Lighting: 3-D Scanning with Orthographic Illumination.
CVIU 113, 11 (2009), 1107–1117. 2

[LCV∗04] LEVOY M., CHEN B., VAISH V., HOROWITZ M.,
MCDOWALL I., BOLAS M.: Synthetic Aperture Confocal Imaging.
ACM TOG 23 (August 2004), 825–834. 2

[NRK98] NARAYANAN P. J., RANDER P., KANADE T.: Constructing
Virtual Worlds using Dense Stereo. In Proc. ICCV (1998), pp. 3–10. 1

[RKB04] ROTHER C., KOLMOGOROV V., BLAKE A.: GrabCut:
Interactive Foreground Extraction using Iterated Graph Cuts. ACM
TOG 23, 3 (Aug. 2004), 309–314. 1, 2

[RMSI11] RESHETOUSKI I., MANAKOV A., SEIDEL H.-P., IHRKE
I.: Three-Dimensional Kaleidoscopic Imaging. In Proc. CVPR
(2011), pp. 353–360. 1, 2, 3, 4

[SS04] SEZGIN M., SANKUR B.: Survey over Image Thresholding
Techniques and Quantitative Performance Evaluation. SPIE JEI 13,
1 (2004), 146–168. 2

[SS10] SCHWARZ M., SEIDEL H.-P.: Fast Parallel Surface and
Solid Voxelization on GPUs. ACM Trans. Graph. 29, 6 (Dec. 2010),
179:1–179:10. 4

[UPT∗08] UNGER M., POCK T., TROBIN W., CREMERS D.,
BISCHOF H.: TVSeg - Interactive Total Variation Based Image
Segmentation. In Proc. BMVC (2008), pp. 335–354. 1, 2

[VS91] VINCENT L., SOILLE P.: Watersheds in Digital Spaces: An
Efficient Algorithm based on Immersion Simulations. IEEE Trans.
PAMI 13, 6 (1991), 583–598. 2

[WJV∗05] WILBURN B., JOSHI N., VAISH V., TALVALA E.-V.,
ANTUNEZ E., BARTH A., ADAMS A., HOROWITZ M., LEVOY M.:
High Performance Imaging using Large Camera Arrays. ACM TOG
24, 3 (July 2005), 765–776. 1

c© The Eurographics Association 2012.

14


