
Vision, Modeling, and Visualization (2011)
Peter Eisert, Konrad Polthier, and Joachim Hornegger (Eds.)

A View-Dependent and Inter-Frame Coherent Visualization
of Integral Lines using Screen Contribution

Tobias Günther1, Kai Bürger2, Rüdiger Westermann2 and Holger Theisel1

1Visual Computing group, University of Magdeburg
2Computer Graphics & Visualization group, Technische Universität München

Abstract
In vector field visualization, integral lines like stream, path, or streak lines are often used to examine the behavior
of steady and unsteady flows. In 3D, however, visualizing integral lines is problematic since the resulting geometric
structures cause occlusions, often hiding relevant features in the data. For this reason one important goal is to find
a minimum number of lines which can represent all relevant features in the vector field. In this paper we propose
a novel approach that reduces the number of displayed lines, and occlusions thereof, by smoothly fading out lines
based on their contribution to the viewport. In order to reduce visual clutter that is introduced by rendering multi-
ple line contribution into one pixel, the blending equation is slightly modified. In addition, an interactive brushing
is applied to further support exploration. Our approach attains a view-dependent visualization of integral lines
that is inter-frame coherent and achieves real-time frame rates. To demonstrate the effectiveness and efficiency of
our approach, we pursued a number of tests using real-world steady and unsteady vector fields.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

Integral lines are a popular tool for the investigation of flow
data. Usually a large number of lines is required to repre-
sent a vector field and since they are simple geometric struc-
tures, many of them can be rendered in a single scene. For
2D vector fields, a variety of algorithms exist to select an
appropriate number of stream lines to provide a complete
covering of the flow. The problem of selecting appropriate
stream lines for 3D fields is much more challenging because
two competing criteria have to be fulfilled: dense covering of
the domain and avoidance of visual clutter due to occlusion.
Thus, the selection of appropriate integral lines is a view-
dependent problem. Recently, a number of approaches for
this have been introduced. None of them has all interactive
frame rates, inter-frame coherence during interactive navi-
gation, and uncut stream lines (i.e., stream lines of maximal
length).

In this paper we describe the - to the best of our knowledge
- first algorithm of 3D stream line selection which fulfills all
of the properties mentioned above. Firstly, we select a set of
candidate stream lines which guarantee a dense sampling of

the domain. Then the main idea is to render all of them with
a varying view-dependent transparency. For computing the
transparency of a stream line, we propose a new line property
which we call screen contribution. It depends on the number
of fragments an integral line has on the viewport. This inher-
ently attains inter-frame coherence, which means lines do
not suddenly appear or disappear. Because of the recent ad-
vances in general purpose computing, our GPU implemen-
tation achieves real-time frame rates for reasonably complex
flows. Since flow visualizations have a high depth complex-
ity, we slightly modify the utilized order-independent trans-
parency technique to decrease the otherwise high perceptual
load.

The remainder of the paper is structured as follows. Re-
lated work is referred in section 2. Afterwards, we introduce
our approach (3). In the sequent section (4), we describe
the interactive brushing technique we additionally applied.
In section 5 the implementation is discussed and section 6
addresses the performance and compares to results from re-
lated work. Finally, section 7 concludes our achievements
and encourages further research. To test the algorithms the

c© The Eurographics Association 2011.

DOI: 10.2312/PE/VMV/VMV11/215-222

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/PE/VMV/VMV11/215-222

Günther et al. / A View-Dependent and Inter-Frame Coherent Visualization of Integral Lines using Screen Contribution

3D vector field sequences ’Stuttgart LES’ [FWT08] and
’Square Cylinder’ [Int] were used as well as the steady field
’Benzene’ provided by Hans-Christian Hege, which shows
the electrostatic field around a benzene molecule. The uni-
formly resampled version of the ’Square Cylinder’ sequence
is provided by Tino Weinkauf (cf. [vFWTS08]) and is based
on the Navier-Stokes simulation of Camarri et al. [CSBI05].

2. Related Work

In the last years many approaches were proposed for 2D
vector fields. Turk and Banks [TB96] and Jobard and Lefer
[JL97] early contributed influencing work. By now, the
seeding problem in 2D is essentially solved [VKP00, JL01,
MAD05, LMG06, LHS08]. The first 3D seeding approaches
were density-based (Mattausch et al. [MTHG03]), feature-
based (Ye et al. [YKP05]) or similarity-based (Chen et al.
[CCK07]). None of these approaches addressed occlusion,
the problem on which we focus.

Li et al. [LS07] introduced the first view-dependent 3D
seeding strategy, by executing the 2D seeding strategy of Jo-
bard and Lefer [JL97] to produce evenly-spaced stream lines
in image space. Since the seeding of lines requires a depth
value at every pixel, several alternatives for generating depth
maps were suggested. For a better representation of the vec-
tor field the seeding algorithm was executed from different
points of view and the seedpoint sets were combined for
the final image. To regard inter-frame coherence the stream
lines from the previous frame were validated first. However,
newly added lines introduce popping artifacts.

Annen et al. [ATR∗08] applied ideas from non-
photorealistic rendering to the seeding and integration of
streamlines and thereby introduced vector field contours.
These are selected stream lines that have the most similar be-
havior to contours on surfaces. Their seeding points depend
on the view direction, additional parameters and local con-
ditions. The forward and backward integration is stopped,
if the similarity to surface contours exceeds a certain thresh-
old. The extraction and rendering is inter-frame coherent and
achieves real-time frame rates.

Marchesin et al. [MCHM10] proposed a view-dependent
stream line algorithm, in which view-dependent and view-
independent properties were used for the selection of stream
lines. For the view-dependence an occupancy buffer was
computed. In this the number of overlapping lines for each
pixel is stored, divided by the line thickness. The occupancy
contributed to the pruning of a precomputed stream line
set and controlled the filling of empty regions with newly
seeded stream lines. The view-independent properties were
the linear entropy by Furuya et al. [FI08], which encodes the
uniformity of the stream line’s velocity and the angular en-
tropy, which constitutes the uniformity of the stream line’s
curvature. In the current state, this approach is neither inter-
active nor inter-frame coherent.

Recently Lee et al. [LMSC11] suggested to use a con-
ventional maximum intensity projection (MIP) of the scalar
entropy field, called maximum entropy projection (MEP).
Based on the thereby yielded MEP-framebuffer they pruned
a stream line set, which was precomputed by the seeding
algorithm of Xu et al. [XLS10]. This interactive visualiza-
tion was further improved by an optimization of the view-
point by maximizing the accumulated entropy of all pixels
of the viewport. This seeding algorithm does not yet main-
tain inter-frame coherence.

3. Screen Contribution

If the user can navigate interactively in the scene, he might
look at objects he is interested in or move closer to them.
Lines covering more area on the screen are assumed to be of
interest, while lines having only a few pixels on the screen
do not contain much information and can thus be rejected.
Our approach emphasizes integral lines that appear to be
of interest for the user by letting unimportant lines vanish.
Therefore, we propose a parameter that is defined per inte-
gral line and call it screen contribution S(i).

In a scene with many lines the depth complexity is very
high. Each pixel could contain hundreds of fragments that
have to be sorted. In order to deal with high depth complexi-
ties, an order-independent transparency algorithm is needed
that maintains the required memory dynamically. Fragment
linked lists [YHGT10] are currently the best choice for this
application, because memory is taken from a large mem-
ory pool only if it is needed and the technique requires just
one rendering pass. But there are two disadvantages: For the
memory allocation from the memory pool all threads have to
be synchronized at one single counter, which is a bottleneck.
And the execution passes of the threads during the bitonic
sort differ very often, which makes dynamic branching slow.
Nevertheless, the performance is good enough and no better
options are available so far.

3.1. Mapping to Transparency

Let the value N(i) constitute the number of pixels the line
with id i has in the first depth layer. Let i be the line id, w
the screen width, h the screen height and f a function that
returns one, if the first fragment of the fragment linked list
at position (x,y) has the integral line id i.

N(i) =
w−1

∑
x=0

h−1

∑
y=0

f (x,y, i)

f (x,y, i) =

{
1 f ront(x,y) = i
0 else

If the user looks at an integral line, N(i) is high and increases
if the user moves closer to the line. Lines that are mostly
covered are less interesting at this view. If the user is more
interested in a line, he has to adjust the camera position to

c© The Eurographics Association 2011.

216

Günther et al. / A View-Dependent and Inter-Frame Coherent Visualization of Integral Lines using Screen Contribution

Figure 1: Cubic Hermite Interpolation

get a better look. A cubic hermite interpolation (Figure 1)
between the borders a and b is used in order to map N(i) to
an opacity value in [0..1]. The High Level Shading Language
(HLSL) offers an intrinsic function called smoothstep that
implements this interpolation.

smoothstep(a,b,x) = 3t(a,b,x)2−2t(a,b,x)3

t(a,b,x) = saturate
(

x−a
b−a

)
The screen contribution S(i) is then computed as

S(i) = smoothstep(a,b,N(i)) (1)

Note that a and b are parameters set by the user. Different
choices of a and b are shown in figures 8, 11 and 12 later on.

3.2. Screen Contribution Blending

The human visual perception is capable to distinguish only
a rather limited number of transparent objects (compare fig-
ures 2a, 2b and 2c). To reduce the information encoded by a
certain pixel, we modify the blending equation. When blend-
ing two fragments, the more interesting fragment is known,

(a) 500 opaque path lines with
500 segments each, depth-
dependent halos and 4x MSAA
at 55fps.

(b) Fragment linked lists with
uniform transparency and stan-
dard blending. Achieves 26fps
at 4x MSAA.

(c) Fragment linked lists with
screen contribution blending.
Achieves 16fps at 4x MSAA.

(d) Fragment linked lists with
screen constribution blending
and brushing. Achieves 13fps at
4x MSAA.

Figure 2: Screen contribution blending and brushing com-
pared to standard blending.

Left: Front fragment has higher screen contribution
than the fragment behind and thus the color behind
is rejected entirely. Right: Front fragment has lower
screen contribution. It is rendered transparently.

Figure 3: Depiction of the screen contribution blending.

since important and less important integral lines can be al-
ready distinguished. If the source fragment is more interest-
ing than the destination fragment, the destination fragment
is rejected entirely by setting the opacity of the source pixel
to one. In the opposite case the two fragments get interpo-
lated by the alpha value of the source fragment (see figure 3).
This means, important integral lines are always visible even
if they are partially covered by a less important line, because
the covering pixel is transparent. The minimum transparency
of all fragments in the list is used to blend the final fragment
color with the backbuffer (see figures 2c and 4). The modi-
fied back-to-front blending operation looks as follows, if all
fragments are sorted by depth from far to near: ∀n : zn > zn+1

fsc(n) =

c0 n = 0

fsc(n−1)αn + cn (1−αn) S(n)< S(n−1)
cn else

(a) Opaque streak lines.

(b) Using screen contribution.

Figure 4: 400 streak lines with 4x MSAA at 34 fps.

c© The Eurographics Association 2011.

217

Günther et al. / A View-Dependent and Inter-Frame Coherent Visualization of Integral Lines using Screen Contribution

4. Interactive Brushing

Since the fading to transparency is based on a global crite-
rion, the decision might not be ideal locally. Thus, we imple-
mented an exploration tool that allows to fade selected lines
back in. For the selection of lines or line bundles many tech-
niques are imaginable. In our implementation the viewer se-
lects one integral line and in its screen-space neighborhood
all similar lines in a certain window are selected as well. We
preferred to select similar lines to support the user in explor-
ing regions of coherent flow. Assuming a window size of w
times h pixels, the rectangular window is spanned around the
selected pixel Psel by the points:

Ptople f t =

(
Psel .x−

w
2
, Psel .y−

h
2

)
Pbottomright =

(
Psel .x+

w
2
, Psel .y+

h
2

)
For each pixel inside the window the program iterates over
the fragment linked lists and compares the recorded integral
lines to the selected line by using the following similarity
metric.

similarity(i, j) =
√

(EA(i)−EA(j))2 +(EL(i)−EL(j))2

(2)
Furuya et al. [FI08] showed an equation for the computation
of the linear entropy EL and Marchesin et al. [MCHM10]
formed an equation for the angular entropy EA (first line of
equation 3), but in the proposed form, two iterations over all
line segments are necessary. For this reason we rearranged
the formulas into a form requiring only a single pass. See
equation 3 for the angular entropy. The rearrangement of the
linear entropy formula is analog. This allows to compute the
measures on-the-fly during the integration, without any need
for an additional iteration over all line segments.

m: number of line segments
A j: absolute value of the angle at the j-th line joint
LA = ∑

m−1
j=0 A j

EA = − 1
log2(m)

m−1

∑
j=0

A j

LA
log2

A j

LA
(3)

= − 1
log2(m)

(
∑

m−1
j=0 A jlog2A j

LA
− log2LA

)
All selected lines set their respective highlight flag hid ∈
{0,1} in a buffer, which is cleared to begin at each frame. In
an additional interest buffer, the interest iid ∈ [0,1] is com-
puted smoothly by progressive fading.

iid := iid +(hid− iid) · f f ∈ R,0 < f ≤ 1 (4)

Thereby iid moves each frame f percent closer to the aimed
value, i.e. hid . The context is visualized by using screen con-
tribution blending, while the focus region is rendered fully
opaque with slight over exposure (see figure 2d).

5. Implementation

The following section describes the implementation of the
screen contribution blending in more detail. The integral
lines were seeded by the user and use fourth order Runge-
Kutta integration with fixed step size. During the integration,
the linear and angular entropy are computed on-the-fly (see
equation 3) and stored in a byte address buffer, which we
call metrics buffer. Yang et al. [YHGT10] described how to
create fragment linked lists concurrently during rendering.
Their approach is available in the DirectX SDK [DxS09] and
was further improved by Yakiimo [Yak10]. The steps of our
approach are depicted in figure 5.

Illustration of the five steps performed by our approach.

Figure 5: Concept of Screen Contribution OIT.

In a pre-processing pass we create fragment linked lists,
which requires two buffers. The first buffer is a structured
buffer that serves as fragment pool for all fragments on the
screen, because dynamic memory allocation is not possible
on the GPU so far. Each fragment consists of a color (8 bit
per component quantized), a depth value (32 bit), the ID of
the line it belongs to and an index in the linked list buffer.
The index references the predecessor in the linked list. The
second buffer is a byte address buffer, thus it allows atomic
operations. This buffer stores for each sample the entry in
the linked list buffer. This entry point is the last fragment
of the samples linked list. As already mentioned, each frag-
ment stores a reference to its predecessor. The value −1 in-
dicates the end of a linked list. In the pre-processing step
all objects append their fragments to the list. Thereby the
pixel shaders allocate an address in the fragment pool by
atomically incrementing the hidden counter of the structured
buffer. This unique value is the array index in the pool. An
interlocked exchange operation is executed on the start off-
set buffer to store the index of the new fragment and to get
access to the predecessor’s index. Figure 6 depicts a sample
for a 4x3 viewport. In this sample a green rectangle and an
orange circle are rendered. On the top right the start offset
buffer is visible and on the bottom right the fragment buffer
is depicted. In a sequent fullscreen pass all fragments get
sorted by a bitonic sort. When the sorting is finished, the
threads atomically increment the fragment counter of the re-
spective integral line that is in front of the pixel, which is
identified by the ID stored with the fragment. Afterwards
the number of fragments on the screen is known per inte-
gral line and is mapped to opacity (equation 1). When brush-
ing is enabled, two compute shaders are executed. The first

c© The Eurographics Association 2011.

218

Günther et al. / A View-Dependent and Inter-Frame Coherent Visualization of Integral Lines using Screen Contribution

-1

-1

-1 -1 -1 -1

0

3

6 7

8 9

-1 -1 -1 -1 -1 -1 1 2 4 5

0 1 2 3 4 5 6 7 8 9

 .

 .

Figure 6: Sample illustration of fragment linked lists for
a 4x3 viewport. Top: start offset buffer. Bottom: fragment
pool.

one invokes a thread for each pixel around the cursor posi-
tion in a user-defined window. These threads use the simi-
larity metric (equation 2) to set the highlight flags hid in a
byte address buffer. The sequent compute shader executes
a thread for each streamline and smoothly fades the trans-
parency, which is stored in another byte address buffer, by
using equation 4. Finally, the screen contribution blending
operation is executed in a fullscreen pass by iterating over all
fragment linked lists in parallel. If brushing is enabled, the
pixel shaders additionally fetch the brushing transparency
from the aforementioned byte address buffer. To enhance the
appearance of the lines, illuminated stream line shading by
Zöckler et al. [ZSH96] and depth-dependent halos by Everts
et al. [EBRI09] are used.

6. Evaluation

In the following we analyze the performance, compare our
results to related work and discuss limitations.

6.1. Performance

In this section the performance of our approach is analyzed.
Since the algorithm is pixel shader bound, we list the number
of pixel shader invocations. All performance measures were
taken on a Nvidia GeForce GTX 460.

fps 10 20 30 40 50 60
triangles 306k 336k 380k 391k 388k 388k
PS exec. 6.36M 2.77M 1.53M 934k 767k 581k

Table 1: Performance without brushing

Table 1 shows the performance of our approach in the
Stuttgart LES data set. 400 path lines are integrated each
frame using an RK4 integration and 4x MSAA is utilized.

First row is the achieved frame rate. Beneath the number of
triangles drawn and the number of pixel shader invocations
are listed. The statistics were conducted by looking at the
scene from different distances and directions.

fps 10 20 30 40
triangles 310k 330k 334k 334k
PS exec. 5.54M 1.58M 502k 119k

Table 2: Performance with brushing

Table 2 lists the achieved frame rates with brushing enabled.

6.2. Comparison

An informal survey has shown that the important structures
are more visible than if lines are randomly generated. This
can be seen in figure 7. Here we compare a visualization of
a benzene molecule rendered with vector field contours by
Annen et al. [ATR∗08] to our screen contribution blending.
It is denotable that our approach shows all important struc-
tures, reduces occlusion and gives more context information
than the vector field contours. Further comparisons to related
work were not possible, since the data sets were not available
to us. However, in similar scenarios our approach shows the
important structures and attains all three goals: interactive
frame rates, inter-frame coherence during interactive naviga-
tion, and uncut stream lines. The figures 9, 11 and 12 show
some examples.

6.3. Limitations

Our approach is limited by the amount of memory required
for the fragment linked lists. Furthermore this approach is
pixel shader bound, as we have shown in the performance
sections (section 6.1). The visual results of our approach de-
pend on the initial seeding. In our implementation the user
can place probes by creating seed boxes. Usually, the seed
boxes contain the entire vector field and the seeds are placed
randomly to cover the entire domain. During screen con-
tribution blending a binary decision is made, whether frag-
ments should be rejected or not. If this decision changes be-
tween two frames, the final color alters. This happens rarely
and is in practice barely noticeable, since it only differs by
one transparent layer. Our approach is well suited to reduce
integral lines from dense and turbulent regions (see figure 8
and 9). However, our approach does not reduce strong occlu-
sion, i.e. if two interesting regions lie behind each other, only
the first is represented well. The same statement is true for
all previous approaches referred in the related work section.
Thus, this problem is still unsolved. But, since our approach
is interactive and the seeding is user-driven, the user can take
corrective action at any time by adapting the seeding to re-
duce this problem and thereby improve the exploration of
the data set. In figure 10 the covered stream is visible, since
it contributes to the viewport on the top of the image. Since

c© The Eurographics Association 2011.

219

Günther et al. / A View-Dependent and Inter-Frame Coherent Visualization of Integral Lines using Screen Contribution

we evaluate our visibility metric per integral line, covered
streams can be revealed under this condition.

7. Conclusion and Future Work

An interactive, view-dependent visualization of integral
lines requires the isolation of ’important’ lines, i.e. lines that
represent the vector field. Therefore the screen contribution
was introduced, which is the absolute number of fragments
on the screen, a value that was mapped to transparency.
To reduce the information density a modified blending op-
eration was proposed, called screen contribution blending.
The approach uses state-of-the-art order-independent trans-
parency techniques, i.e. fragment linked lists generated us-
ing Direct Compute. In addition this approach was combined
with an interactive brushing technique to enable user-driven
exploration. The approach is improvable since properties of
the lines were not regarded so far, e.g. the importance of an
occlusion or the revelation of vortices. Additionally further
Non-photorealistic Rendering approaches could be utilized
to enhance the visualization and automatic seeding strate-
gies could be used in a hybrid combination. The screen con-
tribution blending could also be used for other visualization
tasks that are limited by high transparency complexity, e.g.
volume rendering.

8. Acknowledgment

We thank John McLaughlin for English proof reading.

References

[ATR∗08] ANNEN T., THEISEL H., RÖSSL C., ZIEGLER G.,
SEIDEL H.-P.: Vector field contours. In Proc. Graphics Interface
(2008). 2, 5, 7

[CCK07] CHEN Y., COHEN J., KROLIK J.: Similarity-guided
streamline placement with error evaluation. IEEE Transactions
on Visualization and Computer Graphics 13 (2007), 1448–1455.
2

[CSBI05] CAMARRI S., SALVETTI M.-V., BUFFONI M., IOLLO
A.: Simulation of the three-dimensional flow around a square
cylinder between parallel walls at moderate Reynolds numbers.
In XVII Congresso di Meccanica Teorica ed Applicata (2005). 2

[DxS09] Oit11 sample. Microsoft DirectX SDK, August 2009. 4

[EBRI09] EVERTS M. H., BEKKER H., ROERDINK J. B. T. M.,
ISENBERG T.: Depth-dependent halos: Illustrative rendering of
dense line data. IEEE Transactions on Visualization and Com-
puter Graphics 15 (November 2009), 1299–1306. 5

[FI08] FURUYA S., ITOH T.: A streamline selection technique
for integrated scalar and vector visualization. In Vis Š08: IEEE
Visualization Poster Session (2008). 2, 4

[FWT08] FREDERICH O., WASSEN E., THIELE F.: Prediction of
the flow around a short wall-mounted cylinder using les and des.
Journal of Numerical Analysis, Industrial and Applied Mathe-
matics (JNAIAM) 3, 3-4 (2008), 231–247. 2

[Int] International CFD Database, http://cfd.cineca.it/. 2

[JL97] JOBARD B., LEFER W.: Creating evenly-spaced stream-
lines of arbitrary density. Proceedings of the Eurographics Work-
shop on Visualization in Scientific Computing ’97 7 (1997), 45–
55. 2

[JL01] JOBARD B., LEFER W.: Multiresolution flow visualiza-
tion. WSCG 2001 Conference Proceedings (February 2001), 33–
37. 2

[LHS08] LI L., HSIEN H. H., SHEN H. W.: Illustrative stream-
line placement and visualization. IEEE Pacific Visualization
Symposium 2008 (2008), 79–86. 2

[LMG06] LIU Z., MOORHEAD R., GRONER J.: An advanced
evenly-spaced streamline placement algorithm. IEEE Transac-
tions on Visualization and Computer Graphics 12 (September
2006), 965–972. 2

[LMSC11] LEE T.-Y., MISHCHENKO O., SHEN H.-W., CRAW-
FIS R.: View point evaluation and streamline filtering for flow
visualization. In Proceedings of the IEEE Pacific Visualization
Symposium 2011 (March 2011), pp. 83 – 90. 2

[LS07] LI L., SHEN H.-W.: Image-based streamline generation
and rendering. IEEE Transactions on Visualization and Com-
puter Graphics 13 (May 2007), 630–640. 2

[MAD05] MEBARKI A., ALLIEZ P., DEVILLERS O.: Farthest
point seeding for efficient placement of streamlines. In IEEE
Visualization (2005), p. 61. 2

[MCHM10] MARCHESIN S., CHEN C.-K., HO C., MA K.-L.:
View-dependent streamlines for 3d vector fields. IEEE Trans-
actions on Visualization and Computer Graphics 16 (November
2010), 1578–1586. 2, 4

[MTHG03] MATTAUSCH O., THEUSSL T., HAUSER H.,
GRÖLLER E.: Strategies for interactive exploration of 3d flow
using evenly-spaced illuminated streamlines. In Proceedings of
the 19th spring conference on Computer graphics (New York,
NY, USA, 2003), SCCG ’03, ACM, pp. 213–222. 2

[TB96] TURK G., BANKS D.: Image-guided streamline place-
ment. In Proceedings of the 23rd annual conference on Com-
puter graphics and interactive techniques (New York, NY, USA,
1996), SIGGRAPH ’96, ACM, pp. 453–460. 2

[vFWTS08] VON FUNCK W., WEINKAUF T., THEISEL H., SEI-
DEL H.-P.: Smoke surfaces: An interactive flow visualization
technique inspired by real-world flow experiments. IEEE Trans-
actions on Visualization and Computer Graphics 14 (November
2008), 1396–1403. 2

[VKP00] VERMA V., KAO D., PANG A.: A flow-guided stream-
line seeding strategy. In Proceedings of the conference on Vi-
sualization ’00 (Los Alamitos, CA, USA, 2000), VIS ’00, IEEE
Computer Society Press, pp. 163–170. 2

[XLS10] XU L., LEE T.-Y., SHEN H.-W.: An information-
theoretic framework for flow visualization. In IEEE Transac-
tions on Visualization and Computer Graphics (Nov.-Dec. 2010),
vol. 16(6), pp. 1216–1224. 2

[Yak10] YAKIIMO02: Dx11 order independent transparency with
msaa. Codeplex, July 2010. 4

[YHGT10] YANG J. C., HENSLEY J., GRÜN H., THIBIEROZ
N.: Real-Time Concurrent Linked List Construction on the GPU,
vol. 29. Wiley-Blackwell, June 2010, pp. 1297–1304(8). 2, 4

[YKP05] YE X., KAO D., PANG A.: Strategy for seeding 3d
streamlines. Visualization Conference, IEEE 0 (2005), 60. 2

[ZSH96] ZÖCKLER M., STALLING D., HEGE H.-C.: Interactive
visualization of 3d-vector fields using illuminated stream lines.
In Proceedings of the 7th conference on Visualization ’96 (Los
Alamitos, CA, USA, 1996), VIS ’96, IEEE Computer Society
Press, pp. 107–ff. 5

c© The Eurographics Association 2011.

220

Günther et al. / A View-Dependent and Inter-Frame Coherent Visualization of Integral Lines using Screen Contribution

Figure 7: Left: 1200 randomly placed stream lines in the benzene data set. Center: Activation of screen contribution blending
reduces occlusion and gives more context information than vector field contours. Right: Vector field contours from Annen et
al. [ATR∗08]

Figure 8: Left: path lines are opaque. Center and right: screen contribution blending with different mappings. Please notice the
reduction of occlusion.

Figure 9: These figures depict the benzene data set. The two images on the left oppose a random seeding to the screen contribu-
tion blending and show the reduction of occlusion introduced by our approach. The images on the right depict the same scene
with different seed points, again with screen contribution blending disabled (left) and enabled (right).

Figure 10: The random seeding on the left produces occlusion which makes it impossible to see the stream behind. Our approach
(on the right) does not only improve the perceptibility. It can make structures visible that would be occluded.

c© The Eurographics Association 2011.

221

Günther et al. / A View-Dependent and Inter-Frame Coherent Visualization of Integral Lines using Screen Contribution

Figure 11: 400 path lines. Left: opaque. Right: screen contribution blending at 20 fps, 4x MSAA, a=200, b=5000

Figure 12: 400 path lines. Left: opaque. Right: screen contribution blending at 19 fps, 4x MSAA, a=500, b=4500

Figure 13: Another example in the stuttgart LES data set. The left set of randomly placed stream lines serves as input for our
algorithm yielding the image on the right.

Figure 14: Figures that show the brushing technique. The user has the possibility to render all stream lines in his focus region
fully opaque with slight overexposure in order to explore where streams came from.

c© The Eurographics Association 2011.

222

