
Global Illumination using Parallel Global Ray-Bundles

Jan Hermes1 Niklas Henrich2 Thorsten Grosch3 Stefan Mueller1

1 RTT (Realtime Technology), Germany
2 University of Koblenz, Germany

3 University of Magdeburg, Germany

Abstract

A fast computation of unbiased global illumination is still an unsolved problem, especially if multiple bounces of
light and non-diffuse materials are included. The standard Monte Carlo methods are time-consuming, because
many incoherent rays are shot into the scene, which is hard to parallelize. On the other hand, GPUs can make
the most of their computing power if the problem can be broken down into many parallel, small tasks. Casting
global, parallel ray-bundles into the scene is a way of achieving this parallelism. We exploit modern GPU features
to extract all intersection points along each ray within a single rendering pass. Radiance can then be transferred
between pairs of all points which allows an arbitrary number of interreflections, especially for compelling mul-
tiple glossy reflections. Beside arbitrary BRDFs, our method is independent of the number of light sources and
can handle arbitrary shaped light sources in a unified framework for unbiased global illumination. Since many
methods exist for fast computation of direct light using soft shadows, we demonstrate how our method can be built
on top of any direct light simulation.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image

Generation—

1. Introduction

The main goal in photorealistic rendering is to solve the ren-

dering equation [Kaj86]. Solving it, or finding a good ap-

proximation is crucial to simulate global illumination. While

the rendering of the direct illumination and even simple

shadows is well understood and can be done in real-time,

evaluating the indirect illumination remains a challenge for

current real-time rendering systems.

The major approaches for generating realistic images to

solve this problem are algorithms based on finite elements

[GTGB84], photon mapping [Jen01] or Monte Carlo meth-

ods [CPC84, Kaj86, LW93]. One of the main problems of

computing a global illumination solution with a Monte Carlo

approach is that the rays cast into the scene become very in-

coherent after the first hit. This incoherence of rays can be

avoided by using global ray-bundles [Sbe96]. It was shown

that casting local rays from every point in the scene is equiv-

alent to casting bundles of parallel global rays into random

directions (see Fig. 2). Instead of using ray-tracing, cast-

ing global ray-bundles and thus exploiting the coherence of

these rays can be done very efficiently using the z-buffer

hardware of current GPUs. Depth peeling [Eve01] is used

to extract the hit-points along a global ray direction using

rasterization. Recently, Bavoil and Myers showed that the

linear complexity of depth peeling can largely be avoided

with the help of a k-buffer [BM08a]. A k-buffer is capable

of storing up to k fragments per pixel (where k is bound by

the multisampling resolution of the graphics hardware) with

one geometry pass. Each stored fragment corresponds to a

depth-layer of the scene. This is contrary to previous depth-

peeling techniques which needed n geometry passes to ex-

tract n depth layers.

We propose to combine global ray-bundles and the k-

buffer with an atlas-based representation of the scene to pro-

gressively compute an accurate global illumination solution.

Our method is capable of exchanging radiance along multi-

ple global ray-directions in a fraction of a second. The algo-

rithm supports diffuse as well as glossy scenes. We propose

to reuse the stored indirect illumination information in the

atlas to construct light paths of arbitrary length with nearly

c© The Eurographics Association 2010.

Vision, Modeling, and Visualization (2010)

DOI: 10.2312/PE/VMV/VMV10/065-072

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/PE/VMV/VMV10/065-072

J. Hermes et al. / Global Illumination using Parallel Global Ray-Bundles

Figure 1: Global illumination computed with global ray-bundles: Multiple diffuse bounces originating from natural illumina-
tion (left), glossy reflections and arbitrary number of light sources without additional cost (center) and multiple bounces of a
non-planar, textured light source (right). The computation time is 2-3 minutes for all images. Standard Path Tracing remains
noisy for the given scenes at the same computation time.

Figure 2: Instead of casting random rays from different po-
sitions into the scene (left), bundles of parallel rays can be
used (right). Both methods yield the same result [Hac05].

no additional costs. In contrast to other methods, the light

transport for all samples of the scene, and not just the visible

ones, are computed at once. This allows the user to navi-

gate through the converged diffuse scene in real-time. Fur-

thermore, we propose to use global ray-bundles to sample

arbitrary shaped light sources. This allows for sampling any

number of complex light sources in constant time and re-

sults in very accurate near-field illumination and shadows.

No special data structures are needed, but a texture atlas

which is readily available for interactive applications, like

games. As our method does not rely on any pre-calculations,

and due to the progressive nature of our approach, dynamic

scenes are possible as well.

This paper is structured as follows: After describing the

related work in Section 2 we give an overview of our method

in Section 3. Afterwards, we describe the GPU algorithms

and data structures in Section 4. In Section 5, the computa-

tion of global illumination is explained. Results and discus-

sion are given in Section 6 before we conclude in Section

7.

2. Related Work

2.1. Depth Peeling

Everitt introduced depth peeling [Eve01] as a technique to

extract all depth values of a pixel as depth layers in multiple

rendering passes. To reduce the number of required render-

ing passes, several extensions to the basic algorithm have

been developed (i.e. [BM08b], [BCL∗07]). Some of these

extensions use multiple render targets which allow them

to store several fragments (which in turn equal depth lay-

ers) per pixel in one geometry pass. If these approaches are

used, pipeline hazards can occur, as they are reading from

and writing to the same render target. The stencil routed

k-buffer [BM08a] avoids these hazards by using the sten-

cil buffer to direct fragments to unused entries in the multi-

sampled texture. Each time a pixel is accessed, the numbers

stored in the corresponding fragments in the stencil buffer

are changed to select the next target position. After one ren-

dering pass, all depth values of a pixel are stored in the frag-

ments, see [BM08a] for details.

2.2. Global Ray-Bundles

The use of global ray-bundles has been introduced by Sbert

[Sbe96]. Szirmay-Kalos and Purgathofer used global ray-

bundles for their global illumination algorithm [SKP98].

They presented a combined finite element and Monte Carlo

method based on a global random walk, which can be used

in diffuse and moderately glossy scenes. To compute the ra-

diance exchange between visible surfaces, the scene is ras-

terized into two images perpendicular to the direction of

c© The Eurographics Association 2010.

66

J. Hermes et al. / Global Illumination using Parallel Global Ray-Bundles

radiance transfer. One image contains the emitter patches,

the other image the receiver patches. The two images are

scanned and pairs of emitter and receiver patches are iden-

tified. The patches have to be sorted and rendered multi-

ple times as the method relies on the fact that the receiver

patches are not occluded.

Méndez et al. [MSC∗06] use global ray-bundles to com-

pute obscurances [IKSZ03], a view-independent lighting

model taking only the interactions between nearby diffuse

surfaces into account. The scene is stored in a texture at-

las and depth-peeling [Eve01] is used to extract hit-points

along a certain global ray direction. To update an entry in

the texture atlas containing the indirect illumination, each

pair of consecutive layers is turned into pixel-sized streams

of points and directed to their appropriate atlas position. Dur-

ing this step the information of both layers are used to com-

pute the obscurances for one direction. To compute the ob-

scurances for the opposite direction, the point streams have

to be created again.

A method using global ray-bundles for final gathering was

proposed by Hachisuka [Hac05]. This method relies on a

preprocessing step in which a coarse global illumination so-

lution is computed. The result of this global illumination so-

lution is attached to the vertices as vertex colors. Afterwards,

the geometry is rasterized multiple times to extract all hit-

points along a certain random direction. These hit-points are

used in a final gathering step to compute the final solution

for all visible pixel. This method works for ideally diffuse

scenes.

In contrast to the presented techniques, our method does

not rely on a preprocessing step in which a coarse global il-

lumination solution is computed, as for example in [Hac05].

Furthermore, our method supports any number of arbitrary

shaped area light sources without additional computation

time. The cost of extracting the hit-points along a global

ray-direction are dramatically reduced compared to the pre-

vious techniques through the help of the k-buffer. Further-

more, none of the existing methods reuse the already com-

puted indirect illumination allowing us to compute several

thousand bounces of light with arbitrary BRDFs, requiring

just one additional texture lookup. Additionally, our method

supports real-time walk-throughs in diffuse environments.

3. Overview

Our method for solving the rendering equation works en-

tirely on the graphics processing unit (GPU) and it is sum-

marized in Fig. 3.

Fig. 4 visualizes our method for one direction: First, an

orthographic camera is placed on the bounding sphere of the

scene. Using the k-buffer, all intersection points of all par-

allel rays are stored in the multi-sampling pixels in a single

rendering pass. The information about the extracted points is

retrieved from multiple texture atlases (Sec. 4). Afterwards,

Select a random direction
Set orthographic camera with this direction
Draw scene using a k-buffer
Sort intersection points in ascending order
For each pair of consecutive intersec-
tion points (x,y)

If x and y face each other
Exchange radiance from x to y

Repeat process for next random direction

Figure 3: Overview of the Global Ray-Bundles algorithm.

Multisampling
Texture

Image Plane Fragments
along a
single ray

Figure 4: Global ray-bundle cast into the scene from an
orthographic camera. Each pixel stores k fragments with
a stencil-routed k-buffer: All fragments (colored circles)
are rendered to a multi-sampling texture. Each fragment is
stored with its uv-coordinate, to identify the corresponding
atlas texel, and its depth since the fragments need to be
sorted after this step. Radiance can then be transferred be-
tween successive points.

light transfer is computed between all pairs of successive

points (Sec. 5). To provide interactive modifications of the

geometry of the scene, the result is displayed in a progres-

sive manner so that the solution can be refined as long as the

geometry remains unmodified.

4. GPU Implementation

4.1. Discrete Sampling

To be able to transfer light between two arbitrary points of

the scene, we use a series of texture atlases to acquire the

information about the points. The following properties are

stored for each texel: Position, Normal, BRDF and Emis-
sion. Furthermore, we use an atlas to accumulate radiance

for diffuse surfaces and one additional atlas for the glossy

transfer (explained in Sec. 5.4) The accuracy of the solution

can easily be controlled by the resolution of the texture atlas.

c© The Eurographics Association 2010.

67

J. Hermes et al. / Global Illumination using Parallel Global Ray-Bundles

4.2. Global Ray-Bundle Casting using the k-buffer

Before we detail the computation of the direct and indirect

illumination, we give an overview on how global ray-bundle

casting is done with the help of the k-buffer.

The stencil routed k-buffer uses a multi-sampling texture

storing a certain number of fragments for each pixel. Each

sample represents a different depth layer or a hit-point along

a global ray, respectively. If the depth complexity of a given

scene is less than or equal to the multi-sampling resolution,

our method is able to compute the radiance exchange for

one global direction in only two geometry passes. Current

GPUs like NVIDIA’s GTX 285 can store up to 32 samples.

A higher depth complexity can be addressed by more than

two render passes and the usage of a texture array instead of

a single multi-sampling texture, whereas the stencil routed

k-buffer is limited by the precision of the stencil buffer to

254 depth layers.

In the first pass the k-buffer is generated and written to a

multi-sampling texture. For a given random direction, an or-

thographic camera is placed on the bounding sphere and the

scene is rendered with z-buffering disabled. While the sur-

faces are processed by the GPU pipeline, the uv-coordinates

and depth of each fragment of a pixel are stored in the mul-

tisampling texture (see Fig. 4).

Nowwe have a complete list of depth values for each pixel

and a second pass is used to perform the radiance exchange

between opposite sampling points. The k-buffer texture is

re-projected onto the scene using exactly the same camera

configuration as before. For each fragment processed by the

GPU, the k-buffer is sorted by depth and the position of the

fragment inside the k-buffer is located (see Fig. 5).

To determine the opposite sampling point (which can ei-

ther be the next or the previous element of the k-buffer) the

normal of the current fragment is compared to the global ray

direction. Having identified the opposite sampling point, its

uv-coordinates are used to access its radiance values and re-

flectance properties in the texture atlas.

Read

Write
Projected
Multisample
texel

Sort
Self-localization

Opposite

Texture Atlas

x
y

Figure 5: For radiance exchange at the receiver point y, the
sender point x in a given direction ωi must be determined.
This requires a sorting of the fragments.

4.3. Global Ray Directions

To generate the uniformly distributed, global ray-directions,

low-discrepancy sampling is used. We have experimented

with the Halton and the Hammersley sequence [PH04]. We

found that the Halton sequence is better suited, since two

successive sample directions vary in both spherical angles

whereas the Hammersley sequences generates similar val-

ues for one of the spherical angles. Therefore, the Halton

sequence generates a better coverage of the whole bounding

sphere with fewer samples.

5. Global Illumination

To compute the radiance Lo at a point x, viewed from direc-

tion ωo, the rendering equation must be solved

Lo(x,ωo) =
∫

Ω+
fr(x,ωi,ωo)Li(x,ωi)cosθdωi (1)

where fr is the BRDF, Li is the incoming radiance in di-

rection ωi and θ is the angle between the incoming direction

and the surface normal at x. Monte-Carlo Integration leads

to an unbiased estimate of Lo:

Lo(x,ωo)≈ 1

N

N

∑
i=1

fr(x,ωi,ωo)Li(x,ωi)cosθ
p(ωi)

(2)

where p(ωi) is an arbitrary probability density function

and ωi are N sample directions, generated from p. In our

case, we use uniformly distributed directions, resulting in a

constant density of p = 1/2π. As described in Sec. 4, for

a selected random direction ωi, two points x and y are ex-

tracted along the ray for radiance exchange. Now we can

compute the radiance at the receiver y by transferring the

radiance from the sender x:

Ly(−ωi) =
2π
N

fr(y,ωi,ωo)Lx(ωi)cosθ (3)

where Lx and Ly are the radiance values stored at the at-

las texels corresponding to x and y (see Fig. 5). Repeated

evaluation of Eq. 3 with N uniform directions ωi and accu-

mulation of the receiver values results in Eq. 2. Depending

on the types of materials and number of indirect bounces, the

sender radiance Lx and receiver radiance Ly are determined

differently, as described in the following subsections.

5.1. Direct Illumination

Our algorithm allows the computation of direct light of arbi-

trary light sources, ranging from textured area lights with ar-

bitrary shape over environment maps to surface light fields.

The only requirement is to render all light sources from an

c© The Eurographics Association 2010.

68

J. Hermes et al. / Global Illumination using Parallel Global Ray-Bundles

arbitrary view direction ωi. This results in the emissive ra-

diance which is stored in the pixels and can then be used as

incoming radiance Lx(ωi) for illumination. Computing Eq.

3 for random directions then evaluates the direct light trans-

fer of all lights in parallel. Although this allows an efficient

computation of many complex light sources, it can be slow

for scenes with only a few, simple light sources. This is dis-

cussed later in Sec. 6.

5.2. Diffuse Interreflections

After computation of direct light, one indirect diffuse bounce

can be computed in a similar fashion. In case of diffuse ma-

terials (fr = ρ
π), the radiance values Lx and Ly are view-

independent and can be stored in a sender atlas and a re-
ceiver atlas. The sender radiance Lx is now set to the sum of

the emissive radiance and the direct radiance at x. Each time

Eq. 3 is computed, the receiver radiance Ly is simply accu-

mulated to the value already stored in the texel correspond-

ing to y. After N directions, further bounces of indirect light

can be computed in a similar fashion by exchanging sender

and receiver atlas (Ping-Pong rendering). For practical rea-

sons, we compute multiple bounces in a different way, as

explained later in Sec. 5.5.

5.3. Final Glossy Bounce

After multiple bounces of diffuse light, a final specular

bounce towards the eye can be computed (Final Gathering).

Here, Eq. 3 is used with an arbitrary glossy BRDF towards

the viewing direction (ωi+1 = ωo) for each pixel in the im-

age.

5.4. Glossy Interreflections

The most difficult case are multiple glossy interreflections,

because the radiance at a point is view-dependent and we can

not simply store one accumulated radiance value at the texel

corresponding to a point. To obtain the correct sender radi-

ance for a point on a glossy surface, we include the next ran-
dom direction ωi+1 when computing the radiance exchange

for direction ωi. To prepare the glossy transfer for the next

iteration, we compute the BRDF fr(y,ωi,ωi+1). The rea-

son for this is shown in Fig. 6. In this way, we compute the

amount of radiance which is reflected at point y from direc-

tion ωi to direction ωi+1. Since we need this value for the

next iteration, we store

Lx(ωi) fr(y,ωi,ωi+1)cosθ (4)

in a transfer atlas at the texel corresponding to y. When

computing the radiance exchange for the next direction ωi+1,

one of the pairs of points to exchange radiance will be y and

z. Now, y is the sender and we can use the value stored in

the transfer atlas as the glossy sender radiance at y. In this

way, we connect a path from x over the glossy surface at y
to the receiver z. To extend the length of the glossy path to

an arbitrary length, we can repeat this process by computing

the glossy radiance at z for the next direction ωi+2, and so

on. Since we use uniformly distributed random directions,

this results in the computation of all possible combinations

of paths of arbitrary length.

x

i�

�
y

xL

���� cos),,y()(1�iirix fL�

1�i�

z rf

Transfer�Atlas

Figure 6: For a sender point y with a glossy BRDF, the
sender radiance at y in direction of the receiver z is pre-
computed and stored in the transfer atlas.

5.5. Interleaved Light Transfer

The simple solution to compute multiple bounces of light

is to use the described algorithm to compute one bounce

of light until convergence and then use the result as input

for the next bounce by exchanging sender and reciever atlas.

However, we found that the best results are achieved if the

radiance transfer of one direction is directly used for the next

direction as input. To accomplish this, we read the values Lx
and Ly from the sender atlas and add the transferred radiance

to the value stored in the receiver atlas at the texel corre-

sponding to y. Sender and receiver atlas are then exchanged

after each direction ωi. Consequently, when computing the

transferred radiance along a direction ωi, the sender radiance

Lx contains light that was reflected up to i times. Similar

to a Gauss-Seidel Iteration, we include indermediate results

which leads to a faster convergence. Since we transport light

of different path lengths, we call this method an interleaved
light transfer. For a better understanding, Fig. 7 shows a sim-

ple example. If not stated otherwise, all images in this paper

are computed with the interleaved multi-bounce method.

6. Results

In the following we present our results. All images were ren-

dered with an NVIDIA GeForce GTX 285 and a 3 Ghz CPU.

6.1. Quality

Our algorithm is capable of handling very complex lighting

situations as shown in Fig. 1. The left image shows multi-

ple diffuse bounces from an environment map and an addi-

tional area light from the top. The image in the center con-

tains multiple light sources and a final glossy bounce. Since

c© The Eurographics Association 2010.

69

J. Hermes et al. / Global Illumination using Parallel Global Ray-Bundles

�

� ��

���	
���������������
���
���������������������
���
��������������������
���

�

�

�

� � ��

�

�

�

�� �

����������������
���

��
������������
���

�

� ��

Figure 7: Propagation of indirect radiance for three random
directions using the single-bounce and the interleaved multi-
bounce method for point P. Using the single bounce method,
each direction propagates the radiance of the opposite hit
point only. With just one additional texture lookup, the inter-
leaved multi-bounce method exchanges the radiance of paths
of different length. The first direction includes the direct light
of the opposite hit-point, the second direction the light for a
path of length two. The third direction includes the light of a
path of length two and a path of length three.

the light transfer is computed by rendering the scene from

different directions, the computation time is independent of
the number of light sources. The image on the right shows a

textured, spherical light source inside a scene with many cor-

ners. Note the soft, multiple colored bounces of light around

the corners. The backfaces of the wallpapers are displayed

for better visualization of the light distribution.

Figure 8: Glossy reflections using a Phong BRDF. The left
image shows a final glossy bounce after multiple diffuse
interreflections. The right image shows multiple glossy in-
terreflections. Note the indirect highlights on both spheres.
Computation time is 2 minutes for 600 directions.

Another strength of the global ray-bundles is the ability

to compute multiple glossy bounces. Fig. 8 shows multi-

ple objects with a Phong BRDF, illuminated by area light

sources. Note how our method correctly displays the glossy

interreflections between the head and the spheres which are

omitted by a standard final gathering. In all these condi-

tions, computing the image with a path tracer is typically

very noisy.

6.2. Physical Correctness

Figure 9: Our algorithm (left) compared to a Path Tracer
(right). Both images are generated with identical physical
setups, equal gamma correction and without tone-mapping.
Rendering times were 178 seconds for our solution and 27
minutes for the Path Tracer.

To demonstrate the accuracy of the presented algorithm, a

comparison to a Path Tracer is shown in Fig. 9. In this exam-

ple, the k-buffer resolution was set to 2048×2048 pixels and

the illumination was computed for 4.000 random directions

using our proposed multi-bounce, interleaved light transfer

method. The Path Tracer used 768 rays per pixel and the

maximum depth of a ray was set to 10. Note that we obtain

an identical radiance distribution and correct indirect shad-

ows. Although the Path Tracer uses a real-time ray-tracing

engine, the computation took 27 minutes and the result is

still noisy. In contrast, using global ray-bundles took only

178 seconds to display a noise-free, converged solution.

Figure 10: Convergence of the interleaved multi bounce
method for 2.000 global ray directions. The first images
show how (direct) light is projected along the global ray di-
rections. After a few seconds, a good visual preview is ob-
tained.

c© The Eurographics Association 2010.

70

J. Hermes et al. / Global Illumination using Parallel Global Ray-Bundles

6.3. Performance

The performance of the presented method largely depends

on the resolution of the texture atlases and the k-buffer as

these textures have to be filled in each pass to compute

the radiance exchange for one global random direction.

Tab. 1 lists benchmarks for varying k-buffer resolutions to

compute the direct (diffuse and specular) and global (direct

and indirect) radiance transfer along one ray-direction

(ms/global dir.). As the resolution of the texture atlas

directly influences the accuracy of the solution, it is set to

2048×2048 for all timings.

The computation of the global illumination is slower than

Illumination M-S K-buffer ms / global dir

Direct 16 1024×1024 121

Global 16 1024×1024 208

Direct 8 2048×2048 36

Global 8 2048×2048 51

Direct 8 1024×1024 26

Global 8 1024×1024 39

Direct 8 512×512 22

Global 8 512×512 36

Table 1: Benchmarks for NVIDIA’s GTX 285. M-S indicates
the multi-sampling resolution of the k-buffer (and therefore
the number of hit-points along a global ray-direction which
can be extracted in one geometry pass). The time it takes
to compute the radiance exchange in both directions for all
entries in the texture-atlas along one global ray-direction is
given in the last column. The resolution of the texture atlas
is set to 2048×2048 for all timings.

the computation of the direct illumination as more render

targets have to be filled. Additionally, a case distinction

has to be carried out whether the global ray-bundles have

hit the light source and therefore direct illumination is

exchanged or if they have hit another scene element from

which indirect radiance has to be exchanged.

Our proposed method can cast up to 932.067.555

rays/sec. for the computation of the direct light and

up to 657.930.039 rays/sec. for the computation of the

global illumination (with a 2k k-buffer resolution). Using

a setup with a 1k k-buffer, it is possible to compute 38.46

directions/sec. for the direct light and 25.64 directions/sec.
for the global illumination. This allows us to display the

intermediate results with interactive frame-rates, hence

real-time walk-throughs are possible while the computation

takes place.

6.4. Rate Of Convergence

Fig. 10 shows how our proposed method converges towards

the correct solution. The resolution of the k-buffer is set to

1024× 1024 pixel and eight-times multi-sampling and the

texture atlas has a resolution of 2048× 2048 pixel. For the

first 8 directions only the direct light is computed, from the

ninth direction on the global illumination is computed using

our interleaved multi-bounce method.

After the first few directions, large differences are visible

since the illumination is estimated for a very small number

of samples. This results in some visual artifacts like visible

projections along a certain direction. Up to approximately

200 random directions (7.8s), such artifacts may appear but

the image provides a good first impression of the final result.

Between 1000 and 2000 random directions (39s-78s), only

slight differences are visible.

If the intermediate results of the indirect illumination

should not be display in a progressive fashion, one possi-

ble optimization to achieve a faster rate of convergence is

to enable the global illumination shaders at a later time, as

the indirect illumination converges faster than the direct one

(300 to 500 random directions compared to 1000 to 2000

directions). With the most optimized setup (1700 directions

for the direct illumination only and 300 for the global illu-

mination) we can achieve the same result as seen in Fig. 10,

2000 directions, within 55.9s compared to 78.05s if we use

the progressive scheme and enable the global illumination

from the beginning.

6.5. Combination with Fast Direct Light

If the scene contains only a few, simple light sources, the

use of global ray-bundles can be inefficient for direct light

computation. In these cases, a different method can be used

for direct light computation and the global ray-bundles can

be used for indirect light only. Fig. 11 shows an example

where the Percentage Closer Soft Shadow-Mapping (PCSS)

algorithm [Lau07] is used for real-time direct light compu-

tation with approximate soft shadows of a small area light.

Given the atlas with the direct light, the resulting indirect

bounces of light can be computed with global ray-bundles. If

the approximations in penumbra regions are acceptable, this

allows an efficient combination of direct and indirect light.

6.6. Discussion

Though the presented scheme has a large number of advan-

tages, there are several limitations due to the maximum reso-

lution of the k-buffer, the orthographic camera and the atlas.

As already mentioned, the number of depth layers is lim-

ited by the multi-sampling resolution of the graphics hard-

ware. This prevents scenes with a higher depth complexity,

but could be addressed by using a texture array as a render

target. The second limitation is the accuracy of the presented

scheme, that is mainly limited to the size of the texture at-

las. Common GPUs support a texture size up to 8192×8192

texel, but a massive number of texels would have to be pro-

cessed in the fragment shader, reducing the performance.

c© The Eurographics Association 2010.

71

J. Hermes et al. / Global Illumination using Parallel Global Ray-Bundles

Figure 11: Instead of using global ray-bundles for the com-
putation of the direct illumination, a Percentage Closer Soft
Shadow-Mapping algorithm is used for the area light. The
indirect illumination is then computed with our proposed in-
terleaved multi-bounce solution. The total rendering time is
3.65 seconds (300 global directions).

The accuracy in extended scenes is therefore lower since one

atlas texel covers a large area. Furthermore, extremely spiky

BRDFs might fall between two global directions and can-

not be reproduced correctly due to the atlas discretization.

We also point out that the low noise is also a consequence

of the discretization. However, we found that the combina-

tion of global ray-bundles and atlas discretization is a good

compromise between noise and blurring.

7. Conclusion

In this paper, we demonstrated that global ray-bundles can

be used for physically correct global illumination with an ar-

bitrary number of interreflections. Especially, difficult mul-

tiple bounces of glossy BRDFs can be simulated. Global

ray-bundles exploit the parallelism of current GPUs by ex-

tracting all hitpoints on bundles of parallel rays in a single

rendering pass. This allows an unbiased computation of the

rendering equation with only the screen and atlas discretiza-

tion as a limitation. Global ray-bundles are independent of

the type and number of light sources and thus a fast alterna-

tive to standard path tracing that often shows noise in such

cases.

As future work, we will investigate larger scenes. Al-

though there are limitations due the maximum resolution of

the atlas, recent work [YCK∗09] has shown that approxima-

tions in indirect light can be accepted in many cases. Fur-

thermore, an importance-based sampling of directions that

takes the intensity distribution of the light sources as well

as the scene BRDFs into account is an interesting avenue of

future research.

References

[BCL∗07] BAVOIL L., CALLAHAN S. P., LEFOHN A., COMBA

L. D., COMBA C. T.: Multi-Fragment Effects on the GPU Using

the K-Buffer. In I3D 07, Symposium on Interactive 3D Graphics
and Games (2007), ACM, pp. 97 – 104. 2

[BM08a] BAVOIL L., MYERS K.: Deferred Rendering Using a
Stencil Routed K-Buffer. In ShaderX 6. Advanced Rendering
Techniques (2008), Charles River Media, pp. 189 – 198. 1, 2

[BM08b] BAVOIL L., MYERS K.: Order Independent Trans-
parency with Dual Depth Peeling. In Technical Report, NVIDIA
Corp. (2008). 2

[CPC84] COOK R., PORTER T., CARPENTER L.: Distributed
Ray Tracing. In Computer Graphics (1984), vol. 18 (3), pp. 137
– 145. 1

[Eve01] EVERITT C.: Interactive Order-Independent Trans-
parency. In Technical Report, NVIDIA Corp. (2001). 1, 2, 3

[GTGB84] GORAL C. M., TORRANCE K. E., GREENBERG

D. P., BATTAILE B.: Modeling the Interaction of Light between
Diffuse Surfaces. In SIGGRAPH 84, Computer Graphics Pro-
ceedings (1984), pp. 213 – 222. 1

[Hac05] HACHISUKA T.: High-Quality Global Illumination Ren-
dering Using Rasterization. In GPU Gems 2. Addison-Wesley
Professional, 2005, ch. 38, pp. 615–633. 2, 3

[IKSZ03] IONES A., KRUPKIN A., SBERT M., ZHUKOV S.:
Fast, Realistic Lighting for Video Games. IEEE Comput. Graph.
Appl. 23, 3 (2003), 54–64. 3

[Jen01] JENSEN H. W.: Realistic image synthesis using photon
mapping. A. K. Peters, Ltd., Natick, MA, USA, 2001. 1

[Kaj86] KAJIYA J. T.: The Rendering Equation. In SIGGRAPH
86, Computer Graphics Proceedings (1986), vol. 20 (4), pp. 143
– 150. 1

[Lau07] LAURITZEN A.: Summed-Area Variance Shadow Maps.
In GPU Gems 3 (2007), Addision-Wesley. 7

[LW93] LAFORTUNE E. P., WILLIAMS Y. D.: Bi-Directional
Path Tracing. In Proceedings of Third International Conference
on Computational Graphics and Visualization Techniques (Com-
pugraphics ’93) (1993), pp. 145 – 153. 1

[MSC∗06] MENDEZ A., SBERT M., CATA J., SUNYER N.,
FUNTANE S.: Realtime Obscurances with Color Bleeding.
In ShaderX4: Advanced Rendering Techniques (2006), Charles
River Media, pp. 121–133. 3

[PH04] PHARR M., HUMPHREYS G.: Physically Based Render-
ing: From Theory to Implementation. Morgan Kaufmann, 2004.
4

[Sbe96] SBERT M.: The Use of Global Random Directions to
Compute Radiosity - Global Monte Carlo Techniques. In Ph. D.
diss. (1996), Universitat Politecnica de Catalunya. 1, 2

[SKP98] SZIRMAY-KALOS L., PURGATHOFER W.: Global Ray-
Bundle Tracing with Hardware Acceleration. In Ninth Euro-
graphics Workshop on Rendering (1998). 2

[YCK∗09] YU I., COX A., KIM M. H., RITSCHEL T., GROSCH

T., DACHSBACHER C., KAUTZ J.: Perceptual influence of ap-
proximate visibility in indirect illumination. ACM Trans. Appl.
Percept. 6, 4 (2009). 8

c© The Eurographics Association 2010.

72

