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Abstract
In this paper we present an efficient method to compute the signed distance field for a large triangle mesh, which
can run interactively with GPU accelerated. Restricted by absence of flexible pointer addressing on GPU, we
design a novel multi-layer hash table to organize the voxel/triangle overlap pairs as two-tuples, such strategy
provides an efficient way to store and access. Based on the general octree structure idea, a GPU-based octree
structure is given to generate the sample points which are used to calculate the shortest distance to the triangle
mesh. Classifying sample points into three types provides a well tradeoff between performance and precision, and
when implementing the algorithm on GPU, these samples are also organized into blocks to share the triangles
among threads to save bandwidth. Finally we demonstrate efficient calculation of the global signed distance field
for some typical large triangle meshes with pseudo-normal method. Compared to previous work, our algorithm is
quite fast in performance.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geome-
try and Object Modeling—Boundary representations;I.3.6 [Computer Graphics]: Methodology and Techniques—
Graphics data structures and data types

1. Introduction

Distance field is a volumetric dataset that defines the short-
est distance between points and the boundary of an object.
There are a lot of applications of signed or unsigned dis-
tance field, such as collision detection [KLCS04], visualiza-
tion [KHS∗10], and modeling tools [PF01, FP05]. However,
the complexity of a naive method to generate distance field is
O(nm) where n denotes the number of sample points and m
denotes the number of triangles. So the computation of dis-
tance field is a slow procedure and many researchers work
on the acceleration techniques.

To speed up the calculation of adaptively sampled dis-
tance field(ADF), we present several novel strategies. One is
that we design a multi-layer hash table to store the intersect-
ing triangle list for each voxel, so it is efficient to store the tri-
angle indices without too much memory overhead. And like
in most available methods, distance field is adaptively sam-
pled through an octree-like structure . The novel part of sam-
pling process is that samples are classified into three types so
that different samples will take different calculation cost. As
the result of sample classification, Only type-1(see sec.5.2)
samples have the accurate distances computed, while type-

2 and type-3 samples have approximated distances. Since
type-2 and type-3 samples are relatively far from the mesh,
we can gain only small improvement on relative error bound
by computing an accurate value for them.

With these techniques, high resolution distance field com-
putation for a large triangle mesh could be done interactive-
ly. For the buddha model with 1,087,716 triangles under a
resolution of 5123, the total time of ADF generation is still
below 1 second(See Table 1).

2. Related Work

There are plenty of works about distance field construction,
[JBS06] gives a good survey.

A typical method is based on Voronoi diagram. [SOM04,
SGGM06] use GPU rasterization to calculate the distance
field for each slice of a uniform spatial grid with Voronoi di-
agram bounds. [SPG03] uses GPU-based prism scan method
with each primitive assigned a simple polyhedron enclos-
ing its Voronoi cell. [ED08] presents a tetrahedra GPU s-
can method with bounded volumes for each primitive which
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fixes the leaking artifacts sometimes produced by the prism
scan.

Another popular solution is propagation method. [CK07]
designs a fast hierarchical GPU-based algorithm for a voxel
grid as stacks of 2D textures. [CCI08] constrains the signed
distance field calculation within a narrow band around the
surface of the polygonal model and uses sweeping method
to compute the global field.

In addition, many ADFs works are proposed to allow effi-
cient memory usage and adaptive accuracy. [PF01, FP05, F-
PRJ00] use ADFs as a designing tool to create detailed
shapes. [LH07] designs a primal tree structure which gives
a high compression ratio with efficient random-access ca-
pability. [BC08] employs a 3D hashing scheme to store the
adaptively sampled distance field for fast ADFs reconstruc-
tion on GPU.

With GPU programmability prosperity, distance field
computation is often accelerated with rasterization and frag-
ment programs [SPG03, SOM04, SGGM06, CK07, ED08].
However, with latest GPU progress, more flexible capability
can be taken advantage of to alleviate the heavy computation
burden. [PLKK10] uses GPU with CUDA to accelerate the
signed distance field calculation. Since each thread process-
es only one triangle and iterates for each sample point, it is
still less efficient.

3. Algorithm Overview

Figure 1 gives the data flow chart of our algorithm. Firstly
we voxelize the triangle mesh and store intersecting trian-
gle lists for each triangle into a well designed multi-layer
hash table. In the meantime, the lowest level of the octree
will also be built. Then from the bottom up the octree will
be constructed. After this, samples could be determined by
the constructed octree. Finally, we will compute the distance
value for each sample and store the result into a simple hash
table.

Figure 1: The data flow chart of our algorithm.

4. Intersecting Triangle Lists Building

This section gives how to determine whether a triangle over-
laps with a voxel and how to store these intersecting triangle
lists.

4.1. Determine Triangles That Overlap With Each
Voxel

Firstly we calculate the axis-aligned bounding box (AABB)
for each triangle, and then check all voxels overlapping with
the AABB or inside the AABB to decide whether the trian-
gle itself overlaps or partially overlaps these voxels or not.
If overlapping happens, the triangle index t and voxel index
c will be written into memory as a two tuple (t, c). As to
the overlap test of one triangle with one voxel, [SS10] gives
an efficient solution. Our voxelization part is based on their
work:

• Judge whether the voxel overlaps with the plane contain-
ing the triangle;

• Judge whether the voxel overlaps with the 2D projections
of the triangle on the three coordinate planes;

• If and only if the above two judgments are true, the voxel
and the triangle overlap with each other.

4.2. Triangle Lists Storing

Since we cannot predict the number of triangles that overlap
with a voxel, we could not allocate a fixed size memory s-
pace for the voxel to store its triangle list. Furthermore, it is
difficult to allocate memory on GPU dynamically. To solve
this problem, hash table can be used. However, the great dif-
ference of each voxel’s list length will lead to overflow easi-
ly. If all overflow data are put into a single buffer, the buffer
has to be designed extremely large. The cost to transverse
the overflow buffer will be unacceptable as a result.

Figure 2: Multi-layer hash table structure. Red color means
the bucket full. Arrow indicates the bucket where the over-
flowing data will be put.

To solve these above problems, we design a multi-layer
hash table on GPU as shown in Figure 2. Our hashing
method is a variation of cuckoo hashing [PR01]. Each layer
is a list of buckets, and from bottom up the bucket number
will become smaller and the volume higher. And a watchdog
is used to count the available space for each bucket. When
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the bucket in the bottom layer corresponding to one hash val-
ue of a two tuple (t, c) becomes full, another hash value will
be calculated to make the two tuple stored in higher layer.
If the top bucket is full, host memory will be used as over-
flow buffer. In fact, this rarely happens when hierarchy and
granularity are designed well.

5. Octree and Samples

Without any pointers to memory, we design a very simple
octree structure which provides good support for the distance
field computation.

5.1. Octree Data Structure

Figure 3: A quadtree with depth 2 as illustration, here (a),
(b), (c) stands for level-2, level-0, level-1 respectively.

A full octree is used to divide the space into hierarchical
nodes so that each node in the lowest level corresponds to a
voxel. Each node is represented with 1 bit. If the bit equals
1, the node overlaps the mesh, and 0 means no overlap at all.
Each level of octree are represented by a 3D array. Similar to
mipmap, a 2D quadtree is used to illustrate the 3D array in
Figure 3. Such kind of data structure provides random access
capability, and easy traversing between parents and children.
Obviously there is a limitation that many zeros are stored for
many empty nodes. For a case of 2563 resolution, 18.3MB
memory will be needed. So this structure can only be used to
accelerate the distance calculation. When the computation is
done, this octree structure can be converted to other spatial
efficient structure.

5.2. Sample Points Classification

Different from most existing works that treat all samples in
the same way, we classify them into 3 types. For those points
far from the surface, it is really unnecessary to compute an
accurate distance value for them, since by it we can gain only
small improvement on relative error bound. Moreover, accu-
rate distance value of points far from mesh need much more
triangles to be traversed. And these points are few in num-
ber, which is unsuitable for GPU computing. As shown in

Figure 4: Sample points are classified into three types. (Red
means type-1, green means type-2, blue means type-3 )

Figure 4 in 2D, sample points are classified into three type-
s: The type-1 sample points come from the corners of the
lowest level nodes that marked as 1 (red points); the type-2
sample points are those points on the boundary of or in the
1-marked second lowest level node apart from those type-1
sample points (green points); all 1-marked non-lowest-level
nodes’ siblings are sampled at center as type-3 points (blue
points).Hence type-1 sample points come directly from the
corners of voxels, so they can represent the mesh exactly. We
sample those type-3 points at the centers of the large nodes
rather than the corners for fast computation. (see sec.7.2)

6. Distance Calculation of Type-1 Sample Points

In this section the method to calculate the distance value
of type-1 samples is given. For type-1 samples, the calcu-
lation of diatance from a certain point to a certain trian-
gle is based on the angle-weighted pseudo normal method
[BA02, BA05].

6.1. Scope That the Nearest Triangle Locates

Given a point P, according to the above methods about vox-
elization and sampling, if P is a type-1 sample, the 8 neigh-
bor voxels will contain at least one triangle. Assuming the
edge length of the voxel is d, the maximum distance value
from P to the mesh is

√
3d (it’s

√
2d in 2D ) as shown in

Figure 5 with a 2D case. The closest triangle to P will over-
lap the sphere with center at P and radius

√
3d, it will also

overlap the circum-cube (in blue color) of the sphere (in red
color), so the closest triangle must overlap one or more vox-
els among the 4*4*4 voxels around P. In consequence, only
the triangles contained in these 64 voxels will be visited to
get the shortest distance. With the increase of the resolution,
the triangles contained in the 64 voxels will be less. So this
algorithm is efficient to process high resolution problems.

6.2. Parallel Computation in Blocks

However, the distribution of the sample points are discontin-
uous in space so that it is difficult to dispatch them to each
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Figure 5: Traverse range in 2D space for type-1 sample
points.

thread in parallel. Even if we dispatch them to each thread
successfully, there is no enough on-chip memory for these
overlapping triangles since each triangle has 3 vertices and 7
normal vectors including edge normal, vertices normal and
surface normal. Those attributes require totally 120 bytes.
Moreover, the neighbor points may visit the triangle list from
the same voxels. How to take advantage of this property to
save bandwidth should also be considered. To solve above
problems, block strategy is used as shown in Figure 6.

Suppose the size of a block is n*n*n. The closest triangles
to one sample point are contained in the 4*4*4 voxels cen-
tered around that point, so the closest triangles to the sample
points in the block are contained in the (n+4)*(n+4)*(n+4)
voxels centered around the center of the block. During the
distance calculation for each point inside the block, all clos-
est triangles will be visited to find the shortest distance.

Figure 6: Block strategy enables samples in the same block
to share memory loading.

With the block strategy, the triangle lists shared by many
sample points only need to be loaded once. To overcome the
disadvantage caused by the discontinuity of sample point
distribution, these points in the same block can be com-
pressed into a linear table, which can be achieved through
atomic operation on on-chip memory.

7. Approximate Distances of Other Samples

As mentioned above, the distance of type-1 sample points
can be calculated accurately. In this section we will discuss

the approximate distance value of type-2 and type-3 sam-
ples.

7.1. Approximate Distances of Type-2 Samples

Figure 7: Computing approximate distances of type-2
(green points) and type-3 samples (blue points).

The distances of type-1 sample points to triangle mesh
are accurate, but for type-2 points, just approximate distance
values are given. As shown in Figure 7 (a), for a type-2 point,
we will first determine which second lowest level node the
point intersects, then read in the overlapping triangles of its
sub-nodes to calculate the shortest distance. That is to say,
when calculating the distances of the type-2 sample points,
only eight overlapping triangle lists are considered.

7.2. Approximate Distances of Type-3 Samples

If one node is marked as 0 and not from the lowest level,
and its parent is marked as 1, then the center of this node is
a type-3 sample point. Such kind of points are far from the
triangle mesh so it is unnecessary to calculate the distance
directly, which is time-consuming. Hence we provide an al-
ternative efficient method to approximate the exact distance.
First, find the 1-marked sibling nodes of the node which con-
tains the sample points, and then traverse these siblings’ low-
est level descendant nodes and calculate the distances of the
sample point to the centers of these nodes. At last the short-
est distance is the distance of the sample point to the triangle
mesh.

Then we will determine the sign of the distance which is
deduced directly from type-1 distances. Suppose the type-3
sample point’s position is S(s0,s1,s2), and the closest lowest
level node’s minimum corner’s position is V(v0,v1,v2), then
the type-1 point W(w0,w1,w2) shares the same sign with S
as follows:

wi =

{
vi, si ≤ vi

vi+1, si > vi
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8. Experiments and Discussion

The described algorithm has been tested on a computer with
an Intel Core i7 2.67GHz CPU and an NVIDIA Geforce
GTX480 (1.5GB) graphics card. We test multiple models
at three different resolutions, and Table 1 lists the detailed
performance data. As shown in the table, these models have
different amount of triangles. To illustrate the performance
data clearer, Figure 8 shows that more triangles or higher
resolution will take more time to calculate the global signed
distance field.

Figure 8: The time taken for different triangle amounts and
at different resolutions.

Figure 9 shows the Stanford bunny model’s distance field
which is color-coded at a resolution of 2563. Since different
precision is used for different types of sample points, the
image looks so blocky. However, in the overlap area of the
right image, we can find it smoother with higher precision.

Figure 9: Slices to display the bunny distance value which
is color-coded at resolution 2563, increasing from blue to
green to red. The left one is the slice at minimum z, the right
one is the slice at middle z which cuts the model.

Our work can calculate signed ADF of large triangle mod-
els interactively. For reasonable resolutions, the total time is
below 1 second. Here we also give some applications of the
global signed distance field since the generation of ADFs is
quite fast. Figure 10 gives a typical CSG operation based on

ADFs [FP05]. We use the re-constructed geometry from the
ADFs for the rendering.

Figure 10: CSG operation based on ADFs (the left column
shows the procedure of CSG operations, the right is the final
result).

9. Conclusion and Future Work

We have presented a new algorithm to generate ADFs inter-
actively for large triangle meshes on GPU. Unlike previous
work, our method performs all computations on GPU. The
multi-layer hash table provides a flexible method to store the
triangle indices for each voxel. Based on the octree structure
on GPU, these sample points are classified into 3 types, so
some unnecessary computation burden is alleviated. In our
implementation, the most time-consuming calculation part
is improved with block trick. With these acceleration tech-
niques used, the performance is much better than previous
work.

In the future, we’d like to compress the data structure to
process higher resolution problems. Another direction is to
applay ADFs into fluid simulation, which may help the fluid-
solid coupling by representing the solids as ADFs.
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