
Pacific Graphics (2011) Short Papers
Bing-Yu Chen, Jan Kautz, Tong-Yee Lee, and Ming C. Lin (Editors)

Real-time Realistic Voxel-based Rendering

S.-H. Chang1 and Y.-C. Lai1† and Y. Niu2 and F. Liu2 and K.-L. Hua1

1National Taiwan University of Science and Technology, Taiwan
2 Portland State University, U.S.A.

Abstract

With the advance of graphics hardware, setting 3D texture as render target is newly available to allow voxelization
algorithms to record the existence, color and normal information in a voxel directly without specific encoding and
decoding mechanism. In this paper two new voxel-based applications are proposed to take advantage of this new
functionality for interactively rendering realistic lighting effects including shadow of objects with complex occlu-
sion and refraction and transmission of transparent objects. An absorption coefficient is computed according to
the number of surface drawing in each voxel during voxelization and used to compute the amount of light passing
through partial occluded complex objects. The refraction and transmission of light passing through transparent
objects is simulated by our multiple refraction algorithm using surface normal, transmission coefficient and re-
fraction index in each voxel. All these applications can generate the result in real-time without any preprocessing
step. Additionally, we also found that the newly available geometry shader can be used to transform a highly com-
plex surface-represented scene into a set of high-resolution voxels in only one GPU pass. This possibly improve
the efficiency of the voxelization process.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations

1. Introduction

Realism is important for human perception but interactiv-
ity is more important for many applications. The refrac-
tion and transmission of light as it passes through dif-
ferent materials result in many beautiful and intriguing
effects. The requirement of interactivity motivates many
research to look for hardware-accelerated approximation
to simulate refraction effects [DB97, HLFpS99, Ohb03,
Oli, LKM01, Ade03, GS04, WD06, OB07, IZT∗07, SZS∗08,
WZHB09, CO, LES09]. Among these, Eikonal rendering al-
gorithms [IZT∗07, SZS∗08] which transforms edge bound-
aries to the gradient of refraction indices for simulating re-
fraction and multiple refraction methods [WD06,OB07,CO,
LES09] which use image-based algoirhtms to approximate
the light transport through a transparent object are popu-
lar because they can provide realistic results in a highly in-
teractive frame rate. However, there are still limitations in
Eikonal methods including complex computation in tranfor-

† Corresponding author, NSC 99-2218-E-011-005-, Taiwan

mation and difficulties in adding absorption and in image-
based methods including the requirement of an extra image
map per object for estimating traversal distance, the assump-
tion of a none-self-occluded object and disability to simulate
multiple refraction and total internal reflection effects. In this
paper we proposed to use volumetric representation to over-
come these limitations. GPU-based voxelization first slices
the surface models into a set of unit-sized voxels stored in
a 3D volume texture. Then, the multiple-refraction method
uses the voxelization results to render the refraction and
transmission effect. Our algorithm takes advantage of the
flexibility and adjustability of the 3D volume texture to com-
pute and store the surface and volume information including
normal, refraction index and transmission coefficient for bet-
ter approximation of refraction and transmission. The infor-
mation allows us to trace a view ray from the camera into
the scene and when intersecting with the surface boundary
voxels, the normal and refraction index is used to compute
the new propagation direction. The process continues until
the ray shoots out of the scene and the color indexed by the
ray direction and the attenuation accumulated along the path

c⃝ The Eurographics Association 2011.

DOI: 10.2312/PE/PG/PG2011short/001-006

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/PE/PG/PG2011short/001-006


Shu-Huai Chang & Yu-Chi Lai & Yuzhen Niu & Feng Liu & Kai-Lung Hua / Real-time Realistic Voxel-based Rendering

is used to compute the color of the ray. The abilities to rep-
resent the entire scene with a single representation without
the need of extra support data and simulate the multiple re-
fraction and total internal reflection effects of possibly self-
occluded transparent objects are the advantages of our voxel-
based algorithm. The results show that our algorithm per-
form better than image-based methods on rendering a scene
with complex deformable objects.

In addition to the refraction and transmission effects,
shadow is also important for human perception because
shadow gives the sense of existence. Traditional shadow
map [Wil78] is the simplest interactive shadow algorithm but
it cannot handle transparent and partially-occluded objects.
Transparent shadow proposed by Eisemann et al. [ED06]
uses the voxelization result to estimate the traversal length
of light passing through transparent and partially-occluded
objects and then the attenuation can be computed with the
homogeneous absorption coefficient of the entire scene. The
assumption of a single coefficient for the entire scene limits
the ability to simulate different degree of occlusion in a com-
plex partially-occluded objects which are commonly seen in
daily life. Therefore, our algorithm overcomes this limita-
tion by computing the absorption coefficient according to
the type of the object and the density of small geometries in
each voxel automatically during voxelization process. Then
the shadow of the object can be rendered by attenuating the
light using these absorption coefficients along the traversal
path. The shadow generated is closer to our perception with
negligible extra cost.

In both applications described above volumetric represen-
tation is required. Generally, volumetric data stores proper-
ties of an object in a set of regular 3D grids. A voxelization
algorithm is needed to transform the surface-boundary rep-
resentation to a volumetric representation before applying
volumetric applications and algorithms. In order to achieve
interactivity, real-time slicing-based GPU voxelization algo-
rithms [CF98, FC00, Lla07, KPT99, DCB∗04] are proposed
to slice models into a set of voxels but their efficiency is lim-
ited by the requirement of multiple GPU passes . Therefore,
encoding slice-based algorithms [KPT99, DCB∗04, ED06,
FBP09] are proposed to reduce the number of passes by ex-
amining the intersection of each primitive with each voxel
grid only once with a special encoding mechanism. Unfor-
tunately there are several limitations including the usage of
triangles as the represented primitive, the strenuous process
of changing encoding and decoding mechanism when appli-
cations change voxel resolution and difficulties in recording
surfacial and volumetric information. In addition the number
of GPU passes for a high-resolution representation still has
chance to be more than one. Through the development pro-
cess of our voxel-based application, a new GPU-based vox-
elization algorithm are found to overcome these limitations
by using the geometry shader to slice the geometry mod-
els using the clipping plane algorithm [FC00] in single GPU
pass. The usage of the geometry shader to voxelize the model

relieves the need of multiple passes in original slicing-based
algorithms and enhances the voxelization efficiency. Then,
the adjustable 3D volume texture is used to store the slicing
result with other surfacial and volumetric information. Since
the size of the 3D texture can be easily adjusted according to
the need of application and the limitation of graphics hard-
ware, this can ease the burden of changing encoding and de-
coding mechanism when adjusting the voxel resolution for a
general encoding voxelization method. Results show that our
algorithm can gain improvement in voxelization efficiency
and render all three different lighting effects in real time for
a high-resolution voxelization process.

2. Voxelization

The newly available geometry shader is used to slice the
surface model into a set of voxels. Before developing our
voxelization algorithm we must decide how to store the vol-
umetric representation of a model. A uniform-sized voxel
structure is schematically similar to a 3D volume texture.
Thus, using a texel in a 3D volume texture is the simplest
way to store the volumetric data in a voxel. The ability to
adjust the memory size of a texel gives our algorithm the
flexibility of computing and storing extra surfacial and volu-
metric information such as transmittance, normal and color
for generating more realistic lighting effect as described in
Section 3 and 4.

The computation of voxelization is conducted as shown
in Fig. 1. Generally, a surface-represented triangle is stored
as 3 vertices with their position, normal and other informa-
tion. When vertices of a triangle are queued into the graph-
ics pipeline, the position of a vertex is first transformed into
the camera coordinate. Our voxelization algorithm computes
which slices from the 3D volume texture have the chance to
intersect the triangle. The range of slices which possibly in-
tersect the triangle can be calculated with the depth of all
three vertices using step 3 and 4 listed in Fig. 1. The geom-
etry shader duplicates the triangle according to the number
of slices in the possible range. At the end of the process the
slicing algorithm sets up the far and near clipping plane ac-
cording to the index of the destined slice in order to correctly
compute the boundary voxels for the triangle. Then a du-
plicated triangle is rendered for each proper set of clipping
planes.

3. Transparent Shadow Map

Eisemann et al. [ED06] used the voxelization result to esti-
mate the passing distance for rendering transparent shadow
but their method did not take different degrees of occlusion
and material absorption into account. Our algorithm makes
an improvement in computing the shadow by attenuating the
light along the traversal path by accumulating the absorp-
tion varying with the degree of occlusion and material in the
following steps:

c⃝ The Eurographics Association 2011.

2



Shu-Huai Chang & Yu-Chi Lai & Yuzhen Niu & Feng Liu & Kai-Lung Hua / Real-time Realistic Voxel-based Rendering

Detecting the voxels intersected with triangle

1 For each triangle, Tri
2 z0 = Z(Tri.V 0), z1 = Z(Tri.V 1),z2 = Z(Tri.V 2)
3 maxslice = max(z0,z1,z2)/thickness
4 minslice = min(z0,z1,z2)/thickness
5 For i = minslice to maxslice
6 Planenear = i∗ thickness
7 Plane f ar = Planenear + thickness
8 Set Planenear and Plane f ar to projection matrix
9 If (Intersect(Tri))
10 Rasterize Tri into the slice

Figure 1: This is the pseudo code for computing the bound-
ary voxels of a triangle, Tri. V denotes a vertex of a triangle,
thickness is the voxel size which is a user specified value, Z()
is a function to extract the depth value of a vertex after trans-
forming the position of the vertex into the camera coordi-
nate, max() / min() computes the maximum/minimum value
among the set of input values and Intersect() is a function
to test whether the triangle is valid after being culled by the
clipping planes.

1. The voxelization camera is set at the position of the light
source and aligned with the light direction.

2. Our algorithm voxelizes the scene and computes and
stores the absorption of each voxel. The absorption coef-
ficient is computed by accumulating the number of writ-
ing in each voxel and then this number is multiplied by a
user-defined constant to get the absorption coefficient be-
cause the number of drawing reflects the degree of partial
occlusion in the voxel.

3. During the rendering process, the voxel position, (x,y,s),
of the first intersection point from the view is computed.

4. The amount of occlusion can be computed using the fol-
lowing equation, ∑s

i=0 α(x,y, i)×E(x,y, i) where α() de-
scribes the light absorption in this voxel and E() is an
occupation flag which 1 represents that the voxel is occu-
pied by some object.

4. Refraction and Transmission

Refraction is the change in propagation direction of a light
ray when it transports from one medium to another and the
light propagation direction change can be described by the
Snell’s Law. But single refraction is not enough to describe
the light transport through a transparent object because gen-
erally a light ray enters and exits an object in a pair and it is
a multiple refraction phenomenon.

4.1. Two-surface refraction

Wyman et al. [Wym05] proposed that multiple refraction
may be simplified to a two-surface-refraction effect: one
happens when light enters the object and the other happens
when light exits. The first refraction can use the normal of
the intersection point and the incident direction to compute
the first refraction direction, T⃗1. If the traversal distance, d,
between the first and the second refraction point can be esti-
mated, the second refraction position can be estimated with
P2 = P1 + dT⃗1 where P1 and P2 are the first and second re-
fraction position, and T⃗1 is the refraction direction after the
first refraction. Wyman et al. [Wym05] proposed an image-
based method to estimate d without considering the first re-
fraction direction. We realized that our voxelization result
can find a better estimate of d with a similar manner de-
scribed in Sec. 3, P2 can be computed as described previ-
ously and projected into the voxel space to extract the sur-
face normal, N⃗2 and refraction index and T⃗2 can be computed
with T⃗1, N⃗2 and refraction index.

4.1.1. Multiple-surface refraction

The two-surface-refraction method cannot render all trans-
mittance lighting effects when light hits a transparent ob-
ject in a scene. In addition it also has some limit in the al-
lowable models and transmittance. Thus, a multiple-surface-
refraction algorithm is proposed to simulate the refractions
and reflections inside a scene. The same voxelization pro-
cess described in the two-surface-refraction method is used.
When rendering the scene, the view initiates a view ray pass-
ing through the center of a pixel. Then, the ray is propa-
gated inside the voxel space and every time when the ray
hits a boundary voxel, the ray is refracted according to the
Snell’s law. In order to properly locate the boundary voxel
for refraction, the propagating distance must be set prop-
erly to prevent missing the boundary voxel during the traver-
sal procedure and wasting efforts in extra propagation. Our
implementation chooses the physical distance to propagate
through a voxel as the propagation step distance. Then, the
position where the next refraction event happens can be com-
puted with Pi = Pi−1 + thickness × Tvoxel(T⃗i)/cosθ where
Pi−1 is the current position, thickness represents the physical
size of the voxel, T⃗i−1 is the current ray propagation direc-
tion, Tvoxel() is a function to transform the ray into the voxel
coordinate for locating the voxel which records the normal
and transmittance information and θ is the angle between the
ray and the dominant component axis of the ray. The next
step computes the refracted view ray direction according to
the following equation:

T⃗i =

{
re f (T⃗i−1,Nv(Pi),Tv(Pi)) i f (E(Pi)) = 1

T⃗i−1 otherwise
(1)

where re f () computes the new ray direction according to the
Snell’s law, E(Pi) is a flag which indicates whether the voxel
at Pi is a boundary voxel or not, Nv(Pi) extracts the normal

c⃝ The Eurographics Association 2011.

3



Shu-Huai Chang & Yu-Chi Lai & Yuzhen Niu & Feng Liu & Kai-Lung Hua / Real-time Realistic Voxel-based Rendering

stored in the voxel at Pi and Tv(Pi) extracts the refraction
index stored in the voxel at Pi. The process continues to find
the intersection and refracted ray direction until the ray hit
the boundary of the volume.

However, there are still problems when applying the al-
gorithm due to the finite resolution of voxels. The most fre-
quent one is multiple boundary voxels along the traversal
path. The surface locality information is used to relieve this
issue. We observed that when the angle between the nor-
mals of surfaces where the consecutive refractions happens
is small, the possibility of misjudge is high. Thus, our al-
gorithm uses a threshold to determine whether the refrac-
tion mechanism initiates or not and this can reduce a large
amount of artifact in this type. The second problem is when
a ray hits the corner of two boundary voxels, the algorithm
may not find the right refraction point. This problem is simi-
lar to the hole problem when solid voxelizing a model. Gen-
erally a low pass filter should be able to reduce this problem.
In addition, the filter technique can also reduce the multi-
ple intersecting voxel issues described previously. Our al-
gorithm proposed another relief to this missing voxel issue
based on the observation that a missing voxel issue is much
harder to handle properly than a multiple intersected voxel
issue. Thus, when slicing the scenes, our voxelization algo-
rithm extends the clipping region of the slice to make the ex-
tent of a voxel overlap with others’ to increase the chance of
multiple intersected voxel situations and reduce the chance
of missing voxel situations. Then the angle threshold dis-
cussed in the previous paragraph can be used to get a good
rendering result.

4.2. Transmittance

When light passes through a medium, the amount of energy
passing through will decrease and this phenomenon can be
described by transmittance. The simplest method [ED06] to
estimate transmittance uses a parameter, transparency, which
depends on the traversal length of the light ray through the
transparent object. Then, the transmittance is used to deter-
mine the amount of transparent blending between the object
and the background. However, the method [ED06] is limited
to an object with homogeneous material. Our voxelization
result contains the surface normal information, the transmit-
tance coefficient and refraction index. This allows our ren-
dering method to compute transmittance with higher preci-
sion by both considering the length and the different trans-
parent attenuation of the traversal voxels along the path. The
traversal distance between refraction points can be estimated
using ∥ thickness× Tvoxel(T⃗i)/cosθ ∥ which is a byproduct
of refraction ray estimation. Then the transparent attenua-
tion can be computed by transparency = ∏N

i=0 eσ(di) where
N is the total number of refraction points along the traver-
sal path and σ() calculates the transparent attenuation of the
object [ED06].

5. Results and Discussions

5.1. Voxelization

All the results in this paper are rendered and measured us-
ing a computer with ATI HD5850, Intel Core 2 duo E6750
and 2 GB main memory. Our voxelization algorithm is im-
plemented with DirectX 11 but the same program is also
compatible to DirectX 10. The vertex, geometry and pixel
shaders are written using HLSL 4.0. The 3D volume texture
is implemented with the format of 2D texture array which
is a set of 2D textures with the same format in each pixel
and the same resolution for each texture. The array provides
the required properties to totally support the need of our al-
gorithm and gives our algorithm more freedom in setting the
format of each pixel during the implementation process. And
a 32-bit RGBA floating point format is chosen to record the
voxel information in our current implementation.

Additionally, each graphics hardware device has a differ-
ent limitation in the allowable voxelization resolution and
the limitation depends on the available GPU memory space.
For example a resolution of 256×256×256 with 32-bit in-
formation per voxel requires a memory space of 64MB to
store the data. According to the graphics card used in the test,
our voxelization algorithm are tested on voxelizing different
models with various triangle counts under three different res-
olution settings which are 128×128×128, 256×256×256
and 512×512×512. The results are shown in Table 1. In ad-
dition the time required to voxelize the same set of models
under these three resolutions using the algorithm proposed
by Ignacio et al. [Lla07] is also shown in Table 1. The main
reason to compare against their algorithm is due to being the
derivative of slicing-based algorithm and the same usage of
3D texture to store the voxelization result. However, their al-
gorithm processes the primitives in a model once per slice.
Thus, the amount of computation increases with the increase
in the voxelization resolution as shown in Table 1. Obvi-
ously, our algorithm can get much better efficiency when
voxelizing models in higher resolution. However, because
their algorithm can process the slices in sequential order to
set up proper stencil buffer in voxelization process, their al-
gorithm can get interior information with higher precision
for relieving aliasing artifact when using the results.

Table 1 demonstrates that the main factor of efficiency is
the triangle count of the model and the voxelization resolu-
tion. In addition our algorithm is also affected by the size of
the model and the viewing angle of the voxelization process.
When analyzing the contribution of these other factors, we
found that the difference between the best and worst perfor-
mance is roughly 10ms. In addition to the cost factors from
the voxelization process there are other cost factors when
applying the voxelization result to render the lighting effects
proposed in Section 3 and 4. The main one is the amount of
voxels accessed through the process. Because the rendering
process has to run through a set of slices, when the number
of processing slices increases, the amount of texture access

c⃝ The Eurographics Association 2011.

4



Shu-Huai Chang & Yu-Chi Lai & Yuzhen Niu & Feng Liu & Kai-Lung Hua / Real-time Realistic Voxel-based Rendering

Name Alg. # Tris 1283
ms 2563

ms 5123
ms

Torus Ours 800 1.66 3.73 10.91
Grid 2.67 7.29 641.03

Venusm Ours 43357 3.19 5.04 12.41
Grid 12.41 73.02 746.27

Horse Ours 96966 4.28 7.65 15.09
Grid 15.09 156.99 925.93

Hand Ours 654666 11.5 20.00 27.68
Grid 27.68 632.91 2500

Dragon2 Ours 871414 16.54 23.85 31.06
Grid 31.06 1282.05 3448.28

Table 1: This shows the time needed to voxelize models with
different triangle counts with different resolution settings us-
ing our voxelization algorithm marked with Ours and the
voxelization algorithm proposed by Ignacio [Lla07] et al.
marked with Grid. The performance is measure in ms.

Figure 2: Rendering the shadow of a surface-represented
tree model using ray tracing is too time consuming and thus
transparent shadow map is a better choice. The right is a
tree rendered with a uniform absorption coefficient for the
entire tree. The right is a tree rendered with different voxel
absorption coefficients computed according to the material
and the degree of occlusion. The trunk shadow is dark and
the shadow of the leaves varies according the degree of oc-
clusion.

will also increase. It is even worse that the cost to access the
texture data in the GPU memory space is much higher than
the cost to access CPU memory . Thus, general practice is
to reduce the number of slices with the increase in the slice
resolution to reduce the number of processed slices with ac-
ceptable rendering quality.

5.2. Transparent Shadow

A tree rendered with its transparent shadow is shown in
Fig. 2. The trunk is opaque and the leaves are partially oc-
cluded and we model these partial occlusions using different
absorption coefficients in each voxel. As shown in the right
picture of the figure, Eisemann’s method renders the shadow
of the tree with a uniform absorption coefficient and thus the
shadow of the trunk is not dark enough to show the solid-
ness and the leaf shadow does not show the degree of the

Figure 3: This demonstrates the strength of recording sur-
face normal and transmittance. Our algorithm can render
an object with multiple different materials.

Figure 4: The left, middle and right are rendered using the
two-refraction [Wym05], multiple-refraction and ray tracing
methods.

occlusion along the light paths. Our algorithm computes ab-
sorption coefficients according to the material and the degree
of occlusion. Thus, this gives large absorption coefficients to
the trunk voxels and larger absorption coefficients to highly
occluded leaf voxels and smaller absorption coefficients to
lowly occluded leaf voxels. This makes the trunk shadow
dark and the leaf shadow in the blow-up image in the left
of the figure demonstrates different degree of darkness ac-
cording to the degree of occlusion. Because our absorption
coefficient takes the density of occlusion into account, the
rendered shadow looks more realistic. This realism comes
with almost negligible because the number of drawing in
each pixel is the byproduct of voxelization.

5.3. Refraction and Transmission

The multiple-surface-refraction algorithm can simulate the
multiple refraction and total internal reflection effects to gen-
erate realistic refraction in real time. It is generally more ef-
ficient than traditional ray-tracing. This is because a fixed
number of voxels can be used to represent a complex sur-
face model. Thus, the traversal cost can be limited in a
controllable amount and so is the efficiency of rendering.
Fig. 4 shows the comparison among Wyman’s image-based
2-refraction method [Wym05], multiple-refraction and ray
tracing methods when rendering the refraction of a glass
vase. The image-based method renders the glass vase as light
passing through two planar surfaces. Failure to render ob-
jects with self-occlusion is one of the major problems ex-
isting in the image-based refraction method. In addition, it
cannot simulate the multiple refraction and total internal re-
flection effects, either. The results generated by our multiple-
refraction method are more closed to the one generated by
ray tracing. These results demonstrate that our method can

c⃝ The Eurographics Association 2011.

5



Shu-Huai Chang & Yu-Chi Lai & Yuzhen Niu & Feng Liu & Kai-Lung Hua / Real-time Realistic Voxel-based Rendering

overcomes the limitation of convex models and possible
transmittance values existing in the two-surface-refraction
and image-based refraction methods.

It is very easy for our application to render an object that
contains parts with different transparent materials as shown
in Fig. 3 while other algorithms such as [ED06, Wym05,
OB07] can only render the refraction of the ball without con-
sidering the refraction effect of the angel.

6. Conclusion

Newly available GPU functionalities enable more efficient
and realistic voxel-based rendering. In this paper 3D vol-
ume texture is used to compute and store surfacial and vol-
umetric information including the surface normal, attenua-
tion/transmission coefficient and refraction index in a voxel.
The information is used to generate more realistic lighting
effects including the shadow of a complex object and the
refractive view of a transparent model. Through the devel-
opment of these new applications, we found that the ge-
ometry shader can duplicate the triangles during the vox-
elization process to reduce the GPU rendering pass down
to one time. At the same time 3D volume texture also give
us the flexibility of adjusting the voxel resolution according
to the hardware capability and the requirement of applica-
tions without the strenuous modification in the encoding and
decoding process required by the grid encoding voxeliza-
tion algorithms. The price paid in our voxelization method is
the extra triangles drawn per voxelized triangle but the vox-
elization efficiency is still improved. Although we demon-
strate the new voxel-based applications using our geometry-
shader-based voxelization algorithm, the same concept can
be easily incorporated with other voxelization algorithms
by adding an extra process to compute the surface proper-
ties. Through our observation some of the refraction arti-
fact may go away if conservative voxelization algorithms
such as [SS10] are used. Finally, the results presented in
this paper demonstrate that our voxel-based applications and
geometry-shader-based voxelization is efficient and flexible
for real-time voxelization and applications.

References

[Ade03] ADELSON S. J.: Simulating Refraction Using Geometric
Transforms. Master’s thesis, 2003. 1

[CF98] CHEN H., FANG S.: Fast voxelization of three-
dimensional synthetic objects. J. Graph. Tools 3, 4 (1998), 33–
45. 2

[CO] CHAUDHARI P., OLANOY M.: Real-time multiple refrac-
tions through deformable objects. 1

[DB97] DIEFENBACH P. J., BADLERT N. I.: Multi-pass pipeline
rendering: Realism for dynamic environments. 59–70. 1

[DCB∗04] DONG Z., CHEN W., BAO H., ZHANG H., PENG Q.:
Real-time voxelization for complex polygonal models. In PG
’04: Proceedings of the Computer Graphics and Applications,
12th Pacific Conference (2004), pp. 43–50. 2

[ED06] EISEMANN E., DÉCORET X.: Fast scene voxelization
and applications. In ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games (2006), pp. 71–78. 2, 4, 6

[FBP09] FOREST V., BARTHE L., PAULIN M.: Real-time hierar-
chical binary-scene voxelization. Journal of Graphics Tools 29,
2 (2009), 21–34. 2

[FC00] FANG S., CHEN H.: Hardware accelerated voxelization.
Computers and Graphics 24 (2000), 200–0. 2

[GS04] GUY S., SOLER C.: Graphics gems revisited. ACM
Transactions on Graphics (Proceedings of the SIGGRAPH con-
ference) (2004). 1

[HLFpS99] HEIDRICH W., LENSCH H., F M. C., PETER SEIDEL
H.: Light field techniques for reflections and refractions. In In
Rendering Techniques ąę99 (1999), pp. 187–196. 1

[IZT∗07] IHRKE I., ZIEGLER G., TEVS A., THEOBALT C.,
MAGNOR M., SEIDEL H.-P.: Eikonal rendering: Efficient light
transport in refractive objects. ACM Trans. on Graphics (Sig-
graph’07) (Aug. 2007), to appear. 1

[KPT99] KARABASSI E.-A., PAPAIOANNOU G., THEOHARIS
T.: A fast depth-buffer-based voxelization algorithm. journal
of graphics, gpu, and game tools 4, 4 (1999), 5–10. 2

[LES09] LEE S., EISEMANN E., SEIDEL H.-P.: Depth-of-field
rendering with multiview synthesis. ACM Trans. Graph. 28 (De-
cember 2009), 134:1–134:6. 1

[LKM01] LINDHOLM E., KILGARD M. J., MORETON H.: A
user-programmable vertex engine. In Proceedings of the 28th
annual conference on Computer graphics and interactive tech-
niques (New York, NY, USA, 2001), SIGGRAPH ’01, pp. 149–
158. 1

[Lla07] LLAMAS I.: Real-time voxelization of triangle meshes
on the gpu. In SIGGRAPH ’07: ACM SIGGRAPH 2007 sketches
(2007), p. 18. 2, 4, 5

[OB07] OLIVEIRA M. M., BRAUWERS M.: Real-time refraction
through deformable objects. In Proceedings of the 2007 sym-
posium on Interactive 3D graphics and games (New York, NY,
USA, 2007), I3D ’07, pp. 89–96. 1, 6

[Ohb03] OHBUCHI E.: A real-time refraction renderer for volume
objects using a polygon-rendering scheme. In Computer Graph-
ics International, 2003. Proceedings (july 2003), pp. 190 – 195.
1

[Oli] OLIVEIRA G.: Refractive texture mapping, part two. 1

[SS10] SCHWARZ M., SEIDEL H.-P.: Fast parallel surface and
solid voxelization on gpus. ACM Trans. Graph. 29 (December
2010), 179:1–179:10. 6

[SZS∗08] SUN X., ZHOU K., STOLLNITZ E., SHI J., GUO B.:
Interactive relighting of dynamic refractive objects. In SIG-
GRAPH ’08: ACM SIGGRAPH 2008 papers (2008), pp. 1–9. 1

[WD06] WYMAN C., DAVIS S.: Interactive image-space tech-
niques for approximating caustics. In Proceedings of the 2006
symposium on Interactive 3D graphics and games (2006), I3D
’06, pp. 153–160. 1

[Wil78] WILLIAMS L.: Casting curved shadows on curved sur-
faces. In In Computer Graphics (SIGGRAPH ąę78 Proceedings
(1978), pp. 270–274. 2

[Wym05] WYMAN C.: An approximate image-space approach
for interactive refraction. ACM Trans. Graph. 24, 3 (2005), 1050–
1053. 3, 5, 6

[WZHB09] WALTER B., ZHAO S., HOLZSCHUCH N., BALA K.:
Single scattering in refractive media with triangle mesh bound-
aries. ACM Transactions on Graphics 28, 3 (aug 2009). 1

c⃝ The Eurographics Association 2011.

6


