
1 Introduction

One of the biggest challenges of three-dimensional computer
graphics is the generation and real-time rendering of vast and
realistic outdoor sceneries, especially forests.

While the modeling of polygonal vegetation is a rather
well-researched topic and there exists a palette of specialized
tools which allows the rapid creation of realistic tree models,
those consist of a large number of polygons. For example, a
50.000-tree forest of models with average detail of 200.000
polygons per tree amounts to 10 billion polygons, which
prohibits real-time rendering of such a forest. Therefore,
most tree rendering techniques are still either slow or of
insufficient visual quality.

Our approach to forest rendering is based on the image-
based billboard cloud simplification algorithm as introduced

by Décoret [DEC02, DEC03]. We introduce a number of
adaptations to improve the quality of the simplification,
especially for tree models. We use this extended algorithm to
generate image-based representations of arbitrarily complex
tree models in various levels of details during a preprocessing
step.

The resulting billboard clouds consist of sufficiently
few primitives to allow rendering of tens of thousands
of trees at interactive rates, with a visual quality high
enough for walkthrough applications. Figure 1 shows two
different forests rendered this way in real-time, with a slight
OpenGL fog as depth cue. Every visible tree in this image
is an individual billboard cloud, no additional simplification
techniques have been used.

Extreme Model Simplification for Forest Rendering

Anton L. Fuhrmann, Eike Umlauf and Stephan Mantler

VRVis center for virtual reality and visualization

Abstract

Models of large forest scenes are of a geometric complexity that surpasses even the capabilities of current high end
graphics hardware. We propose an extreme simplification method which allows us to render such scenes in real-
time. Our work is an extension of the image based-simplification method of Billboard Clouds. We automatically
generate tree model representations of 15-50 textured polygons. In this paper, we focus on the algorithmic details
to improve the simplification process for foliage. We use the simplified models as static levels-of-detail in the
medium to far field and demonstrate how our approach yields real-time rendering of dense forest scenes for walk-
throughs and flyovers.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Curve, surface, solid,
and object representations; I.3.5 [Computer Graphics]: Geometric algorithms, languages, and systems; I.3.8
[Computer Graphics]: Applications -- Real-time visualization

EurographicsWorkshop on Natural Phenomena (2005),
E. Galin, P. Poulin (Editors)

Figure 1: Sample screen shots of real-time rendered billboard cloud forests

http://www.eg.org
http://diglib.eg.org

 Fuhrmann, et.al. / Extreme Model Simplification for Forest Rendering

2 Related work

A popular approach to the modeling of vegetation is the use
of Lindenmayer-systems and generalizations thereof [LIN90,
TOB02], while other works blend grammar-based modeling
with traditional techniques [WEB95, DEU99]. A number of
commercial products such as XFrog [XFR], natFX [BIO] or
SpeedTreeCAD [IDV] are available that generate high-quality
polygonal or hybrid polygon/image-based models.

From a rendering point of view, various techniques are
used to create immersive forests, with mixed success.

A very popular image-based approach is billboarding,
where a tree is usually represented by a single quadrilateral
with a tree texture applied. In the view-aligned case, the
billboard always faces the user. Inspected closely, this looks
very unrealistic because of lacking depth and parallax.
Therefore, several billboards with fixed orientation are often
set up orthogonally to produce a more three-dimensional
impression, resulting in a “cardboard” look. Our approach
essentially produces results like this, but with independent
orientation and automatic generation of the billboards.

Dynamic impostors [SCH95, SCH97] are view-aligned
billboards whose texture is dynamically updated by
rendering the original polygonal model to texture depending
on the viewing direction every few frames. Doing this for a
high-polygon model every few frames is still expensive, but
performing the impostor update for an entire forest of such
models is prohibitively slow.

Precomputed impostor approaches [CHE93, MAX95,
MEY01] avoid the dynamic texture regeneration by
interpolating images from a stored set of viewpoints, but
these image-warping operations are relatively slow and -
when inspected from up close - the same limitations as with
view-aligned billboards apply.

Low-polygon modeling in combination with texturing
yields more solid-looking trees, but is considerably slower
than billboarding. Besides, visual quality suffers if very few
polygons are used.

Levels of detail and multiresolution solutions are
frequently used in conjunction with above techniques, but
generating multiple levels of detail for trees automatically
[HOP93, TUR00] is a non-trivial task, and doing so manually
is labor-intensive.

Hybrid approaches try to combine the advantages of
polygonal and image-based modeling:

IDV’s SpeedTree middleware engine [IDV] merges
low-polygon stems and view-aligned billboard foliage to
achieve a good tradeoff between speed and visual quality.
While providing visually pleasing result in many cases, the
billboards pose problems when viewed from certain angles
where the foliage suddenly seems to rotate, and rendering
times do not allow dense forests.

Remolar et al [REM02] rely on multi-resolution polygonal
and impostor representations of the foliage. The main
problem lies in obtaining low-detail representations at
sufficient quality.

Point-based rendering of trees [DAC03, MAN03] is effective
for distant objects, but visually unacceptable up close.

Harnessing the texturing power of current graphics
hardware, Decaudin et al [DCD04] utilize aperiodic tiles

Figure 3: A 110,000 polygons tree model (a) simplified to 11 billboards (b). The error threshold is shown by the vertex validity

Figure 2: Billboard Cloud tree composed of 25 billboards
(50 triangles). Original model consists of 159.853 triangles.

 Fuhrmann, et.al. / Extreme Model Simplification for Forest Rendering

of volumetric textures to achieve vast and dense forests.
This approach does not allow independent placement or
rotation and scaling of individual trees and is not suited for
walkthroughs. Furthermore, existing rendering engines do
not support this technique and would have to be upgraded,
whereas the ability to draw billboards is implemented
in virtually any engine, thus making our approach more
versatile.

Billboard clouds, introduced by Décoret [DEC02, DEC03],
are a means of extreme simplification, where the polygonal
input model is simplified to a minimum set of textured
planes that feature independent size, orientation and texture
resolution, which basically equates to a set of static billboards,
as mentioned before. The working and shortcomings of the
basic algorithm are discussed in the next sections.

A similar approach by Andujar et al [AND04] produces
comparable output, but relies on a different computation
process that apparently cannot simplify non-manifold tree
models because it involves volume inside/outside tests.

All of the previously discussed approaches have their
advantages and shortcomings, making them appropriate for
different applications. Similarly our solution is just another
compromise between realism and speed, which addresses
only some of the problems of forest rendering, namely
model simplification, level-of-detail generation and lighting
for static trees.

3 Methodology

Section 3.1 briefly explains the original billboard cloud
algorithm; for a detailed derivation we refer to the original
papers [DEC02, DEC03]. We address problems of the
simplification process in section 3.2 and introduce our own
adaptation for foliage simplification in section 3.3.

3.1 The original billboard cloud algorithm

The idea of the simplification process is that a high-polygon,
textured input model is projected onto a set of planes that
approximate the original geometry within a defined error
bound. The most difficult and computationally expensive
part of the algorithm is to derive this plane set.

The quality of the simplification is determined by the error

threshold ε, measured in percent of the model’s bounding
sphere radius. A vertex can only be simplified to a plane if
its normal distance is less than ε. Therefore, the spherical
region around a vertex with radius ε is its validity domain
V. If a plane intersects the validity domains of all vertices
of a face, it is declared valid for the face (i.e. it can simplify
the face) and vice versa. There is an infinite number of valid
planes for each face.

The simplification process can be formulated as a
clustering problem in a dual space constructed by the Hough
transform [DUD72], in which planes (in primal space) map
to individual points. In this dual space, the ground plane can
be visualized as varying θ and φ, i.e. the orientation of the
plane (coordinate limits are ±180° and ±90°, respectively),
while the up axis represents the distance from the origin ρ
(≥0).

A vertex in primal space can be described as the intersection
point of all planes passing through the vertex. Thus, a point in
primal space becomes an infinite set of points in dual space,
more conveniently represented by a sheet, or height field.
The vertex validity domain simply is the region between this
sheet translated up/down on the ρ axis by ε.

Consequently, a face is not only valid for a single point
in dual space, but for the intersection of its vertex validity
domains.

For the numerical evaluation, dual space is represented as a
grid with a finite number of cells. Grid cells are marked valid
for a face (and vice versa) if they lie within its discretized
validity domain. The discretized validity domains of the faces
of the input model are accumulated to a value called density
(D). To give more weight to larger faces and promote planes
tangent to large faces, D is calculated as a contribution factor
C, which is the “geometric coverage” of a face projected to
the plane at the center of a cell. A penalty factor P is then
subtracted for planes that nearly miss vertices; note that a
large penalty factor may eradicate D.

Once all values of D have been computed, a recursive
greedy algorithm searches the dual grid for the cell with
maximum D. This cell is further recursively subdivided
until the best plane is found. Both V and D need to be
calculated for each set of the recursion, which makes this
part of the algorithm very expensive. After the best plane has
been found, the D contributions of the simplified faces are

Figure 4: Billboard Cloud artifacts: (a) loss of continuity. (b)The front faces of the box should ideally be simplified to one
vertical plane. However, the dominant top and bottom planes preemptively simplify the front faces and leave a large hole in the

 Fuhrmann, et.al. / Extreme Model Simplification for Forest Rendering

removed from the dual grid.

Repeating the greedy procedure until all faces have been
simplified yields the finished plane set.

Finally, plane textures are generated by projecting the faces
of the input model to their respective simplifying plane.

3.2 Problems of the Algorithm

In general, the simplification process is quite demanding on
memory and CPU time. Unfortunately the behavior of the
algorithm, especially for working with tree models, can be
hard to predict. Parameter values that produce an excellent
result for one model might work less well on another. Worse,
the algorithm as outlined in [DEC03], frequently fails to
produce simplification results or delivers mathematically
correct, but visually unpleasing solutions.

3.2.1 Numerical issues. A primary source of problems
are numerical issues with the algorithm. Discretization of
a continuous volume to a set of cells is a non-trivial and
expensive task that requires some trade-off between speed
and precision. The method used to discretize face validity
domains actually discretizes the corresponding vertex validity
domains, then intersects them. While this is computationally
effective, it is known to produce false positives where a
face may be marked valid for a grid cell although it is not.
Consequently, the greedy algorithm fails to find a plane
that simplifies this false positive, potentially causing the
algorithm to terminate without returning a simplification.

Another problem surfaces if a very small value is chosen
for ε. Because of the imprecise discretization of validity
domains, the recursive algorithm might visit sub-cells
that, due to dominant penalty, feature zero D, but seemed
promising in the previous step. The algorithm will not know
which sub cell to pick in order to continue and once again
cannot produce a correct solution.

Both issues are similar and the less-than-perfect
discretization step is the major cause, but since the
discretization of validity domains is done very often
(especially during the greedy select phase), the increased
computational cost of employing a more precise discretization
is prohibitive. Instead, we introduce a fail-safe solution in
section 3.3.1.

3.2.2 Sub-optimal planes. It is generally very difficult to

simplify rounded shapes to polygons satisfactory using any
algorithm, and billboard clouds are no exception. While
precomputed shading or normal mapping on the textures help
to convey a sense of curvature, often overlapping planes and
gaps in the billboard clouds spoil the overall impression.

An important trait of the algorithm is that connectivity of
the input model is neither needed, nor retained. For certain
cases, this behavior is greatly beneficial. For instance, leaves
of a tree model are not interconnected, but it is desirable that
many individual leaves are simplified to one plane. On the
other hand, planes that simplify different regions of a model
may also simplify parts of sub-objects that would look better
if taken care of by a different plane.

This phenomenon, which we call “slicing” can be
particularly witnessed with trunks and branches of
vegetational models (Fig. 4a). To avoid this persistent
problem, we split tree models into two parts, one containing
the trunk, the other foliage and branches. The simplification
results are merged to produce a representation of superior
quality than a single pass would yield.

On the other hand, sometimes slicing can be advantageous.
Calculations for sub cells include the penalty factor, which
is supposed to keep planes to the perimeter of the model to
yield a good representation of the “outside”. Yet, in order to
obtain a solid-looking representation, planes that slice the
foliage are desirable, which is why we omit penalty from D
calculations for sub cells.

Not all models can be simplified by the greedy algorithm.
For instance, we can frequently observe cases where
dominant planes accidentally simplify smaller faces that
would be better handled by a separate plane (Fig. 4b).

Remedies for sub-optimal planes are discussed in sections
3.3.3 and 3.3.5.

3.2.3 Gaps. Gaps may occur in a billboard cloud if a vertex
shared by multiple faces is simplified to different planes.
Gaps show up especially while simplifying curved surfaces,
when simplifying planes do not match or overlap. We present
a technique to avoid gaps in section 3.3.4.

3.3 Our Improvements

Thankfully, trees can be relatively good represented as
billboard clouds. Except for the trunk, they feature little
connectivity that could be disturbed and are mostly devoid of
large, curved surfaces, where discontinuities are especially
noticeable. Nevertheless, the original algorithm tended
to produce complex or mediocre BBC representations of
trees. We introduce some extensions made to the original
algorithm to enhance the quality of our simplified tree
models in sections 3.3.5 to 3.3.7. Additionally, we explain
some of the fixes employed to improve general results in
sections 3.3.1 to 3.3.4.

3.3.1 Angular Contribution. In general, the contribution
component C of density D aims to keep billboard planes
tangent to the original geometry. By default, a face’s C to a

Figure 5: A simple Billboard Cloud generated without (left,
original geometry overlaid) and with (right) post-plane
tweaking.

 Fuhrmann, et.al. / Extreme Model Simplification for Forest Rendering

plane is its geometric area, projected to the plane. Thus, C
decreases as the difference of orientation increases, so that
non-tangent planes are penalized.

However, it can be observed that employing geometric
coverage is not a strong enough metric for measuring
deviating orientation between faces and planes, since it
works in a non-linear way and varies very little for orientation
discrepancies in the range of less than 30° degrees. However,
typically faces are valid for a plane almost entirely in this
range only. Therefore, a better solution is to derive the
angular deviation, i.e. calculate the angle between a face and
plane with the vector dot product, and use it as a weight
for the unprojected area of a face. Thus, changes in C for
varying θ, φ are linear and are more successful in keeping
planes tangent to the surface of the polygonal model. Fig. 7
demonstrates the effects of projected area C and angular C.

Plane/Face
deviation Projected area C Angular C

0° 100 100
10° 98.4 88.8
30° 86.6 66.6

Figure 7: Projected area and angular C of a face (geometric
area is 100 units) for planes that differ from the orientation
of the face by 10 and 30 degrees. It can be clearly seen that
angular C behaves linearly, while projected area C is a
rather imprecise representation of deviation.

3.3.2 Fail-safe mode. To ensure that the algorithm always
comes up with a simplification result, we employ a fail-safe
routine. Whenever the greedy algorithm fails, we iterate on
the set of faces valid for the original grid cell with highest
D, assuming the supporting plane as simplifying plane
and testing all other faces for validity against that plane.
Additionally, we create an averaged plane as outlined in
section 3.3.3. The plane that can simplify the most faces is
then accepted.

3.3.3 Post-plane tweaking. The recursive greedy algorithm
terminates as soon as a sufficient plane is found, but that
does not guarantee that said plane is visually optimal. In
fact, often a plane is quite out of orientation compared to
the faces it simplifies, so we attempt to correct this flaw by
tweaking position and orientation of a plane as follows:

We calculate the average of all normal vectors of the
faces simplified by the plane, weighted by the geometric
area covered by the respective faces, to obtain the normal
vector for our refined plane. To find its new position, we
simply sum up the center points of the faces, again each one
weighted by their area, then divide by the total face area.
Using area weighting gives more relevance to the orientation
and position of large, dominant faces.

Finally, we test if the faces concerned are valid for the
refined plane and if the projected faces cover an area equal to
or greater than on the previous plane. If both conditions hold

Figure 6: Palm tree stem polygonal model (a), Billboard
Cloud with same polygon count without (b), and with (c)
vertex welding.

Figure 9: Large values of ε result in few, horizontal planes, which can be corrected using horizontal-plane penalty. Spruce
without (Fig. a, 8 planes) and with horizontal-plane penalty (Fig. b, 9 planes), Tupelo without (Fig. c, 11 planes) and with
horizontal-plane penalty (Fig. d, 8 planes).

Figure 8: Employing additional “cardboard” planes to
improve the simplification of trunks.

 Fuhrmann, et.al. / Extreme Model Simplification for Forest Rendering

true, we use the refined plane instead of the one generated by
the greedy select step.

This approach carries a numerical issue that has to be
dealt with when working with two-sided faces, which is
generally the case with leaves. Averaging the normal vectors
of two faces oriented back-to-back effectively cancels their
contribution. We therefore limit the allowed directions of
normal vectors to one half-space by flipping a normal if it
points into the wrong half-space. Put plainly, we want all
normal vectors to point roughly in the same direction. We
use the untweaked plane normal to define the half-space and
flip the normals of the input planes accordingly.

Especially for models with rather flat topology, this
approach improves a significant number of planes (Fig. 5),
and is more versatile than an optimization handling coplanar
polygons only [DEC03].

3.3.4 Vertex welding. Since billboard clouds ignore
topology, some continuous structures exhibit irritating gaps
when simplified (Fig. 6b). This happens mostly when faces
that share vertices are simplified to different planes. If the
shared vertices do not by coincidence lie on the intersection
of the planes, they are torn apart. We reduce this artifact by
permanently displacing (“welding”) the vertex in the original
model to its first simplifying plane. This generally reduces
the gaps for convex objects, since it moves the projected
vertex on the other plane closer to their intersection. While
it can easily be shown that this does not work in all cases,
the new simplified faces tend to overlap for many viewing
directions.

This displacement does not violate the notion of validity
defined in section 3.1, but D and V have to be updated
accordingly after a welding operation.

We use this approach when simplifying large trunks and
branches.

3.3.5 Horizontal-plane penalty. When simplifying tree
models, it can be observed that to achieve satisfying results,
ε can vary widely in world space from less than 5% to 15%
and beyond. However, a disturbing visual problem occurs
for large values of ε. The best simplification in terms of

minimizing the amount of planes can then be achieved by
collapsing multiple layers of foliage to one almost horizontal
plane, which, although correct by definition of the algorithm,
is visually unacceptable (Fig. 9a). In many 3D applications,
simulations and computer games the vertical viewing angle
is rather small, i.e. the viewer is at roughly the same height as
the trees, so that purely horizontal planes should be avoided.
Completely vertical planes are not advisable either because
they would make trees look awkward when viewed directly
from above, and many horizontal elements of foliage cannot
be captured well by vertical planes.

Therefore, a solution is needed that discourages the
algorithm from picking horizontal planes, but does not
entirely prevent them.

A feasible solution is the manipulation of density values
in the dual grid. Recalling that in dual space, regions with φ
= ±90° represent horizontal planes, the desired effect can be
achieved by reducing density in those areas. We therefore
define a slope function that is imposed on the grid whenever
a density or sub cell density read access is being made. The
input parameters for this function are:

• Penalty value. Denotes the maximum penalty imposed on
D, measured in percent. Thus, a penalty of 50% for a grid
region reduces its density by half. The maximum value is
reached only at the poles of the sampling sphere, that is,
for φ = ±90° .

• Penalty cutoff angle. Penalty is linearly interpolated from
the maximum penalty value to zero between φ = ±90° and
the cutoff angle.

That way, the closer to being horizontal a plane is, the
less likely it is to be picked because its density is kept low.
Of course, at some point there may be faces left that can be
simplified by horizontal planes only, but this will only be a
small remaining subset.

The described extension works well for most classes of
tree models and comes with no perceptible performance
hit. Empirical tests show that for an average tree model, a
penalty value of 60% and cutoff angle of 50° is sufficient
(Fig. 9).

Figure 10 : Levels of detail for a Billboard Cloud tree. (a) 24 planes, (b) 11 planes, (c) 4 planes. (d) shows the LoDs as they
appear in our application.

 Fuhrmann, et.al. / Extreme Model Simplification for Forest Rendering

Fig. 1a Fig. 1b Fig. 12a Fig. 12b

Trees total 80.000 50.000 50.000 150.000
Trees in View 41.007 15.067 67 83.151
Frames per Second 9,3 20,8 142 4,7

Figure 12: Screenshots of Billboard Cloud forests. Notice precomputed shadows on ground texture.
Rendered on a 2GHz Pentium 4, GeForce 6800GT, 2GB RAM machine.

Tree ε #Faces #Billboards Preprocessing
Time (s)

approx.
trees / s

a 10.0 108,782 12 342 143,000
b 12.0 159,160 14 403 122,000
c 12.5 20,547 13 62 132,000
d 6.5 7,292 8 25 214,000
e 6.5 169,781 21 496 81,000

Figure 11: Polygonal Trees (left), their Billboard Clouds (right) and performance data. Measured on a 3,2GHz P4, 2GB,
GeForce 6800GT machine.

 Fuhrmann, et.al. / Extreme Model Simplification for Forest Rendering

3.3.6 Cardboard mode. As mentioned in section 2, the
“Cardboard look” is an inexpensive modeling technique, but
looks unrealistic and is now seldom used.

However, the basic principle is not totally without its
benefits. Particularly long, thin objects like the stem of a tree
are often simplified to a single plane by the billboard cloud
algorithm, which looks obviously flat from the side (Fig.
8a). An additional, orthogonal billboard (dubbed cardboard
plane in our algorithm) for such planes results in a much
better visual impression (Fig. 9b) at very little expense to
rendering performance.

The following extension to the algorithm produces such
planes automatically.

After the primary plane has been picked in dual space,
the center of gravity of its simplified faces projected to
the plane is calculated, as well as its bounding rectangle.
Calculating the bounding rectangle, which is also necessary
for the texture generation step, is performed with the aid of
the Jarvis’ March a.k.a. gift-wrapping algorithm [JAR72].
We then set up two potential cardboard planes perpendicular
to the primary plane that pass through its center of gravity
and are parallel to the edges of its bounding rectangle (Fig.
8b). The faces of the primary plane that are also valid for a
cardboard plane are projected onto the latter and the area
covered by the projected faces is calculated. The ratio of the
total area covered on a cardboard plane compared to the area
covered on the primary one is called cardboard coverage
and is measured in percent of primary plane coverage. The
cardboard plane with the larger coverage is accepted, as
long as it exceeds the user-specified cardboard coverage
threshold.

If the threshold is set low enough, cardboard planes for
many other portions of models than long and thin ones are
generated. Note that their general use is limited, since only
the faces of the primary plane are projected onto a cardboard
plane, thus limiting the width of a cardboard plane to 2ε.
Furthermore, they do not simplify any additional faces, but
serve the sole purpose to be visually enriching.

3.3.7 Texture generation. Generating textures for the
billboard cloud planes is straightforward: rotate and translate
the input model by the inverse plane parameters and render
all faces valid for the plane, using orthogonal projection, into
an off-screen buffer the size of the desired texture resolution.
Note that rendering all valid faces instead of only the ones
simplified by the plane improves the visual solidity of the
billboard cloud.

A problem that surfaces when simplifying models with
small details using this approach is that a lot of these details
are lost unless texture resolution is rather large. Since most
tree-modeling software produces models that have each
leaf separately represented by one or more polygons, leaf
polygons are typically extremely small. Consequently, we
have to super-sample by rendering geometry to a buffer of
such size that each polygon is guaranteed to be rasterized,
i.e. covers at least one pixel. The required size of said off-
screen buffer can be calculated using the texel size in world
space.

However, the textures may not be arbitrarily large because
we have to respect the user-defined maximum texture size,
so the images have to be downsampled to their correct size.

Rendering a billboard cloud without proper depth-sorting
is only possible if alpha values of texels are restricted to being
either zero (fully transparent) or one (fully opaque) and the
graphics API’s alpha test is set to pass opaque texels only.
Therefore, the downsampling process must not produce any
semi-transparent pixels. We use a rectangular median filter
in conjunction with a thresholding function. A threshold of
around 0.3 results in sufficiently dense looking foliage that
yet does not appear too impenetrable.

3.3.8 Incremental levels of detail. Different levels of detail
(LoD) can be easily produced by varying the error threshold
parameter and texture resolution. The main disadvantage
of this approach is the completely independent selection of
simplifying planes for different LoDs. For the most detailed
LoDs we employ an incremental approach, using one LoD
as input for the next lower LoD. While this produces bad
results at extreme simplifications (<10 billboards), for the
detailed LoDs, where switches between levels are most
visible, it reduces the switching artifacts (Fig. 10).

3.3.9 Dynamic Lighting. We use instancing of trees in our
scenes, reusing the same tree model in different positions,
with arbitrary rotations. This works fine with pre-lighted
trees, as long as no strongly directional lighting is used.
Otherwise, the illuminated part of an instanced tree faces in
arbitrary directions. This can be resolved by using dynamic
lighting.

As already stated in Décoret original paper, projecting
normals as well as colors onto the billboards results in

Figure 13 : Left column shows original geometry, middle
column flat shaded Billboard Clouds, right column
dynamically per-pixel lighted Billboard Clouds. Top and
bottom row show different light directions.

 Fuhrmann, et.al. / Extreme Model Simplification for Forest Rendering

normal maps which can be lighted dynamically. This can be
extended to more sophisticated shading models.

The main disadvantage of lighted billboards results from
leaves projected on billboards not coplanar to them. Such
billboarded leaves are from every viewpoint smaller than
the original geometry, thereby contributing less to the overall
intensity of the tree. This holds true for simple normal maps
as well as more sophisticated shading algorithms.

Our lighting model for the original tree uses two parameters:
face normal of geometry and an ambient occlusion factor
[LAN02]. It produces results similar to the one presented by
Qin [QIN01], but at real-time rates.

When lighting the original geometry, we calculate for
every leaf a factor representing the percentage of the sky
visible from this leaf, and an averaged horizon representation
for this leaf.

When rendering the textures for the billboards, we do not
render the original tree with the applied lighting model, but
produce a normal map and an ambient occlusion map and a
compressed horizon representation. These maps are evaluated
by a fragment shader when rendering the billboards. Fig. 13
shows the comparison between lighted geometry (using the
lighting described above on triangles), flat lighted billboards,
and dynamically lighted billboards. The shader itself is very
simple and needs only one additional texture fetch for the
lighting, delivering high performance when rendering lit
trees.

This is just an example for dynamic lighting, other lighting
models may transfer as easily from geometry to billboard
representation.

4 Results

Fig. 11 shows simplification results for various tree
models. We render the billboards as static geometry, with
distance-based levels of detail switches. In our walkthrough
application we employ only view frustum culling and
additionally vertex-buffer objects for caching.

Our implementation of the algorithm packs all textures of
a billboard cloud to one large texture to minimize texture
switching overhead. A further reduction of texture switching
could be accomplished by packing textures of all tree models
in use to one large texture.

The amount of trees displayable at interactive frame rates
is satisfying, while the visual quality of the models is very
good at medium and far viewing distances.

Dynamic self-shadowing [WOO90] is not recommended
either, since casting a shadow onto the billboard planes, no
matter which shadowing technique is used, would reveal
their flatness. Dynamic shadow-casting on the ground
can be easily performed with the use of projective texture
mapping.

In our application we chose a precomputed, static lighting
model for the trees and precomputed shadows on the ground
texture (Fig. 12).

5 Conclusion

We have shown an adaptation of the billboard cloud generation
algorithm that specifically targets the simplification of tree
models, but also improves the output for more general
models. With this system, highly complex foliage models can
be greatly simplified automatically with different levels of
detail, a process which was previously performed manually
in most cases.

Billboard clouds retain the overall look of the original
model from any viewing angle and consist of static geometry,
so that they can be easily cached for highly efficient
rendering. Trees can be rendered trivially, without requiring
any adaptations to existing rendering engines. For many
applications, these advantages outweigh the fact that self-
shadowing and animation of billboard clouds is not readily
possible.

Billboard clouds are an excellent tool for medium and
far distance representations of trees. Only for close-up
viewing of models, other forms of representation would be
more appropriate. For instance, a simple approach such as
using a low-polygon stem and billboard cloud foliage would
increase the feeling of solidity and could be sufficient for
certain applications.

6 Future work

While the billboard cloud representation in general fares
well, the generation algorithm proposed by Décoret is rather
time consuming. In our future work, we intend to examine
simpler clustering algorithms to reduce the computational
burden of billboard cloud generation.

We further plan to approximate dynamic self-
shadowing using pre-calculated visibility information, and
compensations for the billboard lighting problems mentioned
in chapter 3.9.9.

We will incorporate and further investigate billboard
clouds in the GeomeTree forest rendering project currently
in development at the VRVis Research Center, Vienna.

Acknowledgements

Special thanks go to Xavier Décoret for in-depth
discussions of algorithmic details and problem solutions.

This work was funded by the Austrian KPlus program and
the Austrian FWF grant # P17260-N04.

Tree models obtained from Xfrog Public Plants, 3DCafe.
com and VRVis Tree Designer.

 Fuhrmann, et.al. / Extreme Model Simplification for Forest Rendering

References

[AND04] C.Andujar, P.Brunet, A.Chica, J.Rossignac, I.Navazo,
A.Vinacua, 2004. “Computing Maximal Tiles and
Applications to Impostor-Based Simplification”.
Computer Graphics Forum Vol. 23 Issue 3 Page 401 -
September 2004

[BIO] Bionatics tree modeling Software. www.bionatics.com

[CHE93] S.E.Chen, L.Williams. „View Interpolation for Image
Synthesis“. Computer Graphics Vol 27, 1993, pp. 279-
288

[DAC03] C.Dachsbacher, C.Vogelsang, M.Stamminger.
„Sequential Point Trees“. ACM Transactions on
Graphics, Vol 22, Issue 3 (July 2003), pp. 657-662

[DCD04] P.Decaudin, F.Neyret. „Rendering Forest Scenes in Real-
Time“. Eurographics Symposium on Rendering June
2004.

[DEC02] X.Décoret, 2002. „Pré-Traitement de grosses bases de
données pour la visualisation interactive”, PhD thesis,
Université Joseph Fourrier, Oct. 2002.

[DEC03] X.Décoret, F.Durand, F.X.Sillion, J.Dorsey. “Billboard
Clouds for Extreme Model Simplification”, ACM
Transactions on Graphics (Proceedings of ACM
SIGGRAPH 2003), Vol. 22 , Issue 3 (July 2003), pp
689 - 696.

[DEU99] O.Deussen, B.Lintermann. “Interactive modelling of
plants”. IEEE Computer Graphics and Applications
Vol.19 n.1, January 1999, pp.56-65.

[DUD72] R.O.Duda, P.Hart, 1972. „Use of the Hough-Transform
to detect Lines and Curves in Pictures“, Communications
of the ACM archive, Vol. 15 , Issue 1 (January 1972),
pp. 11 - 15

[HOP93] H.Hoppe, T.DeRose, T.Duchamp, J. McDonald,
W.Stuetzle, „Mesh Optimization“. Proceedings of the
20th annual conference on Computer graphics and
interactive techniques, Vol 27, 1993, pp. 19-26

[IDV] Interactive Data Visualization Inc. www.idvinc.com

[JAR72] R.A. Jarvis, 1972. „On the Identification of the Convex
Hull of a Finite Set of Points in the Plane“. Information
Processing Letters 2, pp. 18-22

[LAN02] Hayden Landis, Production-Ready Global Illumination,
“RenderMan in Production” SIGGRAPH Course Notes,
2002

[LIN90] A.Lindenmayer, P.Prusinkiewicz, 1990. „The algorithmic
beauty of plants“; Springer Verlag, New-York 1996,
ISBN 0-387-94676-4

[MAN03] S.Mantler, A.Fuhrmann, 2003. “Fast approximate visible
set determination for point sample clouds”. Proceedings
of the workshop on Virtual environments 2003, pp. 163-
167

[MAX95] N.Max, K.Ohsaki, 1995. “Rendering Trees from
Precomputed Z-Buffer Views”. Proceedings of the 6th
Eurographics Workshop on Rendering

[MEY01] A.Meyer, F.Neyret, P.Poulin, 2001. “Interactive
Rendering of Trees with Shading and Shadows”.
Eurographics Workshop on Rendering 2001, pp. 183-
196

[QIN01] X.Qin, E.Nakamae, K.Tadamura, Y.Nagai, “Fast
photo-realistic rendering of trees in daylight“, Proc. of
Eurographics 2003, pp. 243-252.

[REM02] I.Remolar, M.Chover, Ó.Belmonte, J.Ribelles, C.Rebollo,
2002. “Real-Time Tree Rendering”. Departamento de
Lenguajes y Sistemas Informáticos, Universitat Jaume I,
Technical Report DLSI 01/03/2002, Castellón (Spain),
March, 2002.

[SCH95] G.Schaufler, 1995. „Dynamically generated Impostors“.
GI Workshop „Modeling - Virtual Worlds - Distributed
Graphics“, pp. 129-135

[SCH97] G.Schaufler, 1997. „Nailboards: A Rendering Primitive
for Image Caching in Dynamic Scenes“. Eurographics
Rendering Workshop 1997, pp. 151-162

[TOB02] R. F. Tobler, S. Maierhofer, and A. Wilkie, 2003.
„Mesh-Based Parametrized L-Systems and Generalized
Subdivision for Generating Complex Geometry“.
International Journal on Shape Modelling, Volume 8,
Number 2, World Scientific, pp. 173-191, December
2002

[TUR00] P.Lindstrom, G.Turk, 2000. „Image-driven
Simplification“. ACM Transactions on Graphics Vol. 19,
Issue 3 (July 2000), pp. 204-241.

[UML04] E.Umlauf, 2004. „Image-based Rendering of Forests“.
Diploma Thesis and Tech Report: VRVis Center, 2004
TR-VRVis-2004-038

[WEB95] J. Weber, J. Penn, 1995. „Creation and rendering
of realistic Trees“. ACM Transactions on Graphics
(SIGGRAPH ‘95), pp. 119-128

[WOO90] A. Woo, P. Poulin, A. Fournier, 1990. „A Survey of
Shadow Algorithms“. IEEE Computer Graphics and
Applications Vol.10, pp. 13-32

[XFR] Greenworks Software. www.greenworks.de

 Fuhrmann, et.al. / Extreme Model Simplification for Forest Rendering

Plate 2: Polygonal Trees (left) and their Billboard Clouds (right).

Plate 1: Sample screen shots of our real-time rendered forests

