
1 Introduction

One of the biggest challenges of three-dimensional computer 
graphics is the generation and real-time rendering of vast and 
realistic outdoor sceneries, especially forests.

While the modeling of polygonal vegetation is a rather 
well-researched topic and there exists a palette of specialized 
tools which allows the rapid creation of realistic tree models, 
those consist of a large number of polygons. For example, a 
50.000-tree forest of models with average detail of 200.000 
polygons per tree amounts to 10 billion polygons, which 
prohibits real-time rendering of such a forest. Therefore, 
most tree rendering techniques are still either slow or of 
insufficient visual quality. 

Our approach to forest rendering is based on the image-
based billboard cloud simplification algorithm as introduced 

by Décoret [DEC02, DEC03]. We introduce a number of 
adaptations to improve the quality of the simplification, 
especially for tree models. We use this extended algorithm to 
generate image-based representations of arbitrarily complex 
tree models in various levels of details during a preprocessing 
step. 

The resulting billboard clouds consist of sufficiently 
few primitives to allow rendering of tens of thousands 
of trees at interactive rates, with a visual quality high 
enough for walkthrough applications. Figure 1 shows two 
different forests rendered this way in real-time, with a slight 
OpenGL fog as depth cue. Every visible tree in this image 
is an individual billboard cloud, no additional simplification 
techniques have been used.
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Figure 1: Sample screen shots of real-time rendered billboard cloud forests
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2 Related work

A popular approach to the modeling of vegetation is the use 
of Lindenmayer-systems and generalizations thereof [LIN90, 
TOB02], while other works blend grammar-based modeling 
with traditional techniques [WEB95, DEU99]. A number of 
commercial products such as XFrog [XFR], natFX [BIO] or 
SpeedTreeCAD [IDV] are available that generate high-quality 
polygonal or hybrid polygon/image-based models.

From a rendering point of view, various techniques are 
used to create immersive forests, with mixed success.

A very popular image-based approach is billboarding, 
where a tree is usually represented by a single quadrilateral 
with a tree texture applied. In the view-aligned case, the 
billboard always faces the user. Inspected closely, this looks 
very unrealistic because of lacking depth and parallax. 
Therefore, several billboards with fixed orientation are often 
set up orthogonally to produce a more three-dimensional 
impression, resulting in a “cardboard” look. Our approach 
essentially produces results like this, but with independent 
orientation and automatic generation of the billboards.

Dynamic impostors [SCH95, SCH97] are view-aligned 
billboards whose texture is dynamically updated by 
rendering the original polygonal model to texture depending 
on the viewing direction every few frames. Doing this for a 
high-polygon model every few frames is still expensive, but 
performing the impostor update for an entire forest of such 
models is prohibitively slow.

Precomputed impostor approaches [CHE93, MAX95, 
MEY01] avoid the dynamic texture regeneration by 
interpolating images from a stored set of viewpoints, but 
these image-warping operations are relatively slow and  - 
when inspected from up close - the same limitations as with 
view-aligned billboards apply.

Low-polygon modeling in combination with texturing 
yields more solid-looking trees, but is considerably slower 
than billboarding. Besides, visual quality suffers if very few 
polygons are used.

Levels of detail and multiresolution solutions are 
frequently used in conjunction with above techniques, but 
generating multiple levels of detail for trees automatically 
[HOP93, TUR00] is a non-trivial task, and doing so manually 
is labor-intensive.

Hybrid approaches try to combine the advantages of 
polygonal and image-based modeling:

IDV’s SpeedTree middleware engine [IDV] merges 
low-polygon stems and view-aligned billboard foliage to 
achieve a good tradeoff between speed and visual quality. 
While providing visually pleasing result in many cases, the 
billboards pose problems when viewed from certain angles 
where the foliage suddenly seems to rotate, and rendering 
times do not allow dense forests.

Remolar et al [REM02] rely on multi-resolution polygonal 
and impostor representations of the foliage. The main 
problem lies in obtaining low-detail representations at 
sufficient quality.

Point-based rendering of trees [DAC03, MAN03] is effective 
for distant objects, but visually unacceptable up close.

Harnessing the texturing power of current graphics 
hardware, Decaudin et al [DCD04] utilize aperiodic tiles 

 
Figure 3: A 110,000 polygons tree model (a) simplified to 11 billboards (b). The error threshold is shown by the vertex validity 

 
Figure 2: Billboard Cloud tree composed of 25 billboards 
(50 triangles). Original model consists of 159.853 triangles.
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of volumetric textures to achieve vast and dense forests. 
This approach does not allow independent placement or 
rotation and scaling of individual trees and is not suited for 
walkthroughs. Furthermore, existing rendering engines do 
not support this technique and would have to be upgraded, 
whereas the ability to draw billboards is implemented 
in virtually any engine, thus making our approach more 
versatile.

Billboard clouds, introduced by Décoret [DEC02, DEC03], 
are a means of extreme simplification, where the polygonal 
input model is simplified to a minimum set of textured 
planes that feature independent size, orientation and texture 
resolution, which basically equates to a set of static billboards, 
as mentioned before. The working and shortcomings of the 
basic algorithm are discussed in the next sections.

A similar approach by Andujar et al [AND04] produces 
comparable output, but relies on a different computation 
process that apparently cannot simplify non-manifold tree 
models because it involves volume inside/outside tests.

All of the previously discussed approaches have their 
advantages and shortcomings, making them appropriate for 
different applications. Similarly our solution is just another 
compromise between realism and speed, which addresses 
only some of the problems of forest rendering, namely 
model simplification, level-of-detail generation and lighting 
for static trees.

3 Methodology

Section 3.1 briefly explains the original billboard cloud 
algorithm; for a detailed derivation we refer to the original 
papers [DEC02, DEC03]. We address problems of the 
simplification process in section 3.2 and introduce our own 
adaptation for foliage simplification in section 3.3.

3.1  The original billboard cloud algorithm

The idea of the simplification process is that a high-polygon, 
textured input model is projected onto a set of planes that 
approximate the original geometry within a defined error 
bound. The most difficult and computationally expensive 
part of the algorithm is to derive this plane set.

The quality of the simplification is determined by the error 

threshold ε, measured in percent of the model’s bounding 
sphere radius. A vertex can only be simplified to a plane if 
its normal distance is less than ε. Therefore, the spherical 
region around a vertex with radius ε is its validity domain 
V. If a plane intersects the validity domains of all vertices 
of a face, it is declared valid for the face (i.e. it can simplify 
the face) and vice versa. There is an infinite number of valid 
planes for each face.

The simplification process can be formulated as a 
clustering problem in a dual space constructed by the Hough 
transform [DUD72], in which planes (in primal space) map 
to individual points. In this dual space, the ground plane can 
be visualized as varying θ and  φ, i.e. the orientation of the 
plane (coordinate limits are ±180° and ±90°, respectively), 
while the up axis represents the distance from the origin ρ 
(≥0).

A vertex in primal space can be described as the intersection 
point of all planes passing through the vertex. Thus, a point in 
primal space becomes an infinite set of points in dual space, 
more conveniently represented by a sheet, or height field. 
The vertex validity domain simply is the region between this 
sheet translated up/down on the ρ axis by ε.

Consequently, a face is not only valid for a single point 
in dual space, but for the intersection of its vertex validity 
domains.

For the numerical evaluation, dual space is represented as a 
grid with a finite number of cells. Grid cells are marked valid 
for a face (and vice versa) if they lie within its discretized 
validity domain. The discretized validity domains of the faces 
of the input model are accumulated to a value called density 
(D). To give more weight to larger faces and promote planes 
tangent to large faces, D is calculated as a contribution factor 
C, which is the “geometric coverage” of a face projected to 
the plane at the center of a cell. A penalty factor P is then 
subtracted for planes that nearly miss vertices; note that a 
large penalty factor may eradicate D.

Once all values of D have been computed, a recursive 
greedy algorithm searches the dual grid for the cell with 
maximum D. This cell is further recursively subdivided 
until the best plane is found. Both V and D need to be 
calculated for each set of the recursion, which makes this 
part of the algorithm very expensive. After the best plane has 
been found, the D contributions of the simplified faces are 

Figure 4: Billboard Cloud artifacts: (a) loss of continuity. (b)The front faces of the box should ideally be simplified to one 
vertical plane. However, the dominant top and bottom planes preemptively simplify the front faces and leave a large hole in the 
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removed from the dual grid.

Repeating the greedy procedure until all faces have been 
simplified yields the finished plane set.

Finally, plane textures are generated by projecting the faces 
of the input model to their respective simplifying plane.

3.2 Problems of the Algorithm

In general, the simplification process is quite demanding on 
memory and CPU time. Unfortunately the behavior of the 
algorithm, especially for working with tree models, can be 
hard to predict. Parameter values that produce an excellent 
result for one model might work less well on another. Worse, 
the algorithm as outlined in [DEC03], frequently fails to 
produce simplification results or delivers mathematically 
correct, but visually unpleasing solutions.

3.2.1 Numerical issues. A primary source of problems 
are numerical issues with the algorithm. Discretization of 
a continuous volume to a set of cells is a non-trivial and 
expensive task that requires some trade-off between speed 
and precision. The method used to discretize face validity 
domains actually discretizes the corresponding vertex validity 
domains, then intersects them. While this is computationally 
effective, it is known to produce false positives where a 
face may be marked valid for a grid cell although it is not. 
Consequently, the greedy algorithm fails to find a plane 
that simplifies this false positive, potentially causing the 
algorithm to terminate without returning a simplification.

Another problem surfaces if a very small value is chosen 
for ε. Because of the imprecise discretization of validity 
domains, the recursive algorithm might visit sub-cells 
that, due to dominant penalty, feature zero D, but seemed 
promising in the previous step. The algorithm will not know 
which sub cell to pick in order to continue and once again 
cannot produce a correct solution.

Both issues are similar and the less-than-perfect 
discretization step is the major cause, but since the 
discretization of validity domains is done very often 
(especially during the greedy select phase), the increased 
computational cost of employing a more precise discretization 
is prohibitive. Instead, we introduce a fail-safe solution in 
section 3.3.1.

3.2.2 Sub-optimal planes. It is generally very difficult to 

simplify rounded shapes to polygons satisfactory using any 
algorithm, and billboard clouds are no exception. While 
precomputed shading or normal mapping on the textures help 
to convey a sense of curvature, often overlapping planes and 
gaps in the billboard clouds spoil the overall impression.

An important trait of the algorithm is that connectivity of 
the input model is neither needed, nor retained. For certain 
cases, this behavior is greatly beneficial. For instance, leaves 
of a tree model are not interconnected, but it is desirable that 
many individual leaves are simplified to one plane. On the 
other hand, planes that simplify different regions of a model 
may also simplify parts of sub-objects that would look better 
if taken care of by a different plane.

This phenomenon, which we call “slicing” can be 
particularly witnessed with trunks and branches of 
vegetational models (Fig. 4a). To avoid this persistent 
problem, we split tree models into two parts, one containing 
the trunk, the other foliage and branches. The simplification 
results are merged to produce a representation of superior 
quality than a single pass would yield.

On the other hand, sometimes slicing can be advantageous.  
Calculations for sub cells include the penalty factor, which 
is supposed to keep planes to the perimeter of the model to 
yield a good representation of the “outside”. Yet, in order to 
obtain a solid-looking representation, planes that slice the 
foliage are desirable, which is why we omit penalty from D 
calculations for sub cells.

Not all models can be simplified by the greedy algorithm. 
For instance, we can frequently observe cases where 
dominant planes accidentally simplify smaller faces that 
would be better handled by a separate plane (Fig. 4b).

Remedies for sub-optimal planes are discussed in sections 
3.3.3 and 3.3.5.

3.2.3 Gaps. Gaps may occur in a billboard cloud if a vertex 
shared by multiple faces is simplified to different planes. 
Gaps show up especially while simplifying curved surfaces, 
when simplifying planes do not match or overlap. We present 
a technique to avoid gaps in section 3.3.4.

3.3 Our Improvements

Thankfully, trees can be relatively good represented as 
billboard clouds. Except for the trunk, they feature little 
connectivity that could be disturbed and are mostly devoid of 
large, curved surfaces, where discontinuities are especially 
noticeable. Nevertheless, the original algorithm tended 
to produce complex or mediocre BBC representations of  
trees. We introduce some extensions made to the original                 
algorithm to enhance the quality of our simplified tree 
models in sections 3.3.5 to 3.3.7. Additionally, we explain 
some of the fixes employed to improve general results in 
sections 3.3.1 to 3.3.4.

3.3.1 Angular Contribution. In general, the contribution 
component C of density D aims to keep billboard planes 
tangent to the original geometry. By default, a face’s C to a 

Figure 5: A simple Billboard Cloud generated without (left, 
original geometry overlaid) and with (right) post-plane 
tweaking.
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plane is its geometric area, projected to the plane. Thus, C 
decreases as the difference of orientation increases, so that 
non-tangent planes are penalized.

However, it can be observed that employing geometric 
coverage is not a strong enough metric for measuring 
deviating orientation between faces and planes, since it 
works in a non-linear way and varies very little for orientation 
discrepancies in the range of less than 30° degrees. However, 
typically faces are valid for a plane almost entirely in this 
range only. Therefore, a better solution is to derive the 
angular deviation, i.e. calculate the angle between a face and 
plane with the vector dot product, and use it as a weight 
for the unprojected area of a face. Thus, changes in C for 
varying θ, φ are linear and are more successful in keeping 
planes tangent to the surface of the polygonal model. Fig. 7 
demonstrates the effects of projected area C and angular C.

Plane/Face 
deviation Projected area C Angular C

0° 100 100
10° 98.4 88.8
30° 86.6 66.6

Figure 7: Projected area and angular C of a face (geometric 
area is 100 units) for planes that differ from the orientation 
of the face by 10 and 30 degrees. It can be clearly seen that 
angular C behaves linearly, while projected area C is a 
rather imprecise representation of deviation.

3.3.2 Fail-safe mode. To ensure that the algorithm always 
comes up with a simplification result, we employ a fail-safe 
routine. Whenever the greedy algorithm fails, we iterate on 
the set of faces valid for the original grid cell with highest  
D, assuming the supporting plane as simplifying plane 
and testing all other faces for validity against that plane. 
Additionally, we create an averaged plane as outlined in 
section 3.3.3. The plane that can simplify the most faces is 
then accepted.

3.3.3 Post-plane tweaking. The recursive greedy algorithm 
terminates as soon as a sufficient plane is found, but that 
does not guarantee that said plane is visually optimal. In 
fact, often a plane is quite out of orientation compared to 
the faces it simplifies, so we attempt to correct this flaw by 
tweaking position and orientation of a plane as follows:

We calculate the average of all normal vectors of the 
faces simplified by the plane, weighted by the geometric 
area covered by the respective faces, to obtain the normal 
vector for our refined plane. To find its new position, we 
simply sum up the center points of the faces, again each one 
weighted by their area, then divide by the total face area. 
Using area weighting gives more relevance to the orientation 
and position of large, dominant faces.

Finally, we test if the faces concerned are valid for the 
refined plane and if the projected faces cover an area equal to 
or greater than on the previous plane. If both conditions hold 

 

Figure 6: Palm tree stem polygonal model (a), Billboard 
Cloud with same polygon count without (b), and with (c) 
vertex welding.

 
Figure 9: Large values of ε result in few, horizontal planes, which can be corrected using horizontal-plane penalty. Spruce 
without (Fig. a, 8 planes) and with horizontal-plane penalty (Fig. b, 9 planes), Tupelo without (Fig. c, 11 planes) and with 
horizontal-plane penalty (Fig. d, 8 planes).

 
 
Figure 8: Employing additional “cardboard” planes to 
improve the simplification of trunks.
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true, we use the refined plane instead of the one generated by 
the greedy select step.

This approach carries a numerical issue that has to be 
dealt with when working with two-sided faces, which is 
generally the case with leaves. Averaging the normal vectors 
of two faces oriented back-to-back effectively cancels their 
contribution. We therefore limit the allowed directions of 
normal vectors to one half-space by flipping a normal if it 
points into the wrong half-space. Put plainly, we want all 
normal vectors to point roughly in the same direction. We 
use the untweaked plane normal to define the half-space and 
flip the normals of the input planes accordingly.

Especially for models with rather flat topology, this 
approach improves a significant number of planes (Fig. 5), 
and is more versatile than an optimization handling coplanar 
polygons only [DEC03].

3.3.4 Vertex welding. Since billboard clouds ignore 
topology, some continuous structures exhibit irritating gaps 
when simplified (Fig. 6b). This happens mostly when faces 
that share vertices are simplified to different planes. If the 
shared vertices do not by coincidence lie on the intersection 
of the planes, they are torn apart. We reduce this artifact by 
permanently displacing (“welding”) the vertex in the original 
model to its first simplifying plane. This generally reduces 
the gaps for convex objects, since it moves the projected 
vertex on the other plane closer to their intersection. While 
it can easily be shown that this does not work in all cases, 
the new simplified faces tend to overlap for many viewing 
directions.

This displacement does not violate the notion of validity 
defined in section 3.1, but D and V  have to be updated 
accordingly after a welding operation. 

We use this approach when simplifying large trunks and 
branches.

3.3.5 Horizontal-plane penalty. When simplifying tree 
models, it can be observed that to achieve satisfying results, 
ε  can vary widely in world space from less than 5% to 15% 
and beyond. However, a disturbing visual problem occurs 
for large values of ε. The best simplification in terms of 

minimizing the amount of planes can then be achieved by 
collapsing multiple layers of foliage to one almost horizontal 
plane, which, although correct by definition of the algorithm, 
is visually unacceptable (Fig. 9a). In many 3D applications, 
simulations and computer games the vertical viewing angle 
is rather small, i.e. the viewer is at roughly the same height as 
the trees, so that purely horizontal planes should be avoided. 
Completely vertical planes are not advisable either because 
they would make trees look awkward when viewed directly 
from above, and many horizontal elements of foliage cannot 
be captured well by vertical planes.

Therefore, a solution is needed that discourages the 
algorithm from picking horizontal planes, but does not 
entirely prevent them. 

A feasible solution is the manipulation of density values 
in the dual grid. Recalling that in dual space, regions with φ 
= ±90° represent horizontal planes, the desired effect can be 
achieved by reducing density in those areas. We therefore 
define a slope function that is imposed on the grid whenever 
a density or sub cell density read access is being made. The 
input parameters for this function are:

• Penalty value. Denotes the maximum penalty imposed on 
D, measured in percent. Thus, a penalty of 50% for a grid 
region reduces its density by half. The maximum value is 
reached only at the poles of the sampling sphere, that is, 
for φ = ±90° .

• Penalty cutoff angle. Penalty is linearly interpolated from 
the maximum penalty value to zero between φ = ±90° and 
the cutoff angle.

That way, the closer to being horizontal a plane is, the 
less likely it is to be picked because its density is kept low. 
Of course, at some point there may be faces left that can be 
simplified by horizontal planes only, but this will only be a 
small remaining subset.

The described extension works well for most classes of 
tree models and comes with no perceptible performance 
hit. Empirical tests show that for an average tree model, a 
penalty value of 60% and cutoff angle of 50° is sufficient 
(Fig. 9).

 
Figure 10 : Levels of detail for a Billboard Cloud tree. (a) 24 planes, (b) 11 planes, (c) 4 planes. (d) shows the LoDs as they 
appear in our application.
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Fig. 1a Fig. 1b Fig. 12a Fig. 12b

Trees total 80.000 50.000 50.000 150.000 
Trees in View 41.007 15.067 67 83.151
Frames per Second 9,3 20,8 142 4,7

Figure 12: Screenshots of Billboard Cloud forests. Notice precomputed shadows on ground texture. 
Rendered on a 2GHz Pentium 4, GeForce 6800GT, 2GB RAM machine.

Tree ε #Faces #Billboards Preprocessing 
Time (s)

approx.
trees / s

a 10.0 108,782 12 342 143,000
b 12.0 159,160 14 403 122,000
c 12.5 20,547 13 62 132,000
d 6.5 7,292 8 25 214,000
e 6.5 169,781 21 496 81,000

Figure 11: Polygonal Trees (left), their Billboard Clouds (right) and performance data. Measured on a 3,2GHz P4, 2GB, 
GeForce 6800GT machine.
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3.3.6 Cardboard mode. As mentioned in section 2, the 
“Cardboard look” is an inexpensive modeling technique, but 
looks unrealistic and is now seldom used.

However, the basic principle is not totally without its 
benefits. Particularly long, thin objects like the stem of a tree 
are often simplified to a single plane by the billboard cloud 
algorithm, which looks obviously flat from the side (Fig. 
8a). An additional, orthogonal billboard (dubbed cardboard 
plane in our algorithm) for such planes results in a much 
better visual impression (Fig. 9b) at very little expense to 
rendering performance.

The following extension to the algorithm produces such 
planes automatically.

After the primary plane has been picked in dual space, 
the center of gravity of its simplified faces projected to 
the plane is calculated, as well as its bounding rectangle. 
Calculating the bounding rectangle, which is also necessary 
for the texture generation step, is performed with the aid of 
the Jarvis’ March a.k.a. gift-wrapping algorithm [JAR72]. 
We then set up two potential cardboard planes perpendicular 
to the primary plane that pass through its center of gravity 
and are parallel to the edges of its bounding rectangle (Fig. 
8b). The faces of the primary plane that are also valid for a 
cardboard plane are projected onto the latter and the area 
covered by the projected faces is calculated. The ratio of the 
total area covered on a cardboard plane compared to the area 
covered on the primary one is called cardboard coverage 
and is measured in percent of primary plane coverage. The 
cardboard plane with the larger coverage is accepted, as 
long as it exceeds the user-specified cardboard coverage 
threshold.

If the threshold is set low enough, cardboard planes for 
many other portions of models than long and thin ones are 
generated. Note that their general use is limited, since only 
the faces of the primary plane are projected onto a cardboard 
plane, thus limiting the width of a cardboard plane to 2ε. 
Furthermore, they do not simplify any additional faces, but 
serve the sole purpose to be visually enriching.

3.3.7 Texture generation. Generating textures for the 
billboard cloud planes is straightforward: rotate and translate 
the input model by the inverse plane parameters and render 
all faces valid for the plane, using orthogonal projection, into 
an off-screen buffer the size of the desired texture resolution. 
Note that rendering all valid faces instead of only the ones 
simplified by the plane improves the visual solidity of the 
billboard cloud.

A problem that surfaces when simplifying models with 
small details using this approach is that a lot of these details 
are lost unless texture resolution is rather large. Since most 
tree-modeling software produces models that have each 
leaf separately represented by one or more polygons, leaf 
polygons are typically extremely small. Consequently, we 
have to super-sample by rendering geometry to a buffer of 
such size that each polygon is guaranteed to be rasterized, 
i.e. covers at least one pixel. The required size of said off-
screen buffer can be calculated using the texel size in world 
space.

However, the textures may not be arbitrarily large because 
we have to respect the user-defined maximum texture size, 
so the images have to be downsampled to their correct size. 

Rendering a billboard cloud without proper depth-sorting 
is only possible if alpha values of texels are restricted to being 
either zero (fully transparent) or one (fully opaque) and the 
graphics API’s alpha test is set to pass opaque texels only. 
Therefore, the downsampling process must not produce any 
semi-transparent pixels. We use a rectangular median filter 
in conjunction with a thresholding function. A threshold of 
around 0.3 results in sufficiently dense looking foliage that 
yet does not appear too impenetrable.

3.3.8 Incremental levels of detail. Different levels of detail 
(LoD) can be easily produced by varying the error threshold 
parameter and texture resolution. The main disadvantage 
of this approach is the completely independent selection of 
simplifying planes for different LoDs. For the most detailed 
LoDs we employ an incremental approach, using one LoD 
as input for the next lower LoD. While this produces bad 
results at extreme simplifications (<10 billboards), for the 
detailed LoDs, where switches between levels are most 
visible, it reduces the switching artifacts (Fig. 10).

3.3.9 Dynamic Lighting. We use instancing of trees in our 
scenes, reusing the same tree model in different positions, 
with arbitrary rotations. This works fine with pre-lighted 
trees, as long as no strongly directional lighting is used. 
Otherwise, the illuminated part of an instanced tree faces in 
arbitrary directions. This can be resolved by using dynamic 
lighting. 

As already stated in Décoret original paper, projecting 
normals as well as colors onto the billboards results in 

 
Figure 13 : Left column shows original geometry, middle 
column flat shaded Billboard Clouds, right column 
dynamically per-pixel lighted Billboard Clouds. Top and 
bottom row show different light directions.
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normal maps which can be lighted dynamically. This can be 
extended to more sophisticated shading models.

The main disadvantage of lighted billboards results from 
leaves projected on billboards not coplanar to them. Such 
billboarded leaves are from every viewpoint smaller than  
the original geometry, thereby contributing less to the overall 
intensity of the tree. This holds true for simple normal maps 
as well as more sophisticated shading algorithms.

Our lighting model for the original tree uses two parameters: 
face normal of geometry and an ambient occlusion factor 
[LAN02]. It produces results similar to the one presented by 
Qin [QIN01], but at real-time rates. 

When lighting the original geometry, we calculate for 
every leaf a factor representing the percentage of the sky 
visible from this leaf, and an averaged horizon representation 
for this leaf.

When rendering the textures for the billboards, we do not 
render the original tree with the applied lighting model, but 
produce a normal map and an ambient occlusion map and a 
compressed horizon representation. These maps are evaluated 
by a fragment shader when rendering the billboards. Fig. 13 
shows the comparison between lighted geometry (using the 
lighting described above on triangles), flat lighted billboards, 
and dynamically lighted billboards. The shader itself is very 
simple and needs only one additional texture fetch for the 
lighting, delivering high performance when rendering lit 
trees.

This is just an example for dynamic lighting, other lighting 
models may transfer as easily from geometry to billboard 
representation.

4 Results

Fig. 11 shows simplification results for various tree 
models. We render the billboards as static geometry, with 
distance-based levels of detail switches. In our walkthrough 
application we employ only view frustum culling and 
additionally vertex-buffer objects for caching.

Our implementation of the algorithm packs all textures of 
a billboard cloud to one large texture to minimize texture 
switching overhead. A further reduction of texture switching 
could be accomplished by packing textures of all tree models 
in use to one large texture.

The amount of trees displayable at interactive frame rates 
is satisfying, while the visual quality of the models is very 
good at medium and far viewing distances.

Dynamic self-shadowing [WOO90] is not recommended 
either, since casting a shadow onto the billboard planes, no 
matter which shadowing technique is used, would reveal 
their flatness. Dynamic shadow-casting on the ground 
can be easily performed with the use of projective texture 
mapping. 

In our application we chose a precomputed, static lighting 
model  for the trees and precomputed shadows on the ground 
texture (Fig. 12).

 
5 Conclusion

We have shown an adaptation of the billboard cloud generation 
algorithm that specifically targets the simplification of tree 
models, but also improves the output for more general 
models. With this system, highly complex foliage models can 
be greatly simplified automatically with different levels of 
detail, a process which was previously performed manually 
in most cases.

Billboard clouds retain the overall look of the original 
model from any viewing angle and consist of static geometry, 
so that they can be easily cached for highly efficient 
rendering. Trees can be rendered trivially, without requiring 
any adaptations to existing rendering engines. For many 
applications, these advantages outweigh the fact that self-
shadowing and animation of billboard clouds is not readily 
possible. 

Billboard clouds are an excellent tool for medium and 
far distance representations of trees. Only for close-up 
viewing of models, other forms of representation would be 
more appropriate. For instance, a simple approach such as 
using a low-polygon stem and billboard cloud foliage would 
increase the feeling of solidity and could be sufficient for 
certain applications.

6 Future work

While the billboard cloud representation in general fares 
well, the generation algorithm proposed by Décoret is rather 
time consuming. In our future work, we intend to examine 
simpler clustering algorithms to reduce the computational 
burden of billboard cloud generation.

We further plan to approximate dynamic self-
shadowing using pre-calculated visibility information, and 
compensations for the billboard lighting problems mentioned 
in chapter 3.9.9. 

We will incorporate and further investigate billboard 
clouds in the GeomeTree forest rendering project currently 
in development at the VRVis Research Center, Vienna.
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Plate 2: Polygonal Trees (left) and their Billboard Clouds (right).

Plate 1: Sample screen shots of our real-time rendered forests




