
EG UK Theory and Practice of Computer Graphics (2011)
Hamish Carr, Ian Grimstead (Editors)

Simple and Efficient Normal Encoding with Error Bounds

C. Schinko1, T. Ullrich2, and D. W. Fellner1,3

1Institut für ComputerGraphik & WissensVisualisierung, TU Graz, Austria
2Fraunhofer Austria Research GmbH, Graz, Austria

3GRIS, TU Darmstadt & Fraunhofer IGD, Darmstadt, Germany

Abstract
Normal maps and bump maps are commonly used techniques to make 3D scenes more realistic. Consequently,
the efficient storage of normal vectors is an important task in computer graphics. This work presents a fast, lossy
compression/decompression algorithm for arbitrary resolutions. The complete source code is listed in the appendix
and is ready to use.

Categories and Subject Descriptors (according to ACM CCS): I.4.2 [Image Processing and Computer Vision]: Com-
pression (Coding)—Approximate methods I.3.6 [Computer Graphics]: Methodology and Techniques—Graphics
data structures and data types

1. Introduction

Compressing normal information is needed in a variety of
different scenarios, for example in layered volumetric rep-
resentations, where storage space is used in favor of depth
information over normal information [WLC10]. This com-
pression can be achieved by texture- or vector-based algo-
rithms. On the one hand, texture compression algorithms
are image-based approaches, which use uv-space coher-
ence for efficiency. Vector compression algorithms, on the
other hand, only regard a single (normal) vector at a time
without any context. As our approach is embedded into a
massively-parallel system, we prefer a context-free tech-
nique. An overview can be found amongst others in “Fast
normal vector compression with bounded error” [GKP07].

Despite the storage-guided approaches in computer
graphics, the problem of normal vector compression can be
regarded as a mathematical optimization problem.

2. Theory

The corresponding mathematical problem answers the ques-
tion “How can n points be distributed on a unit sphere such
that they maximize the minimum distance between any pair
of points?” [Wei11]. This maximum distance is called the
covering radius, and the configuration is called a spherical
code. With n = 2b, the consecutively numbered points rep-
resent an optimal encoding of normalized vectors in b bits.

The covering radius – respectively the enclosed angle α

of the maximum distance d – has been determined explicitly
for various n [Rob61], [Pin01], and can be estimated by the
inequation of FEJES TÓTH

d ≤
√

4− sin−2
(

πn
6(n−2)

)
, (1)

which is exact for n = 3,4,6, and 12. The general problem
has not been solved, yet.

3. Practice

For a resolution of b bits, 2b normals, respectively points on
a unit sphere, can be represented. Our approach subdivides
the unit sphere into six congruent sides with a regular square
pattern on each side. Therefore, we generate m = 6× s× s
points with s =

⌊√
2b/6

⌋
. All points are numbered consec-

utively, and only a point’s ordinal numeral is stored. This
scheme has a cutting loss, but due to its regularity, the com-
pression and decompression step can be performed with a
fixed number of arithmetic operations contrary to most other
approaches [GKP07].

As the projection of a bounding box grid onto a sphere re-
sults in unequally distributed patches concerning their size,
we use a spherical, angle-based parametrization

n(u,v) =
1√

1+ tan2 π

4 u+ tan2 π

4 v

 tan π

4 u
tan π

4 v
1

 (2)

c© The Eurographics Association 2011.

DOI: 10.2312/LocalChapterEvents/TPCG/TPCG11/063-065

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/LocalChapterEvents/TPCG/TPCG11/063-065

C. Schinko, T. Ullrich & D. Fellner / Normal Encoding

Figure 1: Within a fixed resolution the compression scheme
can represent only a limted number of normals / points on
a unit sphere. These configurations are visualized as tesse-
lations of 24 vertices (5 bits resolution, top-left) up to 7 776
vertices (13 bits resolution, bottom-right). This visualization
shows the high degree of regularity and the almost equidis-
tant spacing at all levels of resolution.

with (u,v) ∈ [−1,1]2, which delivers much better results.
Figure 1 visualizes the spherical codes of resolution 5 bits
to 13 bits.

4. Results

The results of the presented algorithm can be measured in
angular distance between any pair of points. Table 1 shows
the values for resolutions 4, 8, 12, 16, 20, and 24 with corre-
sponding error bounds.

bits normals point distances in degree
min. max. avg. error limit

4 6 90.00 90.00 90.00 45.00
8 216 11.93 14.87 13.08 6.541

12 4 056 2.521 3.460 3.030 1.515
16 64 896 0.617 0.865 0.760 0.380
20 1 048 344 0.153 0.215 0.189 0.095
24 16 773 504 0.038 0.054 0.047 0.024

Table 1: The algorithm generates spherical codes depend-
ing on the given resolution (bits). Each configuration con-
sists of a fixed number of normals, whose distance to each
other (measured in degree) is limited (error limit); e.g. the
discretization error for a normal vector stored in 8 bits is
always less than 6.541◦.

The diagram shown in Figure 2 analyzes our approach
and uses the optimal distributions – as far as the are known

Figure 2: The diagram shows the number of normals (left
axis) and the angular errors (right axis) for each level of
resolution. Red bars represent the maximum number of nor-
mals, whereas the blue ones correspond to the number of
generated normals. The difference results from cutting loss.
The red line shows the angular quality of the optimal normal
distribution [KS03], [Slo] in contrast to our results (blue
line). The corresponding discretization error is visualized in
green.

[KS03], [Slo] – as a reference or estimates them according
to Inequation (1). The complete implementation in Java is
listed in the appendix. As no object-oriented language fea-
tures and no external libraries are used, the source code can
be easily translated into any other procedural languages –
especially into shader code.

5. Conclusion

In this work we present a fast, lossy normal compres-
sion/decompression algorithm. Its most beneficial aspect is
the included, complete, ready-to-use source code.

References
[GKP07] GRIFFITH E. J., KOUTEK M., POST F. H.: Fast normal

vector compression with bounded error. Proceedings of the fifth
Eurographics symposium on Geometry processing (2007), 263–
272. 1

[KS03] KATANFOROUSH A., SHAHSHAHANI M.: Distributing
Points on a Sphere. Experimental Mathematics 12 (2003), 199–
208. 2

[Pin01] PINTER J. D.: Globally Optimized Spherical Point Ar-
rangements: Model Variants and Illustrative Results. Annals of
Operations Research 104 (2001), 213–230. 1

[Rob61] ROBINSON R. M.: Arrangement of 24 Points on a
Sphere. Math. Annalen 144 (1961), 17–48. 1

[Slo] SLOANE N. J. A.: Spherical Codes. online:
http://www2.research.att.com/∼njas/packings/. 2

[Wei11] WEISSTEIN E. W.: Spherical code. online:
http://mathworld.wolfram.com/SphericalCode.html, 2011. 1

[WLC10] WANG C. C. L., LEUNG Y.-S., CHEN Y.: Solid mod-
eling of polyhedral objects by layered depth-normal images on
the gpu. Computer Aided Design 42 (2010), 535–544. 1

c© The Eurographics Association 2011.

64

C. Schinko, T. Ullrich & D. Fellner / Normal Encoding

Appendix A: Complete Source Code
public class Normal {

private final int resolution;

private final int sampling;

private final int maximum;

public Normal(int bits) {
this.resolution = bits;

this.sampling = (int) Math.floor(Math.sqrt(Math.pow(2.0, this.resolution) / 6));

this.maximum = 6 * this.sampling * this.sampling;

}

public double[] i2n(int i) {
final int i2uv_t1 = i / 6;

final int i2uv_t2 = i2uv_t1 / this.sampling;

final double i2uv_t3 = 1.0 / this.sampling;

final int i2uv_t7 = i2uv_t1 % this.sampling;

final int i2uv_t11 = i % 6;

final double u = -0.10e1 + 0.20e1 * (double) i2uv_t2 * (double) i2uv_t3 + (double) i2uv_t3;

final double v = -0.10e1 + 0.20e1 * (double) i2uv_t7 * (double) i2uv_t3 + (double) i2uv_t3;

final int w = i2uv_t11;

final double tanUV_t3 = Math.tan(Math.PI * u / 0.4e1);

final double tanUV_t4 = tanUV_t3 * tanUV_t3;

final double tanUV_t7 = Math.tan(Math.PI * v / 0.4e1);

final double tanUV_t8 = tanUV_t7 * tanUV_t7;

final double tanUV_t10 = Math.sqrt(0.1e1 + tanUV_t4 + tanUV_t8);

final double tanUV_t11 = 0.1e1 / tanUV_t10;

final double tanUV_t12 = tanUV_t3 * tanUV_t11;

final double tanUV_t13 = tanUV_t7 * tanUV_t11;

final double tanUV_t14 = 0.10e1 * tanUV_t11;

double x, y, z;

switch (w) {
case 0: x = -tanUV_t12; y = -tanUV_t13; z = tanUV_t14; break;

case 1: x = -tanUV_t12; y = -tanUV_t13; z = -tanUV_t14; break;

case 2: x = tanUV_t14; y = -tanUV_t12; z = -tanUV_t13; break;

case 3: x = -tanUV_t14; y = -tanUV_t12; z = -tanUV_t13; break;

case 4: x = -tanUV_t12; y = tanUV_t14; z = -tanUV_t13; break;

case 5: x = -tanUV_t12; y = -tanUV_t14; z = -tanUV_t13; break;

default: x = 0; y = 0; z = 0;

}
return new double[]{x, y, z};

}

public int n2i(double x, double y, double z) {
final double nx0x = 0, nx0y = 1, nx0z = -1;

final double nx1x = 0, nx1y = -1, nx1z = -1;

final double ny0x = 1, ny0y = 0, ny0z = -1;

final double ny1x = -1, ny1y = 0, ny1z = -1;

final double nz0x = 1, nz0y = -1, nz0z = 0;

final double nz1x = 1, nz1y = 1, nz1z = 0;

final boolean testx0 = x * nx0x + y * nx0y + z * nx0z > 0;

final boolean testx1 = x * nx1x + y * nx1y + z * nx1z > 0;

final boolean testy0 = x * ny0x + y * ny0y + z * ny0z > 0;

final boolean testy1 = x * ny1x + y * ny1y + z * ny1z > 0;

final boolean testz0 = x * nz0x + y * nz0y + z * nz0z > 0;

final boolean testz1 = x * nz1x + y * nz1y + z * nz1z > 0;

final int side;

if (testx0 && testx1 && testy0 && testy1) { side = 1; }
else if (!testx0 && !testx1 && !testy0 && !testy1) { side = 0; }
else if (testy0 && !testy1 && testz0 && testz1) { side = 2; }
else if (!testy0 && testy1 && !testz0 && !testz1) { side = 3; }
else if (!testx0 && testx1 && testz0 && !testz1) { side = 5; }
else { side = 4; }

double scale;

switch (side) {
case 0: scale = 1 / z; break;

case 1: scale = -1 / z; break;

case 2: scale = 1 / x; break;

case 3: scale = -1 / x; break;

case 4: scale = 1 / y; break;

case 5: scale = -1 / y; break;

default: scale = 0;

}
final double sx = scale * x, sy = scale * y, sz = scale * z;

final double u, v;

switch (side) {
case 0: case 1:

u = (-4 / Math.PI) * Math.atan(sx);

v = (-4 / Math.PI) * Math.atan(sy);

break;

case 2: case 3:

u = (-4 / Math.PI) * Math.atan(sy);

v = (-4 / Math.PI) * Math.atan(sz);

break;

case 4: case 5:

u = (-4 / Math.PI) * Math.atan(sx);

v = (-4 / Math.PI) * Math.atan(sz);

break;

default: u = 0; v = 0;

}

final int p = Math.max(0, Math.min(sampling-1,

(int) Math.round(0.5 * (this.sampling - 1 + u * this.sampling))));

final int q = Math.max(0, Math.min(sampling-1,

(int) Math.round(0.5 * (this.sampling - 1 + v * this.sampling))));

final int r = (p * this.sampling + q) * 6 + side;

return r;

}
}

c© The Eurographics Association 2011.

65

