EG UK Theory and Practice of Computer Graphics (2008)
Ik Soo Lim, Wen Tang (Editors)

Space-free shader programming: Automatic space inference
and optimization for real-time shaders

Calle Lejdfors and Lennart Ohlsson

Department of Computer Science, Lund University, Sweden

Abstract

The graphics processing units (GPUs) used in todays personal computers can be programmed to compute the
visual appearance of three-dimensional objects in real time. Such programs are called shaders and are written in
high-level domain-specific languages that can produce very efficient programs. However, to exploit this efficiency,
the programmer must explicitly express space transformations necessary to implement a computation. Unfortu-
nately, this makes programming GPUs more error prone and reduces portability of the shader programs.

In this paper we show that these explicit transformations can be removed without sacrificing performance. Instead
we can automatically infer the set of transformations necessary to implement the shader in the same way as an
experienced programmer would. This enables shaders to be written in a cleaner, more portable, manner and to be
more readily reused. Furthermore, errors resulting from incorrect transformation usage or space assumptions are
eliminated. In the paper we present an inferencing algorithm as well as a prototype space-free shading language

implemented as an embedded language in Python.

Keywords: Shading language, graphics processing unit (GPU), optimization, inference, embedded language

1. Introduction

The graphics processing unit (GPU) available on modern
graphics cards makes it possible to execute user-defined
shader programs in real-time. Using these vertex and pixel
shaders it is possible to control the position and orienta-
tion, as well as the per-pixel color of rendered objects. Pro-
grammable shading hardware enables many highly realistic
graphical effects to be implemented.

Shaders typically makes heavy use of vector calculations
to compute the appearance of a mesh. When implement them
using current GPU languages [MGAKO3, Gra03, Ros04], it
is necessary to perform several explicit coordinate or space
transformations to a common space in which the appearance
of the mesh may be computed. By using that, in general,
there are more projected on-screen pixels than there are ver-
tices in a mesh, it is possible to get very efficient shaders by
performing the majority of these transformations per-vertex.
By choosing an appropriate space, it is even possible to avoid
some transformations completely.

The need to perform explicit transformations put an ad-

(© The Eurographics Association 2008.

ditional burden on the shader programmer. Moreover, the
choice of space is dependent both on the application and the
model that is to be rendered. This can result in a shader per-
forming sub-optimally, or even incorrectly, when used in an-
other application or for another model. This type of implicit
assumptions together with the high performance-sensitivity
of shaders, results in very tight coupling between shader and
application. This makes reusing shaders in other applica-
tions, or even for other models, difficult.

In this paper we show that explicit transforms are not re-
quired. Instead, it is possible to automatically infer the same
choice of space transforms that an experienced programmer
would make. The basis for our space-free shader program-
ming approach is a type system that is richer than those
provided by other GPU languages and an inferencing algo-
rithm based on this type system. We have developed a pro-
totype compiler that implements space-free shader program-
ming. In this language shaders are written similar to off-line
shaders, as though every vector and point is already in an ap-
propriate space. By removing explicit transforms in this way
we increase portability and reuse, since the code no longer

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org

146 C. Lejdfors & L. Ohlsson / Space-free shader programming

varying vec3 L;
varying vec3 N;

void vertex() {
gl_Position = gl_ModelViewProjectionMatrixxgl_Vertex;
N = normalize(gl_NormalMatrix*gl_Normal);
L = (gl_LightSource[0].position —
gl_ModelViewMatrixxgl_Vertex).xyz;
}

void pixel() {
vec3 Nn = normalize(N);
vec3 Ln = normalize(L);
float diffuse = max(dot(Nn, Ln), 0.0);
gl_FragColor = diffusexvec4(1,1,1,1);
}

Listing 1: A Lambertian (diffuse) shading algorithm imple-
mented in GLSL using view space.

contains application-specific assumptions. Also, consistent
usage of vector quantities is guaranteed.

As an example, consider the Lambertian (diffuse) lighting
model where the light reflected from a point is proportional
to cosine of the angle between the surface normal and the
direction of the light source, i.e. the dotproduct of these two
unit vectors. Listing 1 shows this shader written in GLSL
and Listing 2 shows the same shader implemented in our
space free language. In both versions the vertex function is
executed once for every vertex of the mesh, and the pixel
function once for every projected on-screen pixel. Data that
should be interpolated across the primitive and used as input
to the pixel program is declared as varying. The vertex pro-
gram writes values to the varying parameters (surface nor-
mal N and vector to the light source L in this example) and
the clip space position of the vertex (written to the dedicated
variable gl_Position). The pixel program reads the interpo-
lated result and uses it to compute the final pixel or fragment
color which is written to the variable gl_FragColor.

The differences are that in the GLSL version, lighting is
computed in view space and the necessary space transfor-
mations are performed explicitly by matrix multiplication.
In the space-free version the choice of space and the nec-
essary matrix multiplications are instead inferred and in-
serted by the compiler. Also, in the GLSL version, explicit
re-normalization of unit vectors is required. In the space-free
version this is automatically handled by the compiler.

In the rest of the paper we describe our prototype shading
language and the implementation of our compiler.

2. Automatic space inference

Translating a space-free shader to the GPU consists of find-
ing a set of spaces and transformations such that the gen-
erated program is both correct and gives the highest possi-

varying(unitvector, L)
varying(direction, N)

def vertex():
gl_Position = gl_Vertex
N = gl_Normal

L = gl_LightSource[0].position — gl_Vertex

def pixel():
diffuse = max(dot(N, L), 0.0)
gl_FragColor = diffusexrgba(1,1,1,1)

Listing 2: A Lambertian shading algorithm in our prototype
language. Here, no explicit vector transforms are required.
Also, vector re-normalization in the pixel shader is automat-
ically handled by our compiler.

ble run-time performance. Here, correctness means that the
result of the shading algorithm must be identical to the re-
sult which would have been obtained using a known, correct
choice of spaces. This involves ensuring that each operation
in the shader is evaluated in an appropriate space. For ex-
ample, consider computing the dot-product dot(N,L) used in
the Lambertian shader in Listing 1. By default, this quantity
should be computed in view space, since we are interested
in computing how a mesh appears to the viewer.

However, suppose we know that model space and view
space are related via a unitary transform U, i.e. a transform
that is both angle and length-preserving. Then, using the
identity for unitary transforms

dot(Ny, Ly) = dot(U#Npm, UxLm) = dot(Nm, Lm)

we find that we may compute the scalar product in model
space without introducing errors. Here the m and v subscripts
denote the vector expressed in the view and model space
frames, respectively. So, if N and L are expressed in model
space, it is possible to avoid two transforms in this case.

In order to deduce which spaces are possible for a partic-
ular computation we must first, know what spaces and trans-
forms are available, and how these transforms behave. Sec-
ond, we must determine how each operation behaves under
these space transformations. And, third, we must know the
type of every expression in the shader to know how it should
be transformed (e.g. unit vector should be transformed to
unit vectors, normals to normals, and so on). Using this
information, we may then deduce every possible space in
which the particular shader can be implemented. By conser-
vatively inferring the possible spaces for each operation the
resulting shader can be guaranteed to be correct from a space
usage perspective. Then, analyzing the cost of the different
choices of transforms, we can choose the variant with the
highest run-time performance.

(© The Eurographics Association 2008.

C. Lejdfors & L. Ohlsson / Space-free shader programming 147

2.1. Spaces and transforms

The spaces and transforms available are in most cases de-
termined by the application. The application is responsible
for placing and orienting the viewer in the world (thus de-
termining the view-to-world and world-to-view transforms)
and also, for placing each model in world (hence giving the
model-to-world transform for each model). Some applica-
tions do not represent world space explicitly, instead prefer-
ring to represent the model-to-view transforms directly.

Furthermore, some meshes contain information about lo-
cal spaces, such as tangent space, used in more complicated
shading algorithms (see Section 4). In this case, these spaces
are constructed explicitly in the shader and are available to
the space inference algorithm just as any other space.

Operations can be divided into three classes, depending
on how they behave under space transforms:

e space independent — does not change with changing
space. Includes all scalar operations (such as sine, cosine,
exp, max, min etc.) and color operations.

e space dependent — operations which require arguments to
be in the same space (vector addition, subtraction, . ..) but
does not involve angle or length measurements.

e metric dependent — operations which require arguments
to be in the same space and have the same metric (dot-
product, normalization, length, etc.).

This classification lets us determine, given that an operations
should be computed in a particular space, the set of possible
spaces for that operation.

Space independent For a space independent operation that
should be computed in a space S, the only possible space is
S. For example, computing the final pixel color by multiply-
ing a color by a floating point value

gl_FragColor = diffusexmaterialColor

should be performed in view space. This follows by the rea-
soning above, that the pixel color should be computed as it
appears to the viewer.

Space dependent For a space dependent operation that
should be computed in a space S the set of possible spaces is
equal to those spaces from which there exists a transform to
S. For example, suppose we should compute the light vector
L in view space by

L = lightPos — vertexPos

Then we may compute the light position and vertex posi-
tion in any space for which there exist a transform to view
space. The resulting vector can then be transformed to view
space using this transform. So, if there exist a transform from
model to view space and we have the light and vertex posi-
tion in model space. Then, we can compute the light vector
in view space by

L = modelToViewx(lightPos — vertexPos)

(© The Eurographics Association 2008.

where modelToView is the transformation matrix from view to
model space. This saves us one transform.

Metric dependent In the previous section we saw an ex-
ample of metric dependence when we argued that we could
compute the diffuse term in model space rather than view
space, when these spaces were related by a unitary trans-
form. Generally, if an operation is metric dependent and
should be computed in some space S then it may be com-
puted in any space from which there exists a unitary trans-
form to S.

It is possible to generalize metric dependence further
by considering transforms which are angle but not length-
preserving. For such a transform T we have

dot(Tsv, Tsu) = A2sxdot(v, u)
for arbitrary vectors v and u and where A = det T. However,

due to lack of motivating real-world examples, we restrict
ourselves to the unitary case, i.e. when A = 1.

2.2. Typing and vector transforms

How a vector quantity is transformed is dependent on what
type of vector it is and what kind of information it encodes.
The type of the transformed vector must be the same as the
original vector’s. For example, transforming a unit vector v
using a transform T must result in a new unit vector. Hence,
this transform must be done by

V' = Txv/length(Txv)

Here we can use transform properties to simplify this ex-
pression. For example, if we know that T is unitary, then
length(Tx*v) = 1 and the division can be skipped. However, if
the vector v is a surface normal, then it should be transformed
using the inverse transpose of T instead. This is necessary to
ensure that the result is still a normal, i.e. orthogonal to the
surface.

These examples illustrate the need for a fine-grained type
system to be able to deduce how a vector quantity should
be transformed. We use a type system which is an extensi-
ble form of the semantic types of McGuire et al. [MSPKO06].
This type system provides types for vectors, points, unit vec-
tors, directions, and normals, in addition to the vector types
provided by GLSL. Similarly, the matrix types of GLSL are
extended to include 4 x 4 unitary and 3 x 3 unitary matrices.

In addition to being used to deduce how vectors should
be transformed, type information can be used to correctly
interpolate values between the vertex and pixel shader. Two
methods are interpolation methods are used: unit vectors are
normalized first in the vertex shader, interpolated, and then
re-normalized in the pixel shader. Directions, on the other
hand, must not be normalized in the vertex shader, only in
the pixel shader. Our system uses type information to chose
the correct method depending on the type of varying data. In
current shader languages, this must be handled manually by
the shader programmer and it is a frequent source of errors.

148 C. Lejdfors & L. Ohlsson / Space-free shader programming

2.3. Shader cost optimization

Selecting the best space choice can be done by estimating
the run-time cost of every shader variant, and choosing the
variant having the lowest cost. However, since every shader
contains code executing per-vertex and per-pixel, the com-
putational frequency [PMTHO1] at which each operation of
the shader executes must be taken into consideration when
choosing the best variant. These frequencies are:

e Per-model or instance computations such as transform
matrices and light positions which do not vary across the
mesh. Computed on the CPU and then downloaded to the
GPU.

e Per-vertex calculations for computing primitive inter-
polants and attributes such as texture coordinates, shadow
map coordinates, and, depending in lighting model, light
directions and tangent space transforms. Performed in the
vertex processing unit of the GPU.

e Per-pixel calculations including texture accesses and pos-
sible pixel discards performed in the pixel processing unit
of the GPU. This step is performed before alpha, stencil,
and depth testing.

It is not possible to a priori determine how many times each
part of a shader will be executed. However, for the majority
of applications, the general rule is that the pixel shader is ex-
ecuted many more times than the vertex shader. This follows
since there generally are many more projected on-screen pix-
els than vertices of a mesh. Similarly, the vertex shader is
executed more often than the model computations, as model
computations are performed only once for each mesh which
typically consist of several thousand vertices.

This asymmetry can be described by summing the run-
time cost of each individual step and representing them by
a tuple (&, ty,tm) for the pixel, vertex, and model run-time
cost, respectively. These tuples can then be compared us-
ing lexicographic ordering to find a least element. By using
another ordering function it is possible to adapt the choice
algorithm to optimize for non-standard applications, such as
wire-frame renderers (where the ratio of pixels to vertices is
lower).

2.4. Further optimizations

When constructing shader variants there are two important
optimizations that need to be considered to correctly deter-
mine the cost of a shader. The first is that unitary transforms
can be inverted without cost. Using that the GPU does not
distinguish between row and column vectors we may per-
form the following rewrite:

T v = Thiv = (vaT)l = vaT

using the fact that the inverse of a unitary transform is its
transpose. This optimization is particularly important when
transforming surface normals since such vectors should be
transformed using the inverse transpose of the matrix used

to transform the surface. Hence, for a unitary transform U
we get (U1 = (U =U.

Second, when constructing local frames in the shader, the
vectors used to defined the coordinate system for the space
have constant coordinates in that space. For example, if a
shader constructs a local space S from the basis vectors u, v,
and w. Then we may rewrite, for example:

dot(u, 1) = 1.x

i.e. as the first component of vector I, if the dot product is
computed in the space S. This is possible since in S the coor-
dinates for u, v, and w are (1,0,0), (0,1,0), and (0,0, 1), re-
spectively. Also, if these vectors are used as interpolants,
then we can further reduce computational requirements by
not interpolating them, since they are constant in S.

3. Implementation

Our prototype, space-free shading language is implemented
as an embedded language in Python, an object-oriented, in-
terpreted, dynamically typed, high-level language. Language
embedding allows us to reuse parts of the Python compiler
framework to avoid writing a complete language front-end.
This has enabled us to quickly experiment with different fea-
tures and design choices in our implementation. For an ex-
ample Lambertian shader, see Listing 2.

Just as in GLSL, our language provide a number of im-
plicit input and output parameters (vertex position, pixel
color, texture coordinates) named after their GLSL counter-
parts. These parameters are prefixed by gl_ and are provided
either in model or view space. A non-exhaustive list of im-
plicit parameters along with their type and space is given in
Table 1.

3.1. The space inference process

Our space inference compiler is implemented as a constraint
solving process. Starting at the output variables gl_Position
and gl_FragColor for which the desired output spaces are
known, it proceeds breadth-first back through the data-
dependence graph of the program. For every operation, a
space is chosen from the set of possible space (using the
classification in Section 2.1) and this choice is propagated as
a constraint back through the data-dependence graph. Once
spaces have been chosen for every operation, the shader vari-
ant is passed to a backend code generator.

The backend inserts the necessary transforms to imple-
ment the shader in the chosen spaces and then optimizes the
shader (in particular using the domain specific optimization
in Section 2.4). After this a frequency analysis is performed,
any computations which do not vary per-vertex or per-pixel
are moved to the CPU to avoid unnecessary re-computations.
Also, as part of this analysis, the shader cost at the model,
vertex, and pixel frequency are estimated. Finally the GPU
vertex and pixel shader programs are generated. The code

(© The Eurographics Association 2008.

C. Lejdfors & L. Ohlsson / Space-free shader programming 149

Parameter Type Space Notes
gl_Vertex Point ModelSpace

gl_Normal Normal ModelSpace

gl_Position Point ClipSpace Must write per-vertex

gI_FragCoIor RGBA ViewSpace Must write per-pixel
gl_LightSource[i]
.positon Point ViewSpace

Table 1: A non-exhaustive list of implicit variables provided
by our prototype language. The output variables gl_Position
and g_FragColor must, as indicated, be computed and written
in the vertex and pixel shader, respectively.

generator currently targets Python for the CPU code and
GLSL for the GPU code.

3.2. Shader optimization

The space inference process is continued until the set of
possible spaces has been exhaustively searched. Using the
estimated shader cost computed by the backend the shader
variant with the lowest run-time cost is found. Currently, the
cost ranking is performed using lexicographic ordering as
described in Section 2.3. The cost ranking function is passed
as a parameter to the compiler allowing it to be replaced by
a non-standard ranking method if required.

As it is currently implemented, the running time of our
compiler is proportional to the number of possible space
choices in a shader (worst case: exponential in the num-
ber of vector operations). Reducing this search time is not
straightforward. Traditional methods for reducing the run-
time for minimization algorithm relies on pruning or cutting
down the potential search space. However, due to the poten-
tially large performance impact of the optimizations in Sec-
tion 2.4, the run-time cost of a shader is difficult to reliably
estimate before the space for each operation has been cho-
sen. These optimizations can lead to entire expression being
eliminated or replaced by a simpler one. For example, if T is
unitary and v is the first coordinate axis of T then

dot((T~")!sv, u) = dot(Tsv, u) = dot((1,0,0), u) = u.x

In this case a dot product computations and a transform has
been reduced to a single vector member access (which can be
performed without run-time cost on the GPU). Compilation
times for our examples ranges from sub-second to at most
a few seconds and we have not found this to be a problem.
Nevertheless, reducing compilation times is an interesting
area for further research.

Another item of note is that space inference algorithm will
never place a transform inside a loop. If a transform were to
be placed inside a loop, the run-time cost of the generated
shader can not be estimated since the number of loop itera-
tions can in general not be determined. In some restricted
cases, it is possible to statically determine the number of

(© The Eurographics Association 2008.

uniform(sampler2D, bumpmap)
attribute(vector, ModelSpace, tangent)
varying(vector, L)

varying(vector, H)

constant(point, ViewSpace, eyePos, (0,0,0))

def vertex():
gl_Position = gl_Vertex
gl_TexCoord[0] = gl_MultiTexCoord0
N = gl_Normal
T = tangent
B = cross(N, T)
space(TangentSpace, unitary3(T,N,B))
L = gl_LightSource[0].position — gl_Vertex
V = eyePos — gl_Vertex
H = normalize(L+V)

def pixel():
offset = TangentSpace(tex2D(bumpmap,gl_TexCoord[0]).xyz)
N = normalize(offset + N)
diffuse = max(dot(N, L), 0.0)
specular = pow(max(dot(N, H), 0.0), 8)
gl_FragColor = diffusexrgba(1,0,0,1)+specularkrgba(1,1,1,1)

Listing 3: A space-free bump mapping shader. The surface
normal is perturbed using a texture to give the impression
of fine-scale structure such as bumps or ridges on a surface.
Here, the vertex shader is used to construct a tangent frame
which can be used for shading computations. Note that the
space of the offset vector and eye position must be explicitly
spectfied for the inference algorithm to work.

times the body of a loop will be executed. However, in non-
trivial examples the number of loop iterations can not be de-
termined at compile time. For example, the presence of flow-
control commands such as break, return, or continue generally
makes such analysis impossible. We have found no realistic
examples where this restriction is a limitation, however.

4. Examples

The Lambertian example given so far is a very simple ex-
ample of an isotropic lighting model, i.e. a surface that scat-
ters light uniformly in every direction. Such lighting mod-
els can typically be efficiently implemented in model, world
or view space. However, in most real-world surfaces there
is an asymmetry, relative to the local surface orientation, in
how light is reflected. In such anisotropic models, the local
orientation is usually expressed by the tangent space of ev-
ery point on the surface. Common examples of such models
are bump [B1i78] and parallax mapping [KTI*01], that uses
tangent space to compute normal and, in the case of paral-
lax mapping, texture space offsets to give appearance of sur-
face wrinkles or bulges. Listing 3 gives an implementation
of bump mapping in our language. Note the declaration of
the new space TangentSpace, constructed from the basis vec-

150 C. Lejdfors & L. Ohlsson / Space-free shader programming

Performance (FPS) Rel.
Shader Space-free Hand-written perf.
Lambertian 1550 1580 98%
Blinn-Phong 1280 1310 97%
Bump mapping 1230 1240 99%
Refraction 917 950 96%
Parallax mapping 568 581 98%
View space bump m. - 1100 -

Table 2: Performance measurements of a simple synthetic
scene running different shaders. The view space bump map-
ping is a hand written example demonstrating the perfor-
mance impact of using an inappropriate space. Performance
figures giving absolute performance rendered frames per
second (FPS) of a synthetic scene. All measurements were
run on an NVIDIA GeForce 8600 GT graphics card using a
C++ rendering engine.

tors T, N, and B. Our compiler can use this space to infer that,
in this case, the best space choice is tangent space.

For performance results of some common isotropic and
anisotropic shading algorithms see Table 2. These algo-
rithms demonstrate different levels of complexity, ranging
from just a few scalar products (the Lambertian and Blinn-
Phong) to complex, iterative algorithms that perform ray-
tracing in texture space (Parallax mapping). All measure-
ments compare a space-free implementation written in our
prototype language to an equivalent, manually optimized,
version implemented in GLSL. All hand-written examples
contain implicit assumptions (e.g. that the view to model
space transform is unitary) and explicit vector normaliza-
tion in the pixel shader. All such assumptions are eliminated
in the space-free variants. In all examples, the transforms
and spaces inferred by our compiler precisely matches those
used in the hand-written examples.

We see that the hand-optimized consistently out-perform
the space-free shader variants. However, the performance
gains of hand-optimizing a shader is only in the order of
a few percent. This indicates that the space inference ap-
proach is useful in practice. The exact source of the per-
formance disparity is difficult to pin-point since the GLSL
compiler does not allow the generated assembler to be in-
spected. However, the most likely source is that hand-writing
lets the programmer exploit instruction-level SIMD paral-
lelism available on the GPU. Presumably, the structure of
the code generated by our backend is less amenable to par-
allelization by the GLSL compiler.

5. Discussion

‘We have presented a novel domain-specific language for pro-
gramming GPUs that enables shader programs to be written
without explicit space transforms. This enables shading al-
gorithms to be implemented in a more general and portable

manner while allowing optimization to be performed on
a per-application or even per-model basis. Consequently,
space-free shaders can be reused in other applications with-
out changes. The performance of the generated GPU code
is very close to that of hand-optimized versions which indi-
cates that the approach given in this paper is useful in prac-
tice.

Much previous work has been devoted to translating
shaders for off-line use, typically written in the RenderMan
shading language [HL90], to real-time graphics hardware:
reducing memory-accesses [OKS03], automatic multi-pass
shader factorization [POAUOQ0O], and semi-automatic ver-
tex/pixel factorization of shaders [PMTHO1]. Our paper rep-
resent a previously unexplored avenue that could be used to
further improve on these results.

References

[BIi78] BLINN J. F.: Simulation of wrinkled surfaces. In
Computer Graphics (Proceedings of SSIGGRAPH) (1978),
vol. 5, pp. 286-292.

[Gra03] GRAY K.: DirectX 9 programmable graphics
pipeline. Microsoft Press, 2003.

[HL90] HANRAHAN P., LAWSON J.: A language for
shading and lighting calculations. In Computer Graph-
ics (Proceedings of SIGGRAPH) (1990), vol. 17, pp. 289—
298.

[KTI*01] KANEKO T., TAKAHEI T., INAMI M.,
KAWAKAMI N., YANAGIDA Y., MAEDA T., TACHI
S.: Detailed shape representation with parallax map-
ping. In Proceedings of the ICAT2001 (2001), vol. 12,
pp. 205-208.

[MGAKO3] MARK W. R., GLANVILLE R. S., AKELEY
K., KILGARD M. J.: Cg: a system for programming
graphics hardware in a C-like language. ACM Trans.
Graph. 22, 3 (2003), 896-907.

[MSPKO6] MCGUIRE M., STATHIS G., PFISTER H.,
KRISHNAMURTHI S.: Abstract shade trees. In I3D ’06
(New York, NY, USA, 2006), ACM, pp. 79-86.

[OKS03] OLANO M., KUEHNE B., SIMMONS M.: Auto-
matic shader level of detail. In Graphics hardware (2003),
Eurographics Association, pp. 7-14.

[PMTHO1] PROUDFOOT K., MARK W. R., TZVETKOV
S., HANRAHAN P.: A real-time procedural shading sys-
tem for programmable graphics hardware. In Computer
Graphics (Proceedings of SIGGRAPH) (2001), vol. 28,
pp- 159-170.

[POAUOO] PEERCY M. S., OLANO M., AIREY J., UN-
GAR P. J.: Interactive multi-pass programmable shad-
ing. In Computer Graphics (Proceedings of SIGGRAPH)
(2000), vol. 27, pp. 425-432.

[Ros04] RosT R. J.: OpenGL Shading Language.
Addison-Wesley Professional, February 2004.

(© The Eurographics Association 2008.

